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Abstract

Estetrol (E4) has strong antioxidative, neurogenic and angiogenic effects in neural system 

resulting in the attenuation of neonatal hypoxic–ischemic encephalopathy. We aimed to 

define the role of estrogen receptors in E4-dependent actions in neuronal cell cultures 

and prove the promyelinating effect of E4. In vitro the antioxidative and cell survival/

proliferating effects of E4 on H2O2-induced oxidative stress in primary hippocampal cell 

cultures were studied using different combinations of specific inhibitors for ERα (MPP 

dihydrochloride), ERβ (PHTTP), GPR30 (G15) and palmytoilation (2-BR). LDH activity and cell 

survival assays were performed. In vivo the promyelinating role of different concentrations 

of E4 (1 mg/kg/day, 5 mg/kg/day, 10 mg/kg/day, 50 mg/kg/day) was investigated using the 

hypoxic–ischemic brain damage model in the 7-day-old immature rats before/after the 

induction of hypoxic–ischemic insult. Myelin basic protein (MBP) immunostaining was 

performed on brain coronal sections. Our results show that LDH activity is significantly 

upregulated in cell cultures where the E4’s effect was completely blocked by concomitant 

treatment either with ERα and ERβ inhibitors (MPP and PHTPP, respectively), or ERα and 

ERβ inhibitors combined with 2-BR. Cell survival is significantly downregulated in cell 

cultures where the effect of E4 was blocked by ERβ inhibitor (PHTTP) alone. The blockage 

of GRP30 receptor did affect neither LDH activity nor cell survival. MBP immunostaining is 

significantly upregulated in E4-pretreated groups at a concentration of 5 mg/kg/day and 

50 mg/kg/day E4, whereas the MBP-positive area OD ratio is significantly increased in all 

the E4-treated groups. E4’s antioxidative actions mostly depend on ERα and ERβ, whereas 

neurogenesis and possibly promyelinating activities might be realized through ERβ.

Introduction

Neonatal encephalopathy is mainly triggered 
by perinatal hypoxic–ischemic brain injury and 
accompanied by neurodevelopmental deficits such as 

learning disabilities, mental retardation and hearing 
and visual impairments. Neonatal hypoxic–ischemic 
encephalopathy (HIE) remains a serious condition that 
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causes significant mortality and morbidity in near-term 
and term newborns; also, it does occur in premature 
infants as well (Volpe 2001). The brain damage due 
to hypoxia and ischemia results in various lesions in 
preterm and in term infants with the neuronal/axonal 
involvement of the cerebral white matter, thalamus, 
basal ganglia, cerebral cortex, brainstem and cerebellum 
(Volpe 2001). Two recent clinical trials provided updated 
information on mortality and neurodevelopmental 
outcomes in infants with moderate and severe HIE as 
follows: 23–27% of infant mortality was recorded prior to 
discharge from the neonatal intensive care unit (NICU) 
and 37–38% of mortality at follow-up 18–22  months 
later (Gluckman et al. 2005, Shankaran et al. 2005). The 
neurodevelopmental outcome at 18  months included 
mental and psychomotor development retardation, 
cerebral palsy (CP), epilepsy, blindness and hearing 
impairment (Gluckman et  al. 2005, Shankaran et  al. 
2005). As a recent study suggests, neonatal HIE might 
start antenatally, implying the importance of different 
factors (i.e. genetic and/or infectious, and placental 
factors), but parturition might have importance for the 
final development of HIE (Martinez-Biarge et al. 2013). 
As a consequence, brain hypoxia and ischemia due to 
systemic hypoxemia and reduced cerebral blood flow 
(CBF) are primary reasons leading to perinatal HIE (Grow 
& Barks 2002, Ferriero 2004). At present, therapeutic 
hypothermia is considered the best neuroprotective 
strategy (Gluckman et  al. 2005, Shankaran et  al. 2005, 
Azzopardi et  al. 2009), but neurodevelopmental 
deficits persist in 40–50% of patients even after 
hypothermia (Shankaran et al. 2005). So far, no medical 
treatment provides important neuroprotection against 
neonatal HIE.

E4 is a natural human fetal estrogen with selective 
estrogen receptor modulator activity (SERM) (Abot et al. 
2014). Its synthesis amounts to 1 mg/kg/day at term 
of pregnancy and results of a cooperativity between 
fetal adrenals, placenta and fetal liver. It is detected 
in maternal urine from about 9  weeks of gestation, 
substantially increasing during pregnancy (Holinka et al. 
2008). Our recent studies already showed that E4 has 
very good antioxidant, neuroprotective, neurogenic and 
angiogenic properties and the combined use of E4 with 
other steroids do not have any priority over the single use 
of E4 (Tskitishvili et al. 2014, 2016).

Estrogen receptor α (ERα) and β (ERβ) are expressed 
in the human cortex and hippocampus during 
neurodevelopment. ERα, detected by 9 weeks of gestation, 

plausibly has importance for the early neurodevelopment, 
whereas ERβ might have importance for later processes, 
such as corticogenesis (Nomura et  al. 2003). E4 acts as 
a SERM by activating the nuclear ERα, inhibiting its 
membrane form and blocking the membrane initiated 
steroid signaling by estradiol. Depending on the 
respective role of nuclear and membrane forms of ERα 
in distinct target organs, E4 may have a synergistic role 
with E2 (through activation of nuclear ERα) or an anti-
estrogenic effect by blocking membrane ERα and its 
activation by E2. As a consequence, E4 has biological 
activities distinct from E2, depending on the tissues 
and cells and the selective binding to the nuclear/
membrane form of ERα (Abot et  al. 2014). In general, 
palmitoylation regulates 17β-estradiol-induced ERα 
degradation and transcriptional activity (La Rosa et  al. 
2012) and may explain the ability of ERα to associate to 
plasma membrane making possible E2-dependent rapid 
functions (Acconcia et al. 2004) and the same might be 
plausible for E4-dependent rapid functions.

Recent studies have shown that estrogen receptor 
ERβ expression in oligodendrocytes is required for the 
attenuation of clinical disease by an ERβ ligand pointing 
out the role of this specific receptor in myelination (Khalaj 
et al. 2013). It was also demonstrated that GPR30, which 
is uniquely localized to the endoplasmic reticulum, but 
not the plasma membrane, may non-genomically signal 
in response to estrogens by increasing the calcium flux 
(Revankar et al. 2005).

Our aim was to identify those estrogen receptors 
through which E4 can realize its antioxidative and 
neuroprotective actions in neuronal cells and define the 
possible promyelinating effect of E4.

Materials and methods

In vitro studies

Preparation of primary hippocampal neuronal 
cultures  We prepared primary hippocampal neuronal 
cultures from newborn (P0) Sprague–Dawley (SD) rat pup 
brains according to the recently published protocols 
(Kaech & Banker 2006, Beaudoin et al. 2012), which we 
have used in our previous study (Tskitishvili et al. 2014, 
2016). Briefly, brains were dissected to separate the 
hippocampus region. Hippocampi were separated in 
dissection medium consisting of Hanks balanced salt 
solution (HBSS) supplemented with sodium pyruvate 
(100×), glucose and HEPES buffer (10 mM), and 
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trypsinized followed by the addition of DNase and 
incubation at room temperature for 5 min. Then 
hippocampi were resuspended in 2.5 mL of plating 
medium consisting of minimal essential medium (MEM) 
with Earle’s salts, supplemented with 10% of fetal bovine 
serum (FBS), glucose, sodium pyruvate, GlutaMax-I-
supplement and penicillin/streptomycin (100×). 
Hippocampi were dissociated, the cell viability was 
evaluated and the cells were plated on poly-l-lysine-
coated 24-well (5 × 104 cells/well) or 96-well (5 × 103 cells/
well) culture plates. Cultures were incubated in a 
humidified 5% CO2/95% air atmosphere at 37°C in 
maintenance medium consisting of neurobasal medium, 
containing supplement B-27 (50×), GlutaMax-I-
supplement and penicillin/streptomycin (100×). Cytosine 
arabinosidase (Ara-C) was added to the maintenance 
media 48 h later after plating of the cells during 24 h. 
Upon changing the culture medium, the cultures were 
incubated for additional 3–4  days prior to use. All the 
chemicals and solutions were purchased from Invitrogen 
and Sigma-Aldrich.

Cell culture stimulation with H2O2, E4 alone or 
with different combinations of inhibitors  To study 
the role of different estrogen receptors that mediate the 
antioxidant effect of E4, specific inhibitors for ER-α, ER-β, 
GPR30 and palmitoylation (MPP dihydrochloride, PHTTP, 
G15 and 2-bromohexadecanoic acid (2-BR), respectively) 
were used as their efficacy was already described in some 
recent studies (Kajta et  al. 2013, Rzemieniec et  al. 2015). 
According to these studies, inhibitors might give unspecific 
effects in cell cultures by affecting the LDH release. To 
avoid any unspecific reaction, effects of different doses of 
MPP, PHTTP, G15 (from 1 pM to 1 μM of each inhibitor) 
and 2-BR (1 pM–40 μM) alone or in combination with each 
other in the presence or absence of either E4 or H2O2 were 
tested on LDH release (data not shown). Based on these 
observations, we have chosen the doses of inhibitors, which 
did not give unspecific effects and do not affect the LDH 
release (1 pM of each inhibitor). MPP has no stimulatory 
activity on ERα or ERβ, and it fully inhibits ERα activity by 
E2 while having no suppressive activity on ERβ stimulation 
by E2 (Sun et al. 2002). PHTTP has 36-fold selectivity for 
ERβ, and it is fully effective as an ERβ-antagonist while 
exhibiting no significant agonist effects on ERα or ERβ. 
Thus, it is useful in evaluating the biological activity of 
ERβ (Compton et al. 2004). G15 binds to GPR30 with high 
affinity and acts as an antagonist of estrogen signaling 
through GPR30 (Dennis et al. 2009). 2-BR is a non-selective 

inhibitor of lipid metabolism and a general inhibitor of 
protein S-palmitoylation (Davda et al. 2013).

MPP dihydrochloride, PHTTP and G15 were 
purchased from Tocris Bioscience (Bristol, UK), whereas 
2-BR – from Sigma-Aldrich. All inhibitors were dissolved 
in DMSO and further diluted in culture medium at a final 
concentration of 0.1% DMSO. Primary hippocampal 
cell cultures prepared from newborn rat pups, at day 7 
after plating cells, were treated with 100 µM of H2O2 for 
30 min (Merck KGaA) and then treated with E4 alone 
or in combination with MPP (1 pM), or PHTTP (1 pM), 
or G15 (1 pM) and/or 2-BR (1 pM) for 1 h as follows: 
E4 + 1 pM MPP, E4 + 1 pM PHTTP, E4 + 1 pM MPP + 1 pM 
PHTTP, E4 + 1 pM 2-BR; E4 + 1 pM 2-BR + 1 pM MPP, 
E4 + 1 pM2-BR + 1 pMMPP + 1 pMPHTTP, E4 + 1 pM G15.  
Cell cultures treated only with 100 µM of H2O2 for 1 h 
30 min were used as controls. E4 (Mithra Pharmaceuticals, 
Liege, Belgium) was used at a concentration of 3.25 mM 
as one of the successful concentrations used in our 
previous in vitro studies (Tskitishvili et al. 2014, 2016). 
LDH activity was measured in supernatants. The rest of 
the cell cultures were subjected to the cell viability assay.

Evaluation of lactate dehydrogenase (LDH) 
activity and cell viability  To evaluate the 
consequence of existence of oxidative stress and the cell 
viability in primary hippocampal cell cultures stimulated 
by different concentrations of E4 alone or in combination 
with different estrogen receptor inhibitors, LDH activity 
(Abcam) and cell viability assays (Promega Corporation) 
were performed. All the procedures were performed in 
accordance to the manufacturer’s protocol as previously 
described (Tskitishvili et al. 2014, 2016). Each condition 
was repeated 3–6 times.

In vivo studies

We obtained SD pregnant rats from Janvier (Janvier Labs, 
Le Genest-Saint-Isle, France). After delivery, the newborn 
pups were reared with their dams at 25°C. All experimental 
procedures were approved by the University of Liege 
(Belgium) Ethical Committee. E4 was diluted in saline 
solution. The vehicle group animals were IP injected a saline 
solution. Neither injections nor the carotid artery ligation 
and exposure to hypoxia were performed in sham group.

Neuroprotective (pretreatment) effect of E4  To 
study the neuroprotective effect of E4, 10 newborn rat 
pups were assigned to each group from postnatal day 4 as 
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followed: sham group, vehicle-treated group, 1 mg/kg/per 
day, 5 mg/kg/per day, 10 mg/kg/per day and 50 mg/kg/per 
day E4-treated groups. From postnatal day 4 (P4), pups 
were injected IP either with vehicle (vehicle group) or with 
E4 (1 mg/kg/day, 5 mg/kg/day, 10 mg/kg/day or 50 mg/kg/
day) in accordance to the group assignment. At postnatal 
day 7 (P7), a model of hypoxia–ischemia in immature 
7-day-old rat pups was used with modifications (Vanucci 
& Vanucci 2005). Briefly, 30 min after the last injection 
of either E4 or vehicle, animals were anesthetized with 
isoflurane (induction 3.0%, maintenance-1.50%), and the 
left common carotid artery was double-ligated and severed. 
After the procedure, the pups were returned to their dams 
and allowed to recover for 1 h. The pups were then placed 
in the humidified hypoxic in vivo cabinet (CoyLab, Grass 
Lake, MI, USA). Hypoxia was produced by the inhalation 
of decreased concentrations of oxygen for 20 min from 
11% to 8% oxygen balanced by nitrogen, followed by the 
inhalation of 8% oxygen and 92% nitrogen for 35 min 
as already described previously (Tskitishvili et  al. 2014, 
2016). All manipulations were performed at 37°C. Rat 
pups recovered with their dams and reared normally until 
being killed at P14.

Therapeutic effect of E4  To study the therapeutic 
effect of E4 after hypoxic–ischemic insult, 10 newborn rat 
pups were assigned to each group at P7 as followed: sham 
group, vehicle-treated group, 1 mg/kg/per day, 5 mg/
kg/per day, 10 mg/kg/per day and 50 mg/kg/per day E4 
groups. At P7, a model of hypoxia–ischemia in immature 
7-day-old rat pups was used with modifications (Vanucci 
& Vanucci 2005). Briefly, animals were anesthetized 
with isoflurane (induction 3.0% maintenance-1.5.0%) 
and the left common carotid artery was double-ligated 
and severed in the rat pups of the vehicle and E4 
groups. After the procedure, the pups were returned to 
their dams allowed to recover for 1 h and then placed 
in the humidified hypoxic in vivo cabinet (CoyLab). 
Hypoxia was produced by the inhalation of decreasing 
concentrations of oxygen for 20 min from 11% to 8% 
balanced by nitrogen, followed by inhalation of 8% 
oxygen and 92% nitrogen for 35 min. All manipulations 
were performed at 37°C as already described previously 
(Tskitishvili et  al. 2014, 2016). Upon retrieval from 
hypoxia chamber, rat pups were injected IP either by 
vehicle (vehicle group) or by E4 (1 mg/kg/day, 5 mg/kg/
day, 10 mg/kg/day or 50 mg/kg/day) in accordance to the 
group assignment. Rat pups recovered with their dams 
until being killed at P14.

Measurement of rat pups rectal temperature  To 
determine the possible effect of E4 treatment on rat pups 
body and brain temperatures, the measurement of the 
temperature per rectum was done by using multiple 
thermometer (BAT-10R) and a specific RET-4 probe 
(Bio Medical Instruments, Zollnitz, Germany) after 
hypoxic insult at 0-, 2- and 4-h time points as described 
previously (Tskitishvili et al. 2014, 2016). The variability 
of the rectal/body temperature was kept at low level by 
making the temperature measurements in a 25°C room 
(Feng et al. 2005). Rat pups rectal temperature was not 
significantly different between the study groups (data 
not shown).

Brain and blood samples preparation  The pups 
were killed at P14. Preparation of the brain and blood 
samples was performed according to our protocol already 
used previously (Tskitishvili et  al. 2014, 2016). Briefly, 
animals were deeply anesthetized. Blood was withdrawn 
quickly and the serum samples were stored at −80°C 
before being used. Transcardial perfusion of animals was 
performed with 0.9% saline solution followed by the 
perfusion of the 4% paraformaldehyde in PBS at 4°C. The 
brains were being quickly removed, weighed and fixed for 
24 h, followed by embedment in paraffin.

ELISA to detect blood serum S100B and glial 
fibrillary acidic protein (GFAP) (brain damage 
markers)  ELISAs for serum S100B (CUSABIO BIOTECH 
Co., Ltd., Wuhan, China), and GFAP (USCN Life Science 
Inc., Wuhan, China) were performed according to the 
manufacturers’ recommendations.

MBP staining  The sections were processed for 
immunohistochemical detection of neuronal cytoskeletal 
disruption. For antigen retrieval, the sections were 
heated in 10 mmol/L citrate buffer (pH 6.0) at 100°C 
for 10 min. Endogenous peroxidase activity was blocked 
with 3% hydrogen peroxide for 10 min and after a second 
blocking with 5% normal goat serum, the sections 
were incubated with MBP 1:1000 (mouse monoclonal 
antibody; Sigma) overnight at room temperature. After 
rinsing, biotinylated goat anti-mouse immunoglobulin G 
(Vector, Burlingame, CA, USA) was added, and antibody 
detection was performed with the avidin–biotin complex 
method (Vector), with 3,30-diaminobenzidine (DAB) 
and the nickel as chromogens. After the reaction with 
DAB and the nickel, the slides were washed, dehydrated 
and coverslipped. The area with intact white matter 
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displayed staining with MBP, whereas the damaged 
area showed a loss of MBP staining. 10 samples from 
each study group of both study designs were analyzed 
with the aid of an image scanner (Nanozoomer Virtual 
Microscopy, Hamamatsu, Tokyo, Japan) and the ImageJ 
software (NIH) as previously described (Tskitishvili et al. 
2014, 2016). The optical density (OD) of MBP-positive 
areas in the ipsilateral and contralateral hemispheres was 
measured. The ratio of the MBP-positive areas OD was 
calculated as the MBP-positive area OD of the ipsilateral 
hemisphere divided by the MBP-positive area of the 
contralateral hemisphere. The ratio of the MBP-positive 
area OD in sham-operated animal group was considered 
by default as 1.0.

Correlation studies between the optical density 
(OD) of MBP-positive area ratio, brain damage 
markers, glial fibrillary acidic protein (GFAP) and 
S100B and the brain weight  Previous studies already 
demonstrated that the reduced brain weight is usually 

attributed mainly to the loss of white matter (Harper 
et al. 1985, De la Monte 1988), and there is a relationship 
between expression patterns of myelin protein levels 
and brain weight, age at death and postmortem interval 
(Lewoh et al. 2005). Recently, a significant correlation was 
found between the markers for myelination and the brain 
weight (Lewoh et al. 2005). Brain weights of animals from 
study groups were measured along with the MBP-positive 
area OD ratio, the blood GFAP and S100B expression, and 
correlation studies were performed.

Statistical analysis

The Statview statistics package (Abacus Concepts) was 
used for statistical analysis. An ANOVA followed by 
Fisher’s PLSD, Scheffe’s and Bonferroni/Dunn post hoc 
tests and Fisher’s r to z tests, respectively, were used 
for statistical comparisons and correlative studies with 
P ≤ 0.05 considered as significant. All values (except for 
correlations) are expressed as mean ± s.e.m.

Figure 1
Effect of E4 in combination with different receptor inhibitors on LDH activity in primary hippocampal neuronal cultures subjected to the H2O2-induced 
oxidative stress. Primary hippocampal cell cultures were exposed to 3.25 mM E4 alone or in combination with MPP, PHTTP, G15 and/or 2-BR after 
induction of oxidative stress. (A) LDH activity was significantly decreased by treatment with E4 alone or in combination with ER-α inhibitor MPP 
compared to the H2O2-treated cell cultures or cultures combinedly treated by E4 + MPP + PHTTP. Combined use of MPP and PHTTP significantly increased 
the LDH activity compared to the cells treated by E4 alone or in combination with MPP. (B) LDH activity was significantly decreased by treatment with E4 
alone or in combination with ER-β inhibitor PHTTP compared to the H2O2-treated cell cultures or cultures combinedly treated by E4 + MPP + PHTTP. 
Combined use of MPP and PHTTP significantly increased the LDH compared to the cell cultures treated by E4 alone or in combination with PHTTP. (C) 
Inhibition of palmitoylation alone or in combination with MPP significantly downregulated LDH activity compared to the H2O2-treated cells or to those 
treated by E4 alone. Combination of E4 with 2-BR, MPP and PHTTP significantly upregulated LDH activity compared to the cell cultures treated by E4 or 
2-BR alone or in combination with MPP. (D) Cell cultures treated by E4 alone or in combination with GPR30 inhibitor G15 had significantly lower LDH 
activity compared to the cultures treated by H2O2 alone. No significant difference was observed between the cells treated by E4 alone or in combination 
with G15.
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Results

Effect of E4 treatment with estrogen receptor inhibitors 
on H2O2-induced LDH activity in primary hippocampal 
cell cultures

To study the role of estrogen receptors in E4-dependent 
antioxidative effects in neuronal cells, primary 
hippocampal cell cultures were exposed to 3.25 mM E4 
alone or in combination with different estrogen receptor 
inhibitors and/or palmitoylation inhibitor after induction 
of oxidative stress. As shown in Fig. 1A, the LDH activity 
level was significantly decreased by treatment with E4 
alone or in combination with MPP, and only concomitant 
treatment of cells by E4 along with MPP and PHTTP blocked 
the antioxidative activity of E4 and significantly increased 
the LDH activity level compared to the cell cultures treated 
by E4 alone. Similar pattern of activities was observed 
when E4 was used in combination with PHTTP alone, 
and only the combined use of E4 with MPP and PHTTP 
completely blocked the E4-dependent effect by increasing 
the LDH activity to the same levels than that in the H2O2-
treated cells (Fig. 1B). As shown in Fig. 1C, inhibition of 
palmitoylation alone (E4 + 2-BR group) or in combination 

with MPP significantly decreased LDH activity, suggesting 
that the combined blockage of ERα and palmitoylation 
is not sufficient to inhibit the E4-dependent effects. In 
the presence of 2-BR, the LDH activity was significantly 
lower than that in H2O2-treated cell cultures, also in 
those treated by E4 alone, suggesting that the inhibition 
of palmitoylation even potentiated the E4-dependent 
antioxidative effect. Finally, combination of E4 with 2-BR, 
MPP and PHTTP completely blocked the antioxidative 
effects of E4 compared to the use of E4 or 2-BR alone or 
in combination with MPP once again suggesting the role 
of both receptors, ERα and ERβ (Fig.  1C). Inhibition of 
GPR30 receptor did not block the E4 actions resulting in 
significant decrease of LDH activity compared to the cell 
cultures treated solely by H2O2 (Fig. 1D).

Effect of E4 treatment with estrogen receptor inhibitors 
on H2O2-induced cell viability in primary hippocampal 
cell cultures

To study the role of estrogen receptors in E4-dependent cell 
survival/proliferation effects in neuronal cells, primary 
hippocampal cell cultures were exposed to 3.25 mM E4 

Figure 2
Effect of E4 in combination with different receptor inhibitors on cell survival in primary hippocampal neuronal cultures subjected to the H2O2-induced 
oxidative stress. Primary hippocampal cell cultures were exposed to 3.25 mM E4 alone or in combination with MPP, PHTTP, G15 and/or 2-BR after 
induction of oxidative stress. (A) Cell survival rate was significantly upregulated in cells treated by E4 alone or in combination either with MPP or 
MPP + PHTTP compared to cells solely treated by H2O2. (B) Cultures treated either by E4 alone or with PHTTP with/without MPP had significantly 
upregulated cell survival rate compared to cells treated by H2O2 alone. Cells combinedly treated by E4 with PHTTP had significantly lower cell survival 
rate than the cell cultures treated by E4 alone. (C) Cells treated either by E4 alone or in combination with 2-BR, MPP and/or PHTTP had significantly 
higher cell survival rate compared to the cells solely treated by H2O2. Treatment of cultures by E4 and 2-BR along with MPP resulted in significant 
upregulation of cell survival compared to the cultures treated by 2-BR alone or in combination with MPP and PHTTP. No significant difference was 
observed between the cells treated by E4 alone or those treated by different combinations of E4, 2-BR, MPP and/or PHTTP. (D) Treatment of cell cultures 
by E4 alone or in combination with G15 significantly upregulated the cell survival rate compared to cell cultures treated by H2O2. No significant 
difference was observed between cells treated by E4 alone or in combination with G15.
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alone or in combination with different estrogen receptor-
specific inhibitors and/or palmitoylation inhibitor after 
induction of oxidative stress. As shown in Fig.  2A, cell 
survival rate was significantly higher in cells treated by E4 
alone or in combination either with MPP alone or when 
associated with PHTTP suggesting that neither inhibition 
of ERα alone nor inhibition of both receptors (ERα and 
ERβ) blocked the E4-dependent cell survival activity. 
Inhibition of ERβ alone significantly downregulated the 
cell survival rate compared to cells treated by E4 alone or 
in combination with MPP and PHTTP (Fig. 2B). Figure 2C 
demonstrates that all cells treated either by E4 alone or 
in combination with different combinations of 2-BR, 
MPP and PHTTP had significantly higher cell survival 
rate compared to the cells treated by H2O2 alone, and 
inhibition of palmitoylation along with inhibition of 
ERα activity resulted in a significantly higher cell survival 
compared to the cultures treated by 2-BR alone or in 
combination with MPP and PHTTP suggesting that ERα 
(probably membrane form of the receptor) does not affect 
the E4-dependent cell survival/proliferation actions 

(Fig.  2C). Combination of E4 with G15 significantly 
upregulates the cell survival rate along with cell cultures 
treated by E4 alone compared to the cells treated by H2O2 
alone (Fig. 2D).

Myelin basic protein staining

Loss of MBP staining due to hypoxic–ischemic insult 
was used as a marker of white matter damage. In both 
study designs, in the vehicle groups, there was a loss of 
MBP staining in the left hemisphere (Figs 3A and 4A), 
in the subcortical region and the cingulum as one of 
the main white matter region of the brain (Figs 3B and 
4B). In neuroprotective model, the ratio of MBP-positive 
area OD was significantly higher in the sham-operated, 
and in the 5 mg/kg/day and 50 mg/kg/day E4-pretreated 
groups than that in the vehicle-treated group (Fig. 3C), 
whereas all the E4-exposed groups in the therapeutic 
model had significantly higher MBP-positive area OD 
ratio along with sham group compared to the vehicle 
group (Fig. 4C).

Figure 3
Myelin basic protein (MBP) staining of brain coronal sections in rat pups pretreated with estetrol. (A) MBP staining of brain coronal sections (scale bar: 
2 mm) is shown. (B) MBP staining of cingulum of the left hemisphere is shown (scale bar: 2 mm). (C) The ratio of the MBP-positive areas OD ratio was 
calculated as the MBP-positive area OD of the ipsilateral hemisphere divided by the MBP-positive area OD of the contralateral hemisphere. 10 samples 
from each study group were analyzed. The ratio of the MBP-positive area OD in the Sham group was considered by default as 1.0. The MBP-positive area 
OD ratio was significantly higher in sham-operated animals and the 5 mg/kg/day and 50 mg/kg/day E4-pretreated groups compared to the vehicle group. 
All measurements are expressed as mean ± s.e.m. *P < 0.05.
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Correlation studies between the brain weight, blood GFAP 
and S100B expression and MBP-positive area OD ratio

To study the significance of the white matter damage 
marker MBP, and the brain damage markers GFAP 
and S100B in connection with the brain weight, 
correlation studies were performed. In most groups from 
neuroprotective and therapeutic models, no correlation 
was found between the MBP-positive area OD ratio, 
GFAP, S100B and the brain weights (data not shown). 
However, in neuroprotective model, significant positive 
correlation was observed between the MBP-positive area 
OD ratio and the brain weights (r = 0.707, P = 0.0198) in 
the vehicle group.

Discussion

In this study, we attempted to identify ER receptors 
responsible for E4-mediated neuroprotection in vitro and 
evaluate the pro-myelinating efficacy of E4 in vivo.

The expression of ERα and ERβ displays different 
spatial–temporal patterns during human cortical and 
hippocampal development and suggest that both ERs 
may play distinct roles in several processes related to 
prenatal brain development (Gonzalez et  al. 2007). 
Knowledge of the region-specific expression of each 
ER subtype is critical to better understand the actions 
of estrogens on human brain (Gonzalez et  al. 2007). 
The cortical plate, which develops into the future 
six-layered neocortex, appears first at 8–9 gestational 
weeks and increases in thickness until neurogenesis is 
completed after midgestation; however, myelination 
starts before birth and is not completed in some regions 
of the brain before adulthood (Feng et al. 2005). Highly 
divergent and sometimes opposing functions for the 
two receptors have been reported in studies of ERα-
knockout and ERβ-knockout mice (Hewitt & Korach 
2003). In addition to their effects on gene expression 
(their genomic effects), these ERs are also associated 
with rapid cellular signaling (non-genomic effects) that 

Figure 4
Myelin basic protein (MBP) staining of brain coronal sections in rat pups treated with estetrol. (A) MBP staining of brain coronal sections (scale bar: 
2 mm) is shown. (B) MBP staining of cingulum of the left hemisphere is shown (scale bar: 2 mm). (C) The ratio of the MBP-positive areas OD ratio was 
calculated as the MBP-positive area OD of the ipsilateral hemisphere divided by the MBP-positive area OD of the contralateral hemisphere. 10 samples 
from each study group were analyzed. The ratio of the MBP-positive area OD in the sham group was considered by default as 1.0. The MBP-positive area 
OD ratio was significantly higher in sham-operated animals and the 1 mg/kg/day, 5 mg/kg/day, 10 mg/kg/day and 50 mg/kg/day E4-treated groups 
compared to the vehicle group. All measurements are expressed as mean ± s.e.m. *P < 0.05.
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are thought to be mediated primarily by membrane-
associated forms of these receptors (Hammes & 
Levin 2007).

In oligodendrocytes (OLGs) and neuronal cells, ERs 
are expressed in a different way (Zhang et  al. 2004). 
According to recent studies, ERα and ERβ mRNA was 
detected in OLGs: in vitro ERβ is localized in cytoplasm 
of OLGs, whereas ERα is detected in the nuclei of OLGs. 
In vivo ERβ is detected in cytoplasm and myelin of OLGs, 
and it is associated with the outer and inner layers of 
the myelin sheath, whereas in neurons mainly with 
cytoplasm, and ERα is detected in the nuclei of neurons 
(Zhang et  al. 2004). Some recent studies show that the 
myelin sheath contains an array of proteins and lipids 
including G proteins (Larocca et  al. 1991, Dyer 2002, 
Razandi et al. 2003). Classical steroid receptors, localized 
in the cytosol and/or nucleus, traditionally mediate their 
primary effects at the genomic level. In recent years, a large 
number of reports have described membrane-associated 
estrogen receptors, either similar to or distinct from the 
classical nuclear estrogen receptors (Toran-Allerand et al. 
2002, Razandi et  al. 2003, Acconcia et  al. 2004). These 
receptors have been postulated to mediate aspects of 
cellular estrogen function, including traditional genomic 
(transcriptional) signaling as well as non-genomic (rapid) 
signaling (Evans & Muldoon 1991, Govind & Thampan 
2003). These non-genomic signaling events include 
pathways that are traditionally thought of as arising from 
transmembrane growth factor receptors and G-protein-
coupled receptors, whereas some reports described 
estrogen-binding sites on intracellular membranes (Wang 
et  al. 2002, La Rosa et  al. 2012), other reports suggest 
that palmitoylation or phosphorylation (La Rosa et  al. 
2012) may target classical ERs to the cytoplasmic side 
of the plasma membrane. In general, palmitoylation is 
necessary for ERα transcriptional activity and inhibition 
of ERα palmitoylation constitutively addresses ERα to the 
nuclear matrix resulting in the basal degradation of the 
neo-synthesized ERα (Suzuki et al. 2007).

Different studies enlighten the role of estrogen 
receptors in the central neuronal system (CNS): both 
estrogen receptors ERα and ERβ play pivotal functional 
roles, insofar as knocking out either of these receptors 
blocks the ability of estradiol to increase neurogenesis 
(Dubal et  al. 2001, Suzuki et  al. 2007). ERα mediates 
protection of the brain and carries the far-reaching 
implications for the selective targeting of ERs in the 
treatment and prevention of neural dysfunction 
associated with normal aging or brain injury (Dubal 
et al. 2001). Our results demonstrate for the first time 

that only concomitant inhibition of ERα and ERβ 
receptor activities is necessary to diminish the E4’s 
antioxidative effects and promote further upregulation 
of LDH activity suggesting that E4 might be an equally 
important ligand for both estrogen receptors. One 
limitation of our study might be connected to failure 
to prove whether depalmitoylation is connected 
somehow to the membrane receptor ERα.

Recent studies proved that the neuroprotective 
actions of estrogens also depend on their strong 
antioxidant specifications and positively correlate with 
the number of the phenolic moiety in their structure; 
existence of the free phenolic OH group is important 
for protection against oxidative stress (Prokai et  al. 
2006). The highest number of the free phenolic OH 
groups among estrogens is in E4, suggesting the strong 
antioxidant effects of this compound. Much research has 
been done to study the mitochondria as a primary target 
for estrogen-mediated pathways (Nilsen & Brinton 2004, 
Nilsen et al. 2006, 2007, Brinton 2008, Irwin et al. 2008). 
Our study determines clearly that antioxidative activity 
of E4 depends on ER activity and is not limited to its 
‘dismissal’ capacity to inactivate free oxygen radicals 
through the OH groups.

As it was defined, the potential role of ERβ expression 
in cells of oligodendrocyte (OL) lineage in ERβ ligand-
mediated neuroprotection is important, and it results 
in the upregulation of myelination (Khalaj et  al. 2013). 
Moreover, neuroprotection might be mediated through 
ERα in astrocytes exclusively (Spence et al. 2011). As we 
observed, in primary hippocampal cell cultures, the cell 
survival rate was significantly downregulated only when 
the ERβ receptor was completely blocked, suggesting 
the role of ERβ in neurogenesis. We can speculate that 
promyelinating effects of E4 are also realized through ERβ. 
We did not observe any significant effect of palmitoylation 
inhibition on cell survival/proliferation.

The rat begins to form myelin at about 10–12 days 
postnatally. At 15  days of age, about 4 mg of myelin 
can be isolated from 1 brain (Siegel et  al. 1999). This 
amount increases 6-fold during the next 15 days; and at 
6 months of age, 60 mg of myelin can be isolated from 1 
brain. This represents an increase of about 1500% over 
15-day-old animals. During the same 5.5-month period, 
the brain weight increases by 50–60% in long-term brain 
development (Siegel et al. 1999). Thus, myelination and 
the brain weight might be correlated. According to our 
studies, pretreatment of rat pups by 5 mg/kg/day and 
50 mg/kg/day E4 before hypoxic–ischemic injury, and 
treatment by all E4 doses after HI brain injury significantly 
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upregulates myelination. Correlation studies detected 
significant positive correlation between the MBP-positive 
area OD ratio and the brain weights exclusively in the 
vehicles from the neuroprotective model, whereas in 
E4-pretreated or -treated groups, this correlation could no 
longer be observed suggesting that the promyelinating 
effect of E4 is not the only factor that affects the brain 
weight in the model of E4-mediated neuroprotection.

In conclusion, E4 is an estrogen with SERM properties. 
Further studies are necessary to uncover the role of this 
compound during antenatal neurodevelopment and in 
attenuation of neonatal hypoxic–ischemic brain damage.
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