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Hui and Walter’s latent-class 
model extended to estimate 
diagnostic test properties from 
surveillance data: a latent model 
for latent data
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Diagnostic test sensitivity and specificity are probabilistic estimates with far reaching implications 
for disease control, management and genetic studies. In the absence of ‘gold standard’ tests, 
traditional Bayesian latent class models may be used to assess diagnostic test accuracies through 
the comparison of two or more tests performed on the same groups of individuals. The aim of this 
study was to extend such models to estimate diagnostic test parameters and true cohort-specific 
prevalence, using disease surveillance data. The traditional Hui-Walter latent class methodology 
was extended to allow for features seen in such data, including (i) unrecorded data (i.e. data for a 
second test available only on a subset of the sampled population) and (ii) cohort-specific sensitivities 
and specificities. The model was applied with and without the modelling of conditional dependence 
between tests. The utility of the extended model was demonstrated through application to bovine 
tuberculosis surveillance data from Northern and the Republic of Ireland. Simulation coupled with re-
sampling techniques, demonstrated that the extended model has good predictive power to estimate 
the diagnostic parameters and true herd-level prevalence from surveillance data. Our methodology 
can aid in the interpretation of disease surveillance data, and the results can potentially refine 
disease control strategies.

The first line of surveillance of infectious disease is the deployment of approved and/or validated diag-
nostic tests which index disease occurrence and spread. A primary goal of such tests is the accurate 
identification of infected or non-infected individuals, which is a function of test sensitivity (the proba-
bility that the test classifies an infected individual as infected) and specificity (the probability that the test 
classifies an uninfected individual as uninfected1). The predictive value of the diagnostic test is a function 
of these parameters and disease prevalence.

Estimates of sensitivity and specificity are usually based on direct comparisons of test outcomes with 
a gold-standard which has an assumed sensitivity and specificity of 100%2. Unfortunately, true infection 
status is often impossible to determine for many reasons, including the lack of a perfect reference test. 
However, several statistical approaches have been developed to assess the diagnostic test accuracy in the 
absence of a gold standard test3–7. These methods are based on latent class probabilistic models, in which 

1The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, 
Midlothian, EH25 9RG. 2Agri-Food and Biosciences Institute Stormont, Stoney Road, Belfast, BT4 3SD, UK. 3The 
Queen’s University of Belfast, Department of Veterinary Science, Stormont, Belfast BT4 3SD, UK. Correspondence 
and requests for materials should be addressed to M.B. (email: mairead.bermingham@igmm.ed.ac.uk)

received: 19 November 2014

accepted: 02 June 2015

Published: 07 July 2015

OPEN

mailto:mairead.bermingham@igmm.ed.ac.uk


www.nature.com/scientificreports/

2Scientific Reports | 5:11861 | DOI: 10.1038/srep11861

the observed status is linked to the unobserved true infection status. Estimates of sensitivities, specifi-
cities and true prevalence can then be obtained using Maximum Likelihood or Bayesian techniques2,8.

A common assumption, and one which is used in latent class analyses, is that the sensitivity and spec-
ificity of diagnostic tests are constant for each test across all subjects, and thus are independent of the cir-
cumstances of its application9. This assumption may not always hold as the performance of a diagnostic 
tests is often setting dependent. Estimates of measures of diagnostic test accuracy vary among published 
validation studies10, and this variation is often attributed to the sampling strategies used in test evaluation 
studies11. However, true differences in diagnostic test accuracy may not be directly measurable due to 
random and systematic errors, resulting from factors such as technical variation in test characteristics 
among laboratories or over time, interpretation of results, stage of disease etc. In practice, sensitivity and 
specificity estimates are often average values calculated from non-homogenous populations. The varia-
tion in sensitivity and specificity within and among subpopulations should therefore be addressed when 
applying tests at the aggregate national level10–15. This issue has been dealt with previously by assuming 
that the diagnostic accuracy of the imperfect reference standard is known (rather than estimating it from 

Figure 1.  Estimated posterior distributions of parameters from the conditional independence 
model with outbreak specific diagnostic sensitivities from the Northern Ireland bovine tuberculosis 
surveillance data. The plots depict the posterior distributions of diagnostic sensitivity and specificity of the 
single intradermal comparative tuberculin test (broken black line) and abattoir inspection (black line), and 
average true prevalence from the three Markov chain Monte Carlo chains run. The grey lines represent the 
prior distributions used to inform the estimates. The x-axis provides the parameter estimates and the y-axis 
the relative probability of taking a given value.
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the data), and then performing sensitivity analysis by varying this diagnostic accuracy15. In this paper 
however, we will extend the traditional Hui-Walter latent class model4,12 to allow for the estimation of 
cohort specific diagnostic test properties from the data.

Disease surveillance data is a convenient source of data that may be used to evaluate or reassess diag-
nostic test properties, especially when combinations of tests are used in disease surveillance and eradi-
cation programmes. Such data are both convenient and relevant for assessing diagnostic test properties; 
however, they introduce additional complexities such as incomplete and/or missing data. The problem 
of missing data and verification bias of test results have been previously discussed and dealt with in the 
literature14,16–18. The ‘gold’ standard model has been extended to deal with the problem of missing data 
in the estimation of diagnostic test accuracy17. Furthermore, the subject-specific latent class method has 
been extended to account for verification bias in positive test results of the first test by the second test16. 
Nevertheless, missing data cannot currently be incorporated into traditional latent class models4,12. In 
our paper we have extended the traditional Hui-Walter model4,12 which estimates diagnostic sensitivity 
and specificity in the absence of a gold standard test, to include two additional multinomial counts; the 
probabilities that individuals deemed positive and negative by the initial diagnostic test are not classified 
by subsequent diagnoses.

This study extends the traditional Bayesian Hui-Walter latent class model4,12 to deal with data from 
surveillance studies. Specifically, we aim (i) to estimate diagnostic test parameters and true prevalence 
from surveillance data with some unrecorded class variables (i.e. results from a second test available 
only on a subset of the sampled population), and (ii) to allow for variation among sub-populations in 
the diagnostic test properties.

Methods
Specification of extended Hui-Walter Latent Class model.  Here we describe two extensions to 
the latent class model4.

1. Variable diagnostic test properties across cohorts.  An assumption of the standard model is that the 
property of each test is constant across sampled cohorts. However, the performance of the tests may be 
modified by factors such as sources of exposure or infection pressure, different practitioners or patho-
gen strain(s), and cohort-specific characteristics which may vary throughout outbreaks1. This may be 
addressed by allowing test sensitivities (Se) and specificities (Sp) to differ between cohorts, defining them 
as a population mean plus a cohort-specific deviation. Thus, for the tth test and the ith herd outbreak:

( )

( )

= +

= + ( )

Se Se resid Se
S p Sp resid S p 1

ti t ti

ti t ti

2. Unrecorded data from one of the diagnostic tests.  Standard latent class analyses are performed on 
datasets comprising individuals on which both diagnostic tests are applied. However, with surveillance 
data many individuals will have some unrecorded data. For example, sequential tests may be conducted 
on only a subset of individuals based on a positive result in the initial test, thus many negative indi-
viduals have unrecorded data for the second test. Furthermore, for numerous reasons, a subset of indi-
viduals with a positive result in the initial test will not undergo subsequent testing. Therefore, there are 
potentially two subsets of individuals, i.e. those with either negative or positive results from the first 
diagnostic test, that are not subsequently tested in the disease surveillance dataset. Hence the model may 
be extended to include two additional multinomial counts; the probabilities that individuals deemed pos-
itive (T2n+), and negative (T2n–) by the initial diagnostic test are not classified by subsequent diagnoses.

A further risk with diagnostic data from two (or more) tests is that the outcomes of the two tests are 
not independent, i.e. test results are conditional on the true disease state12. This concept, in which the 
two tests are not independent assessments of the underlying infection status, is known as conditional 
dependence. In this case, the covariance structure between the two tests2,12,19 may be included in the 
model, in addition to herd-level variability in diagnostic properties. For example, the probability that 
two tests (T1 and T1) are both positive can be written as:

( )( )( )( )( )( +, +) = (( ) + ) + − − + ( − ) ( )T T Se Se CovDp p S p S p CovDn pPr 1 1 1 2i i i i i i1 2 1 2 1 2

Where pi is the true prevalence in the ith herd outbreak, and covDp and the CovDn are the covari-
ances between outcomes of the two diagnostics conditional upon infection status, when the individual 
is infected, and when it is not infected, respectively.

The probabilities of observing each of the six diagnostic combinations in the ith herd outbreak can be 
written (with all terms previously defined) as:
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The procedure to obtain numerical solutions to equation set (3) is given in suplementary materials 
(text S1).

Application of extended model to disease surveillance data.  In Northern Ireland (NI) bovine 
tuberculosis surveillance involves annual tuberculin skin testing of all cattle, using the single intradermal 
comparative tuberculin test (SICTT), plus additional risk-based testing and compulsory slaughter of test 
reactor cattle, followed by post-mortem abattoir inspection of all animals for tuberculosis lesions. All 
SICTT and abattoir surveillance data from this program are recorded by the NI Department of Agriculture 
and Rural Development (DARD)20. The four cell8 and extended six cell models were applied to these 
surveillance data, with the two diagnostic tests being SICTT and subsequent abattoir inspection records 
on a subset of animals with SICTT measurements. The constructed dataset contained fewer abattoir 
inspection records than SICTT measurements for two reasons. Firstly, only abattoir inspection records 
obtained within 45 days of a positive SICTT result were included in the dataset21. Positive post-mortem 

Test 2: Abattoir inspection

Positive Negative Unrecorded

Test 1: SICTT Positive 173 408 33

Negative 42 2,467 4,797

Table 1.   Tabulation of total concordant, discordant single intradermal comparative tuberculin test 
(SICTT) and abattoir inspection, and SICTT with non-observed abattoir inspection diagnostic results 
across all 41 Northern Ireland tuberculosis herd outbreaks.

Test 2: Interferon(IFN)-γ 
assay

Positive Negative

Test 1: SICTT Positive 193 48

Negative 281 1,567

Table 2.   Tabulation of total concordant, discordant single intradermal comparative tuberculin test 
(SICTT) and interferon(IFN)-γ assay across all 38 Republic of Ireland tuberculosis herd outbreaks.



www.nature.com/scientificreports/

5Scientific Reports | 5:11861 | DOI: 10.1038/srep11861

Model Without OSS With OSS

Parameter Independence Dependence Independence

Se1 0.814(0.759–0.869) 0.820(0.711–0.915) 0.767(0.703–0.833)

Sp1 0.979(0.962–0.995) 0.971(0.952–0.9887) 0.988(0.973–0.999)

Se2 0.329(0.285–0.376) 0.329(0.270–0.392) 0.269(0.215–0.331)

Sp2 0.998(0.993–1.000) 0.994(0.985–0.999) 0.999(0.995–1.000)

CovDn – 0.004(0.000–0.011) –

CovDp – –0.005(–0.044–0.031) –

P 0.178(0.157–0.201) 0.170(0.144–0.200) 0.195(0.172–0.217)

DIC 559.36 557.69 465.22

Table 3.   Results from four cell models: parameter estimates (with 95% Bayesian credibility intervals) of 
diagnostic sensitivity (Se) and specificity (Sp) for the single intradermal comparative tuberculin test (1) 
and abattoir inspection (2), negative (CovDn) and positive (CovDp) covariances between the two test, average 
true prevalence (P) and deviance information criterion (DIC) from the traditional four cell conditional 
independence and dependence models excluding/including outbreak specific sensitivities (–/+ OSS).

Figure 2.  The relationship between input and output estimated true prevalence values from the 
extended six (A) and traditional four (B) cell conditional independence including outbreak specific 
sensitivities from the simulation study. The grey line superimposed onto the plot represents a regression 
coefficient of 1 between the parameters (with the dashed and dotted grey lines representing one and two 
root mean square errors from the regression line respectively).
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records outside this window were ignored, as it is possible that animals became infected after the last 
SICTT. Further, a small subset of positive SICTT animals may not have an abattoir record if they had 
not been subject to meat inspection, such as animals that had been sent for rendering (e.g. animals over 
the age limit for human consumption). Individual herd outbreak size in this study was chosen to give an 
absolute precision for parameter estimation of ±5% (see text S2) and herd outbreaks not meeting this 
criterion were excluded. A sample of 7920 SICTT records (614 positive results) from Holstein-Friesian 
dairy cows, of which 3090 had valid abattoir inspection records (215 positive results) within the specified 
period, from 41 bovine tuberculosis outbreaks of the required size, were extracted from DARD’s animal 
health database, anonymised and used for analysis.

The assumption of conditional independence may be violated if, e.g., outcomes of the first test are used 
as part of the procedure for interpreting the second test results, or if the two tests measure the same aspect 
of the host response, thereby allowing both tests to be biased by the same external factor. The SICTT and 
abattoir inspection are based on different principles: detection of cellular immune response vs. visual gross 
pathological evidence of Mycobacterium bovis infection, thereby reducing the risk conditional dependence 
between tests. To assess the ability of the extended model to estimate diagnostic test properties in the case 
where there is a higher risk of conditional dependence, SICTT and interferon(IFN)-γ  assay data (both 
based on detection of cellular immune response12) from Republic of Ireland (RI) data were used. A sample 
of 2,089 SICTT records (241 positive results) from cattle, of which all had valid IFN-γ  test records (474 
positive results) within the specified period from 38 RI tuberculosis outbreaks (of required sample size) 
were selected and used for model validation. There were no missing records in this dataset.

The data for each outbreak comprised 6 multinomial counts, with T1
+ T2

+, T1
+ T2

–, T1
– T2

+ and T1
– 

T2
– denoting the numbers for each of the 4 cross-classification levels of SICTT and abattoir inspection 

Parameter

Model

Without OSS With OSS

Se1 0.525(0.451,0.600) 0.554(0.482,0.626)

Sp1 0.998(0.993,1.000) 0.998(0.993,1.000)

Se2 0.813(0.728,0.881) 0.872(0.810,0.918)

Sp2 0.938(0.918,0.958) 0.937(0.917,0.956)

CovDn 0.001(0.000,0.003) 0.001(0.000,0.003)

CovDp −0.008(–0.046,0.035) −0.029(–0.053,0.006)

P 0.193(0.171–0.219) 0.167(0.151,0.186)

DIC 466.62 418.471

Table 5.   Parameter estimates (with 95% Bayesian credibility intervals) of diagnostic sensitivity (Se) 
and specificity (Sp) for the single intradermal comparative tuberculin test (1) and interferon(IFN)–γ 
assay (2), negative (CovDn) and positive (CovDp) covariance between the two test, average true prevalence 
(P) and deviance information criterion (DIC) from the traditional four cell conditional independence and 
dependence models excluding/including outbreak specific sensitivities (–/+ OSS).

Model Without OSS With OSS

Parameter Independence Dependence Independence

Se1 0.645(0.568–0.726) 0.604(0.491–0.748) 0.595(0.508–0.687)

Sp1 0.996(0.992–1.000) 0.995(0.988–1.000) 0.998(0.994–1.000

Se2 0.307(0.268–0.350) 0.281(0.218–0.359) 0.256(0.205–0.310)

Sp2 0.998(0.993–1.000) 0.996(0.991–1.000) 0.999(0.995–1.000)

CovDn – 0.001(0.000–0.003) –

CovDp – 0.014(−0.036–0.045) –

P 0.122(0.106–0.139) 0.129(0.103–0.157) 0.135(0.117–0.155)

DIC 1019.11 1018.57 917.80

Table 4.   Results from six cell models: parameter estimates (with 95% Bayesian credibility intervals) 
of diagnostic sensitivity (Se) and specificity (Sp) for the single intradermal comparative tuberculin 
test (1) and abattoir inspection (2), negative (CovDn) and positive (CovDp) covariances between the two 
test, average true prevalence (P) and deviance information criterion (DIC) from the six cell conditional 
independence and dependence models excluding/including outbreak specific sensitivities (–/+ OSS).



www.nature.com/scientificreports/

7Scientific Reports | 5:11861 | DOI: 10.1038/srep11861

Parameter

P Se1(BCI) Sp1(BCI) Se2(BCI) Sp2(BCI)

Low 0.498(0.406–0.597) 0.998(0.994–0999) 0.249(0.184–0.312) 0.999(0.997–1.000))

Median 0.617(0.559–0.676) 0.999(0.995–1.000) 0.255(0.219–0.293) 0.999(0.996–1.000)

High 0.527(0.472–0.583) 0.996(0.984–0.999) 0.245(0.215–0.278) 0.997(0.990–0.999)

Table 6.   Parameter estimates (with 95% Bayesian credibility intervals) of diagnostic sensitivity (Se) and 
specificity (Sp) for the single intradermal comparative tuberculin test (1) and abattoir inspection (2) from 
the six cell conditional independence and dependence models including outbreak specific sensitivities after 
the surveillance data was stratified in to low (n = 41), median (n = 41) and high (n = 17) true prevalence (P) 
subsets.

Figure 3.  The relationship between input and output estimated true prevalence values from the 
extended six (A) and traditional four (B) cell conditional dependence models including outbreak specific 
sensitivities from the simulation study. The grey line superimposed onto the plot represents a regression 
coefficient of 1 between the parameters (with the dashed and dotted grey lines representing one and two 
root mean square errors from the regression line respectively).

(IFN-γ  test), and T1
+ T2n and T1

– T2n, denoting the number of SICTT positive and negative cows with 
no abattoir inspection report within the specified period, respectively (Table 1,2).

Testing for biases and sampling properties in estimation.  An empirical test of the impact of 
prevalence on parameter estimates was performed by sampling further herds and stratifying the data into 
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low, (≤ 0.10), moderate (0.20–0.30) and high (≥ 0.40) estimated true prevalence herd outbreaks; results 
were subsequently compared in the 3 prevalence strata. Bayesian jackknife and bootstrap analyses were 

Figure 4.  Parameter estimates (with 95% Bayesian credibility intervals) of diagnostic sensitivity and 
specificity for the single intradermal comparative tuberculin test (1) and abattoir inspection (2) from the 
simulated data sets from the traditional 4 and extended 6 cell conditional independence model excluding/
including outbreak specific sensitivities (OSS). The simulated data was reconstructed using parameter 
estimates from the Northern Ireland surveillance data; with true prevalence ranging from 0.05 to 0.80. 
The broken perpendicular lines on each of the plots represent the simulation input value for the respective 
parameters. Modelling OSS improved the precision; whereas the 6 cell extension augmented the accuracy of 
the parameter estimates in the absence of conditional dependence between the diagnostic tests.
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used to estimate bias, and sampling distributions, respectively, of parameter estimates from the extended 
six cell model across the original 41 sampled herd outbreaks (see text S3).

A simulation study was conducted to test the predictive ability of the model. Data for the 6 mul-
tinomial counts, with T1

+ T2
+, T1

+ T2
−, T1

− T2
+, T1

− T2
−, T1

+ T2n and T1
− T2n, were simulated (i.e. 

reconstructed) for each herd. The latent class parameter estimates from this study and Clegg et al.22 were 
substituted into the extended probability equations of observing each of the six diagnostic combinations, 
at true prevalence levels of 0.05, 0.10, 0.20, 0.40 and 0.80. The reconstructed data were then analysed 
using the four and extended six cell conditional independence and dependence models, as described 
above. The predictive power of the model was measured by correlating the herd-specific input parameter 
values with those estimated from the simulated data.

Results
Application of the extended latent class model.  Models with herd-specific specificity were not 
considered further, as the realised specificity was close to unity, making the between-herd variability 
insignificant.

Results from different formulations of the Hui-Water model for the SICTT and abattoir inspection 
from the NI dataset are given in table 3 and 4. The results were obtained from a subset of the available 
data and should not be considered definitive parameter estimates. The inclusion of conditional depend-
ence between the diagnostic test results reduced the precision of the estimates and failed to improve the 
fit of the model to the data (DIC < 223; ), with the 95% credibility intervals for the covariance parame-
ters from both models including zero12, indicating that conditional independence is a valid assumption. 
When the sensitivities of SICTT and abattoir inspection were modelled for each outbreak in the con-
ditional independence model the cohort specific parameters varied (Supplementary Figure S1-2), and 
the model fit was markedly better than when sensitivities were fixed across outbreaks, with the DIC of 
these models decreasing by 94.2 and 101.3 for the four, and six cell models respectively. For reference, 
differences of 10 or greater lead to unambiguous exclusion of the model with the higher DIC24. Further, 
when outbreak-specific SICTT and IFN-γ  assay sensitivities were modelled in the RI data, cohort specific 

Conditional independence model

Input Model estimates

Parameter 6 cell 4 cell 6 cell

Se1 0.60 0.741(0.667–0.825) 0.596(0.508–0.692)

Sp1 0.98 0.994(0.957–0.992) 0.994(0.988–0.999)

Se2 0.26 0.249(0.202–0.230) 0.287(0.233–0.347)

Sp2 0.99 0.997(0.993–1.000) 0.998(0.993–1.000)

P 0.10 0.186(0.162–0.212) 0.128(0.109–0.148)

Table 7.   Parameter estimates of diagnostic accuracy (with 95% Bayesian credibility intervals) for the 
single intradermal comparative tuberculin test (1) and abattoir inspection (2) from the simulated data set 
(reconstructed using parameter estimates from the surveillance data) from the traditional 4 and extended 6 
cell conditional independence model including outbreak specific sensitivities.

Conditional dependence model

Input22 Model estimates

Parameter 6 cell 4 cell 6 cell

Se1 0.5700 0.648(0.581–0.686) 0.619(0.520–0.689)

Sp1 0.9900 0.985(0.997–0.991) 0.991(0.986–0.995)

Se2 0.6700 0.797(0.733–0.830) 0.707(0.616–0772)

Sp2 0.8800 0.810(0.798–0.817) 0.878(0.871–0.885)

CovDn 0.0039 0.063(0.047–0.074) −0.026(–0.069–0.028)

CovDp 0.0071 0.006(0.000–0.011) 0.007(0.004–0.011)

P 0.2000 0.326(0.289–0.360) 0.189(0.168–0.223)

Table 8.   Parameter estimates of diagnostic accuracy (with 95% Bayesian credibility intervals) for the 
SICTT (1) and abattoir inspection (2) from the simulated data set (reconstructed using parameter estimates 
from Clegg et al.22) from the traditional 4 and extended 6 cell conditional independence model including 
outbreak specific sensitivities.
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model parameters varied (Supplementary Figure S3), and the model fit was markedly better than when 
sensitivities were fixed across outbreaks (a reduction in DIC of 48.1; Table 5).

Figure 5.  Parameter estimates (with 95% Bayesian credibility intervals) of diagnostic sensitivity and 
specificity for the single intradermal comparative tuberculin test (1) and abattoir inspection (2) from the 
simulated data sets from the traditional 4 and extended 6 cell conditional dependence model excluding/
including outbreak specific sensitivities (OSS). The simulated data was reconstructed using parameter 
estimates from Clegg et al.22; with true prevalence ranging from 0.05 to 0.80. The broken perpendicular 
lines on each of the plots represent the simulation input value for the respective parameters. Modelling OSS 
improved the precision; whereas, the 6 cell extension augmented the accuracy of the parameter estimates in 
the absence of conditional dependence between the diagnostic tests.
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Figure 6.  Parameter estimates (with 95% Bayesian credibility intervals) of prevalence and accuracy (r) of 
predicting within cohort prevalence from the simulated data sets from the traditional 4 and extended 6 
cell conditional independence and dependence models excluding/including outbreak specific sensitivities 
(OSS). The simulated data for the conditional independence and dependence models were reconstructed 
using parameter estimates from the Northern Ireland surveillance data and Clegg et al.22 respectively; with 
true prevalence ranging from 0.05 to 0.80. The broken perpendicular lines on the upper plots represent the 
simulation input value for true prevalence, and those on the lower plots depict an accuracy of 1. Modelling 
OSS had little impact on the precision of dataset and within cohort prevalence estimates. The 6 cell 
extension improved the accuracy of the estimates of dataset and within cohort prevalence in the absence/
presence of conditional dependence between the diagnostic tests.
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Parameter estimates from the Northern Ireland bTB surveillance data.  The estimated full pos-
terior probability distributions of the test parameters are given in Fig. 1. The distributions also demon-
strate that posterior estimates differ from the prior distributions of the parameter estimates; i.e. the 
posterior estimates were driven by the data and not dominated by the assumed prior distributions.

Estimated true prevalence levels did not markedly affect the estimated parameter values. The sensi-
tivity and specificity estimates from herd outbreaks stratified by estimated true prevalence were similar 
and the 95% credibility intervals showed substantial overlap between the three data subsets (Table 6).

Jackknife analysis demonstrated that parameter estimates from the extended model were not biased 
by any particular herd outbreak; 98.5%, and 100% of the jackknife estimates (n =  205, comprising 41sen-
sitivity and specificity estimates for both tests and average true prevalence) were within 1 and 2 stand-
ard deviations of the full dataset estimates. The estimates for sensitivity, specificity were also robust to 
removal of 25% population subsets; the 95% bootstrap confidence interval of the empirical distribution 
was marginally tighter than that of the diagnostic parameter estimates (Supplementary Table S1).

Simulation study.  The simulation study demonstrated that the extended six cell conditional latent 
class model, with and without conditional dependence between the tests, has good predictive power to 
estimate diagnostic parameters of the SICTT, abattoir inspection and IFN-γ  assay from these surveillance 
data and for the parameter ranges explored. There was no significant bias observed in the estimated sen-
sitivity and specificity of the tests and the 95% credibility intervals of the simulated diagnostic parameters 
overlapped widely with the posterior distribution of the diagnostic parameter estimates (Table  7,8). In 
the simulation study, the four cell conditional independence model generated posterior distributions of 
SICTT sensitivity and true prevalence that were very similar to those obtained from the surveillance 
data (Table 3); indicating these parameters were biased upwards, in contrast to those from the six cell 
model. The posterior distribution of abattoir inspection sensitivity was unbiased (Table 7). The simula-
tion study also demonstrated that the extended six cell conditional independence model had strong pre-
dictive power to estimate true herd prevalence. The correlation between the input and output estimated 
herd-specific prevalence was 0.96 (95% CI 0.93–0.98) and 0.99 (95% CI 0.90–1.00) from the conditional 
independence and dependence models correspondingly. The four cell latent class model gave marginally 
lower correlations between the input and output estimated prevalence, viz. 0.93 (95% CI 0.88–0.96) 
and 0.97(95% CI 0.95–0.98) from the conditional independence and dependence models, respectively. 
The four cell model was less precise with a root mean square prediction error (RMSE) for herd-specific 
prevalence estimates of 0.073 and 0.150, compared to 0.036 and 0.024 from the six cell conditional inde-
pendence and dependence models. Furthermore, the six cell conditional independence (dependence) 
model had greater accuracy compared to the four cell models, 27% (24%) as opposed to 34% (48%) of 
the prevalence estimates were one RMSE from the regression line, respectively (Figs 2 and 3). The true 
prevalence levels in the simulated data had marked effects on the estimated parameter values across the 
different models (detailed results in Figs 4–6). Modelling individual out-break sensitivities improved the 
precision of the diagnostic test parameter estimates to some extent. However it was the six cell extension 
that removed the dependence of the modelled parameters on the prevalence.

Discussion
Surveillance data are collected routinely by national authorities; validated diagnostic tests are deployed 
for the purpose of detecting incursions of, demonstrating freedom from, or assessing changes in disease 
incidence25. These data provide a valuable resource with which to assess the performance of diagnos-
tic tests within population-level surveillance programmes. However, to date, assessment of diagnostic 
test performance has been constrained to sample-based evaluation, as the traditional Hui-Walter latent 
class models4,12 applied can only handle simple data structures, such as the data collected in traditional 
diagnostic evaluation studies. In this study we extended the traditional Hui-Walter latent class model, 
allowing for missing data and between-herd variability in diagnostic properties, potentially exploiting 
available surveillance data resources, to generate population-based estimates at the regional or national 
level. For demonstration purposes we have only used a subset of the available data; a larger dataset may 
have enabled us to fit more complex models with greater robustness.

Bayesian and frequentist maximum-likelihood approaches have been used to fit the traditional 
Hui-Walter latent class model3,4,22,26,27. It was beyond the scope of the project to extend the model 
within two frameworks. We therefore chose to use a Bayesian approach to extend the traditional 
Hui-Walter latent class model; because of the expertise of our project members2,8. Moreover, Bayesian 
and maximum-likelihood approaches would have produced equivalent results in this study; because of 
the large number of subpopulations with different prevalences included in the analyses26,27.

Fitting the extended six cell Hui-Walter latent class model to bovine tuberculosis surveillance data, we 
found the extended model to give robust results, particularly when between-herd variability in sensitivity 
was modelled. Through simulation-based analyses, the study also demonstrated that the extended six 
cell model outperformed the four cell latent class model in in terms of improved predictive ability and 
reduced bias of estimated diagnostic parameters. In practice, the diagnostic accuracy of a test may be 
dependent on the disease prevalence in the population tested13,28,29. However, this was not observed here, 
as the prevalence strata-specific estimates of diagnostic accuracy did not differ in this study.
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Diagnostic accuracy is frequently assumed to be constant across populations. However this is seldom 
the case, as results may be influenced by factors such as whether the disease is clinical or subclinical, 
pathological progression, time since infection, immune status, prevalence of cross-reacting organisms 
and operator error1,11,30,31. Furthermore, the tests are undertaken by many practitioners, under variable 
conditions, and in such circumstances it is difficult to avoid inconsistencies in performance31. These fac-
tors may vary within populations, hence there may be substantial variation heterogeneity in sensitivity 
(or specificity) estimates depending on the population and animal level sampling plan11. A novel aspect 
of our analysis was that diagnostic sensitivity was allowed to vary across herd outbreaks within the 
traditional Hui-Walter latent class model framework4,12. This extension proved useful in improving the 
goodness of fit of the model, capturing variation in diagnostic sensitivity between outbreaks. Specificities 
of the two diagnostic tests may also vary across cohorts, as specificity is particularly susceptible to the 
characteristics of the population and settings including, for example, geographical variation in cross 
reacting organisms1,10,32. However, it was not possible to model variable specificities in this dataset, as 
the estimated parameters were close to unity.

It is generally recommended that diagnostic test accuracy be validated carefully before being applied 
to field surveillance data, particularly if disease control programmes are subsequently based on these 
data. Here we present novel methodologies which may allow this to be done, and also which maximise 
the utility of existing data.

Conclusion
This study has provided novel extensions to the traditional Hui-Walter latent class model that can aid in 
the interpretation of disease surveillance data. The extended methodology developed in this study can 
be used to continually monitor diagnostic test performance, and to identify systematic factors which 
may reduce their efficacy through strata-specific analyses using readily available surveillance data. This 
extended methodology also has applications in the epidemiological analysis of diseases for which incom-
plete surveillance data on two or more diagnostic tests are available.

Ethics statement.  The methods were carried out in accordance with the approved guidelines. All 
experimental protocols were approved by the Department of Health, Social Security and Public Safety 
for Northern Ireland (DHSSPSNI) under the UK Animals (Scientific Procedures) Act 1986 [ASPA], fol-
lowing a full Ethical Review Process by the Agri-Food & Biosciences Institute (AFBI) Veterinary Sciences 
Division (VSD) Ethical Review Committee. The study is covered by DHSSPSNI ASPA Project Licence 
(PPL-2638 ‘Host Genetic Factors in the Increasing Incidence of Bovine Tuberculosis’), and scientists and 
support staff working with live animals during the studies all hold DHSSPSNI ASPA Personal Licences.
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