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Abstract 

Introduction:  Automatic assessment of speech impairment is a cutting edge topic in Parkinson’s disease (PD). 
Language disorders are known to occur several years earlier than typical motor symptoms, thus speech analysis may 
contribute to the early diagnosis of the disease. Moreover, the remote monitoring of dysphonia could allow achieving 
an effective follow-up of PD clinical condition, possibly performed in the home environment.

Methods:  In this work, we performed a multi-level analysis, progressively combining features extracted from the 
entire signal, the voiced segments, and the on-set/off-set regions, leading to a total number of 126 features. Further‑
more, we compared the performance of early and late feature fusion schemes, aiming to identify the best model 
configuration and taking advantage of having 25 isolated words pronounced by each subject. We employed data 
from the PC-GITA database (50 healthy controls and 50 PD patients) for validation and testing.

Results:  We implemented an optimized k-Nearest Neighbours model for the binary classification of PD patients ver‑
sus healthy controls. We achieved an accuracy of 99.4% in 10-fold cross-validation and 94.3% in testing on the PC-GITA 
database (average value of male and female subjects).

Conclusion:  The promising performance yielded by our model confirms the feasibility of automatic assessment of 
PD using voice recordings. Moreover, a post-hoc analysis of the most relevant features discloses the option of voice 
processing using a simple smartphone application.

Keywords:  Parkinson’s disease, Speech impairment, Speech analysis, Isolated words, k-Nearest neighbours, Artificial 
Intelligence, Telemedicine
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Introduction
Parkinson’s disease (PD) is a chronic and progressive 
neurodegenerative disorder, affecting about 1% of indi-
viduals over the age of 60 [40]. According to several epi-
demiological studies conducted both in Europe and in 
the USA, PD affects the male population approximately 
1.5 times more than the female population [28]. Follow-
ing the disease onset, PD patients face progressive dis-
ability, with significant impact on the activities of daily 
living. Both motor and non-motor symptoms are conse-
quent to the degeneration of dopamine neurons, which 

occurs especially in the substantia nigra pars compacta 
region of the midbrain [28].

The cardinal motor symptoms of PD include rigidity, 
tremor at rest, bradykinesia (i.e. slowness in movement 
execution), and postural instability. As a result, a reduc-
tion in the quality of life and an increase in the risk of 
falls in the PD population are observed [15, 20].

On the other hand, non-motor symptoms include 
olfactory impairment, orthostatic hypotension, constipa-
tion, sleep disturbances, and speech impairment. Behav-
ioral problems, depression, and anxiety frequently occur, 
and dementia is quite common in the advanced stages 
of the disease [21]. Parkinson’s disease diagnosis is cur-
rently based on a detailed neurological examination, 
inclusive of a review of the patient medical history and 
a clinical evaluation of motor and non-motor symptoms 
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and supported by the dopamine transporter (DAT) scan, 
if need be [28].

Monitoring of the disease progression is generally per-
formed a few times a year during outpatients appoint-
ments. At present, MDS-UPDRS (Movement Disorder 
Society revision of the Unified Parkinson’s Disease Rat-
ing Scale) is universally employed to assess the course of 
PD after its diagnosis [20]. It involves four parts related to 
non-motor experiences of daily living, motor experiences 
of daily living, motor examination, and motor compli-
cations, respectively. Disease staging is entrusted to the 
clinician’s expertise; hence, it is sometimes considered 
excessively operator-dependent, in particular in early-
stage PD or during the assessment of specific pathologi-
cal conditions. Therefore, technological research on PD 
focuses on developing tools for diagnostic support and 
continuous follow-up, through the analysis of biomedical 
signals correlated to patient conditions.

In this context, speech impairment carries significant 
information and plays a pivotal role in the early detec-
tion and follow-up of the disease. It is well known that 
PD patients encounter loss of prosody and clarity due to 
dysfunctions in the different systems involved in speech 
production. According to [7], alterations in voice and 
speech occur in approximately 75–90% of the PD popu-
lation, with voice and prosody being the earliest indi-
cators of PD [4, 18, 41]. In more detail, dysarthria is a 
neuro-motor disorder involving the motor component 
of the speech production process and it is related to res-
piratory limitations, reduced elongation or adduction of 
vocal cords, and disturbances at the articulatory level. 
It is characterized by poor articulation of the phonemes 
(alterations in force, speed, volume, tone, range, or preci-
sion of movements necessary for voice control [25]), yet 
intact language understanding and ideation. The typical 
neurological signs evaluated on PD patients encompass 
reduced loudness and pitch variability, breathy or hoarse 
voice, imprecise articulation, and more general features 
such as abnormalities of speech rate and pause ratio [31]. 
The symptoms become more pronounced as the disease 
worsens.

From an engineering perspective, the human vocal 
signal can be seen as a quasi-periodic train of air pulses 
that are shaped by the resonances of the vocal tract [27]. 
The frequency of the train pulses, i.e. the number of glot-
tal contraction per second, represents the fundamental 
frequency (F0) or pitch, while the resonance frequen-
cies of the oropharyngeal cavities account for the vocal 
formants. F0 is influenced by the intrinsic features of the 
phonatory system and is distinctive of the single speaker 
to a large extent. It is also influenced by anatomical char-
acteristics dependent on the speaker’s gender. In fact, 
although values may differ according to the language 

taken into account, the mean F0 value for healthy male 
population is 120 Hz, while in female subjects it reaches 
220 Hz [38].

Automatic methodologies for PD voice analysis mainly 
make use of sustained vowel phonation tests. Since the 
set of extracted features is task-dependent and the pos-
sibility of achieving sounds information from word-rep-
etition databases is still under investigation, a validated 
and interpretable features set for this specific task has 
not been defined up to now. However, besides being 
easy, fast, and not depending upon the patient’s ability 
to interpret detailed instructions, the analysis of isolated 
words could be more effective than sustained phonation 
in assessing PD dysarthria. It is our belief that the pro-
nunciation of many different words represents a valuable 
source of information about the patient’s condition and 
the staging of diseases. Moreover, the neurologist or the 
speech and language therapist could arrange particular 
sets of words to evaluate specific aspects of movement 
and articulation control.

The first objective of this work is to define and vali-
date a set of features suitable for analyzing recordings 
of PD patients pronouncing isolated words. The second 
objective is to devise analysis tools that are somewhat 
demanding in terms of processing capabilities and data 
quality. This could enable both voice recording and data 
analysis on a simple platform such as a smartphone, as 
also proposed in [23]. We are confident that easy-to-use 
and inexpensive tools can actually help in the patient’s 
follow-up at home, and can even be prescribed by neu-
rologists, similarly to drugs.

The remainder of this paper is organized as follows: 
in section  “Related work” we review recent automatic 
methodologies for PD patients speech analysis; in sec-
tion “Materials and methods” we describe the employed 
dataset, the feature extraction and selection methods, 
and the classification model. In section “Results and dis-
cussion” we address classification performance and sta-
tistical analysis findings; finally, in section  “Conclusions 
and future work” we draw conclusions and propose fur-
ther improvements for the present algorithm.

Related work
There are several studies focusing on PD speech analy-
sis, including different recording tasks. Sustained vowels 
phonation is perhaps the most popular, also because it 
represents a very common task in different applications 
[24]. Other works focus on continuous speech recordings 
including sentences, read texts, and spontaneous speech, 
where clinically informative phenomena like prosody 
can be analyzed [19, 37, 48]. Few papers focused on the 
production of isolated words. One of the earliest stud-
ies addressing this task in PD patients is [36]. This work 
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investigated the discriminant capability of spectral and 
cepstral features extracted from a set of 24 isolated words 
and 5 vowels pronounced by Colombian Spanish speak-
ers. The authors performed the classification between 
controls and people with PD employing a support vec-
tor machine (SVM) with Gaussian kernel and compared 
the results achieved with each set of features separately 
and with the fusion of all coefficients. Accuracy of 92% 
and 79% for words and vowels respectively, was achieved 
when all utterances and features were merged into the 
same representation space. Despite satisfactory results, 
the methodology was very basic and no pre-processing 
was applied.

In [37] the authors included isolated words among 
other speech tasks. The employed database included 
native speakers from Spain (50 healthy controls-HC, 50 
PD), Germany (88 PD, 88 HC), and Czech Republic (20 
PD, 16 HC). The work addressed the automatic classifi-
cation of HC and PD speakers and compared the results 
achievable with different languages and sets of features. 
Utterances in each corpus were modeled with four sets 
of parameters, in order to detect different facets of the 
language impairment. The approaches included: (1) mod-
eling of irregular movements of the vocal tract based 
on Mel-Frequency Cepstral Coefficients-Gaussian Mix-
ture Models (MFCC-GMM) super vectors; (2) prosody 
analysis by means of F0, energy, duration, and pauses; (3) 
characterization of voiced frames through noise content, 
formants, and MFCCs; (4) analysis of energy in unvoiced 
frames using MFCCs and Bark Band Energies (BBE). 
Based on their results, the authors stated the robustness 
of the latter approach, which led to classification accu-
racy ranging from 85 to 99% using a radial basis SVM.

Both the mentioned works exploited the PC-GITA 
database, but none of these investigated the generaliza-
tion capability of models on a separate and independent 
dataset. Additionally, the models proposed in [37] were 
optimized in test, and this yielded too optimistic results, 
as also stated by the authors themselves.

More recently [22, 49] addressed the same corpus as 
in [37]. More in detail, Zahid et  al. [49] proposed three 
methods based on transfer learning, deep feature extrac-
tion, and classic machine learning, respectively. Although 
the results achieved for other tasks were very satisfactory, 
the highest accuracy reported for isolated words, employ-
ing the transfer-learning approach, was 77%. In [22], the 
authors proposed a method for isolated words modeling 
based on features extracted from the Hilbert Spectrum to 
characterize non-linearities and non-stationarities of the 
speech signal. The performance of the employed classi-
fier (SVM with Gaussian kernel) showed that the coeffi-
cients proposed, namely Instantaneous Energy Deviation 
Coefficients (IEDCC), outperform the classical acoustic 

features, achieving accuracy ranging from 81 to 91% 
when addressing isolated individuals words. The authors 
did not present the results of merged features, but they 
used an additional test set encompassing 20 PD patients 
and 20 healthy controls; the best-reported accuracy was 
82%.

In the present work, we undertake a methodology 
based on different signal processing and pattern recogni-
tion techniques applied to the analysis of isolated words. 
First, we implemented a pre-processing step, which 
was followed by a multi-level feature extraction proce-
dure and a classification step. The main contributions 
of the paper include: the multi-level feature extraction 
approach, which allows deriving multiple and specific 
facets of vocal alteration; the introduction of new features 
to characterize the voice impairment of PD patients; the 
use of a separate and independent test set, which allows 
for more general and realistic results.

Materials and methods
This section describes the datasets employed and the 
algorithm developed for the classification of PD patients’ 
voices.

In this work, we carried out a multilevel analysis to 
assess the level of detail necessary to achieve the best 
trade-off between complexity and classification accu-
racy. Starting from a set of high-level parameters 
extracted from the non-segmented signal, we progres-
sively added features derived first from the voiced regions 
and then from the transition regions. This approach 
allowed a detailed analysis of the speech impairment in 
PD patients. In fact, voiced segments bear information 
about the harmonic component of the signal, while tran-
sition zones, which describe the passage from voiced to 
unvoiced regions and vice-versa, are assumed to model 
the loss of motor control and the difficulty to start and 
stop movements typical of PD patients. Finally, features 
extracted from the non-segmented signal are representa-
tive of the overall sound. Following this approach, we 
extracted a total number of 126 features from the entire 
signal, voiced segments, and on-set/off-set regions [35, 
37]. Moreover, since the employed datasets encompass 
25 isolated words spoken by each subject, we analyzed 
the possibility of obtaining better classification results by 
combining the features extracted from different words 
into the same representation space.

It is worth emphasizing that we have devoted consid-
erably higher efforts to feature extraction and selection 
than to classification itself. This choice is in line with 
the objectives of our work, i.e. to obtain a well-assessed, 
lightweight, simple and fast model that can be used for 
on-device analysis (e.g. smartphone applications).
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More in detail, we performed a robust pre-processing 
described in section  “Pre-processing”; we extracted a 
large number of features, both acknowledged and not 
hitherto used for PD detection, as discussed in sec-
tion  “Feature extraction”; we performed a hard fea-
ture selection, reported in section  “Feature selection”; 
finally we performed classification as described in 
section “Classification”.

Figure 1 depicts a simple flowchart to provide a general 
overview of the workflow.

Dataset
PC‑GITA dataset
The main database used in this study is the PC-GITA, 
a well balanced corpus in terms of age and gender that 
includes 100 Colombian Spanish speakers [33]. More 
in detail, it encompasses 50 patients with PD and 50 
HC (50% male and 50% female). The age of the male PD 
population ranges from 33 to 77 years old ( 62.2± 11.2 ), 
while for the female population it ranges from 44 to 75 
years old ( 60.1± 7.8 ). For the HC group, the ages of men 
and women range from 31 to 86 ( 61.2± 11.3 ) and from 
43 to 76 years old ( 60.7± 7.7 ), respectively.

All voice samples were recorded with the patients in 
ON-state, i.e. no more than 3 h after the morning medi-
cation. None of the HC subjects had symptoms associ-
ated with PD or any other neurological disease.

Speech samples were captured under controlled noise 
conditions and with a professional audio setting (profes-
sional microphone and a Fast Track C400 sound card). 
The sample rate is 44.1 kHz with a 12-bit resolution. The 
speech task considered in this study is the repetition of 
25 Spanish isolated words.

The recording of the PC-GITA corpus was carried out 
in accordance with the Declaration of Helsinki and it was 
approved by the Ethical Research Committee of Antio-
quia University’s Faculty of Medicine [33].

Additional dataset
Since PC-GITA samples were recorded under optimal 
recording conditions that are difficult to reproduce in 
real-life situations, we decided to include in this study 
another database to run cross-corpus validation and 

verify the results in a more realistic scenario. This second 
database includes 18 Spanish PD patients and 19 Span-
ish HC (46% male and 54% female). The age of the male 
PD population ranges from 54 to 78 years old, while in 
the female PD group it ranges from 50 to 83 years old. 
As for HC, men were aged 41 to 78, while women 29 to 
78 years. The samples belonging to this second corpus 
were recorded in a quiet room with regular headsets. 
The two databases include the same set of 25 words and 
have been approved by the same ethics committee, with 
the only difference that, while the PC-GITA is a widely 
used public database, the second is currently private. The 
recordings of this additional database were captured at a 
sampling frequency of 16 kHz with a 16-bit resolution. 
The two datasets are characterized by different sampling 
rates; hence, all recordings were down-sampled to 16 
kHz to maintain similar spectral conditions.

Since most of the features extracted from vocal signals 
are influenced by the gender of the speaker, we split each 
dataset into two groups, based on the speaker’s gender. 
Then, we applied the same workflow to each cluster. Fig-
ure 2 shows the UPDRS total scores distribution for the 
PD patients included in the two corpora.

All of the participants in this corpus and in PC-GITA 
signed an informed consent which was revised and 
approved by the Ethical Committee of the Research Insti-
tute in the Faculty of Medicine at the University of Antio-
quia (approval 19-63-673). Further details of the two 
datasets can be found in [22, 33].

Pre‑processing
This section describes the pre-processing steps carried 
out to ease the extraction of specific information from 
vocal signals. This was performed through six different 
stages, described in the following. It is worth noting that 
the visual and acoustic signal examination indicated the 
absence of initial or final silence regions; hence no fur-
ther preparatory steps were required.

Denoising
Signals were low-pass filtered to reduce distortion and 
background noise. To minimize the phase distortion in 
the pass-band, a 10-order zero-lag Butterworth low pass 

Fig. 1  Work flow scheme
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filter was employed, with cutoff frequency 3750Hz , as 
also suggested in [11].

Normalization
The signals amplitude was normalized in the range [−1, 1] 
to prevent the speaker-microphone distance from affect-
ing the model.

Detrending
Detrending is necessary to remove slow fluctuations of 
the signal, which have no physiological significance but 
only hinge upon the recording system. This step is of 
crucial importance in eluding errors during the feature 
extraction task.

Segmentation
In order to perform the analysis of segments generated 
during vocal folds vibration, we employed the Praat 
software to detect start- and end-points within voiced 
regions. Moreover, as highlighted in [34], PD patients 
exhibit difficulties in producing plosives, which are tran-
sient-type sounds made up by abruptly releasing the 
airflow that has been previously blocked [2]. Therefore, 
after detecting voiced delimiters, we identified 160 ms 
windows centered on the edge of each chunk. According 
to [47], this window size allows to perform an in-depth 
analysis of the transient regions.

Framing
Vocal signals exhibit non-linear and complex behavior, 
which cannot be identified with the simple extraction of 
features from the entire recording epoch. The short-time 
analysis is usually employed to overcome this problem: 
each signal is divided into frames, which can reason-
ably be assumed to be stationary or quasi-stationary. 

According to [14], a frame size in the range 20–40 ms is 
usually considered to ensure two to three pitch periods 
within a frame, while maintaining the quasi-stationary 
assumption. In more detail, the length of the window 
is set according to the analysis to be performed and to 
the speech task. A common value employed for isolated 
words is 20 ms [22, 29].

Windowing
When performing the framing procedure, attention must 
be paid to the raise of a discontinuity in the area between 
two consecutive chunks, as this would lead to frequency 
distortion. Therefore, it is common practice to multiply 
each frame with a Hamming window [14] prior to spec-
tral analysis. This process is described in Eq. 1, where N 
stands for the total number of samples.

Overlap regions ranging from 0 to 75% are usually 
applied [17] to avoid the loss of information (i.e. signal 
attenuation) generated by the intrinsic structure of the 
Hamming window. In our specific application we set an 
overlap window equal to 50% of the window length, also 
in accordance with [14, 22, 29, 49].

Feature extraction
Raw vocal signals do not provide much information 
unless a proper feature extraction procedure is imple-
mented. In this work, we performed a multi-level analy-
sis by combining a total number of 126 features extracted 
from the entire signal, voiced segments, and on-set/off-
set regions.

More in detail, we derived two classes of features 
for each of the voiced segments. The first group (Low 

(1)
w(n) = 0.54 − 0.46 · cos

(

2π
n

N

)

, 0 ≤ n ≤ N − 1

Fig. 2  UPDRS distribution comparison between PC-GITA and the additional dataset for male and female subjects
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Level features-LLf) encompasses parameters that are 
computed for each frame. The second one (High Level 
features-HLf) includes those features that are to be 
extracted from the entire signal (e.g. Detrended Fluc-
tuation Analysis-DFA); indeed, their definition already 
embeds a comparison among contiguous frames.

After extracting such features, we evaluated four statis-
tics per LLf (i.e. mean value of mean within a segment; 
standard deviation of mean within a segment; mean 
value of standard deviation within a segment; variation 
coefficient) and two statistics per HLf and transition fea-
tures (i.e. mean value and standard deviation) on every 
recording. This allowed to perform the dimensionality 
reduction required without losing information on the 
temporal evolution of the signal. In particular, we remark 
that standard deviation yields information regarding the 
feature variability over time, which is known to be a cru-
cial hallmark of PD patients’ voice impairment.

As for the specific features to be extracted, [10] empha-
sized the importance of differentiating the employed set 
according to the performed task (e.g. pronouncing sen-
tences, isolated words, sustained vowels phonation). As 
discussed in section  “Dataset”, the database used in this 
work includes isolated words speech recordings. A spe-
cific set of features with proven high correlation with 
this task is not available yet; hence, we extracted a total 
number of 126 features, aiming at investigating their cor-
relation with the application at hand. This set encom-
passes features commonly involved in PD patients’ voice 
analysis (e.g. F0, MFCCs, Zero Crossing Rate-ZCR), in 
conjunction with general features used in vocal signal 
analysis (e.g. spectral flux, spectral centroid, spectral flat-
ness) and others employed for the first time in this work 
(e.g. pitch transition slope-PTS, and energy transition 
slope-ETS). It is worth noting that pathological subjects 
exhibit an increased vibration aperiodicity [13], there-
fore specific algorithms are required to evaluate F0. In 
this work, we employed the Simple Inverse Filter Track-
ing (SIFT) algorithm, which guarantees the best trade-off 
between accuracy, noise robustness, and computational 
time when dealing with pathological voices [26].

As far as concerns PTS and ETS, these features aim at 
capturing articulation abnormalities in PD patients, par-
ticularly evident at the beginning or end of the voiced 
sound regions. This idea was originally introduced in [35] 
for speech signals and later validated in gait and hand-
writing [47]. In more detail, during the transition phase 
the phenomenon of voicing leakage commonly occurs 
[30]: the lack of coordination in the use of the source glot-
tal leads to continuous vibration of the vocal folds even 
during the articulation of sounds, in lieu of an interrup-
tion of the phonation. This aspect is crucial in the auto-
matic classification of PD patients by voice analysis [30, 

34, 47]. Hence, we added these two novel parameters to 
others already addressed in [34] (MFCCs, BBEs), in order 
to capture as many facets of the alteration as possible. 
In particular, to analyze the voiced/unvoiced switch and 
vice-versa, we evaluated the pitch and energy contours 
in the transition regions using a first-order polynomial. 
Then, we employed the slope of the obtained curve as a 
measure of the alteration. In fact, we expect this curve 
to flatten in pathological voices when F0 and energy fail 
to change between voiced and unvoiced regions. Table 1 
reports an overview of the features addressed in this 
paper, along with their classification into LLf and HLf, a 
brief description, and the reference to relevant papers. 
Given that different features exhibit different ranges, we 
applied the Range normalization (Eq. 2) to the whole fea-
ture set. Besides being a general good practice, this is par-
ticularly important if Euclidean distances are computed 
in the subsequent analysis (e.g. similarity measures).

Feature selection
In order to identify the smallest significant feature sub-
set, we performed a tailored feature selection on the 
PC-GITA database. This procedure is meant to select 
the most significant (i.e. those with high feature-target 
correlation) and non-redundant features (i.e. those with 
low inter-feature correlation). To avoid model overfitting 
on training data, we implemented a correlation-based 
approach. In fact, the correlation coefficient is weakly 
affected by a single data-point and it is mostly influenced 
by the gross data distribution. Furthermore, to avoid 
weak generalization capability, possibly due to feature 
selection performed on all the available data, we ran-
domly split the database into two subsets: 70% to be used 
during the training/validation phase and 30% to be used 
as test set. The two sub-groups were chosen in such a way 
as to guarantee speaker independence (i.e. all words of 
the same speaker are either in train or test, but not dis-
tributed between the two subsets). First, we computed 
the Pearson’s correlation r between features and target 
( rfo ), investigating its absolute value for each feature. The 
objective is to identify features having a strong correla-
tion with the output (i.e. rfo greater than a threshold-th1 ). 
To select the threshold properly, we performed a tuning 
procedure, within the 70% of data selected, based on the 
misclassification error minimization in 10-fold cross-val-
idation, using a quadratic SVM. We are aware that this 
step could introduce a bias; however, given the low num-
ber of parameters to optimize, the bias is minimal. More 
in detail, we tuned th1 from 0.3 to 0.6 with steps of 0.1. At 
this stage, considering that the two databases used in this 

(2)f ′ =
f −min(f )

max(f )−min(f )
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work encompass 25 isolated words for each subject, we 
compared the two approaches, aiming at identifying the 
best model capable of capturing as much information as 
possible from several utterances pronounced by the same 
subject. To this end we considered two types of fusion 
schemes, namely early fusion and late fusion. The former 
performs the fusion in the feature space, while the latter 
fuses features in the semantic space [44]. Figure 3 shows a 
schematic of the differences between the two approaches. 
As for late fusion, it consists in implementing a classi-
fier for each word, then using the output of such models 
to feed a further classifier, obtaining the final output. To 
this end, we employed features selected from each word 
as input of 25 supervised classifiers (one for each utter-
ance), then we converted the output using Platt’s method 
[44] to acquire a measure in the form of a probability 

score. Then, we merged the probabilistic output scores 
and used them as input of a second classification layer. 
As for early fusion, it consists in the apriori selection of 
the most significant words and then merging the fea-
tures from such words to create the final feature set. To 
this end, we performed an additional analysis to select 
the most significant utterances, keeping those char-
acterized by a number of selected features per word fw 
higher than th3 . We tuned th3 from 1 to 80 with steps of 
5. After merging all the features from the selected word, 
we computed the correlation coefficient between feature 
pairs ( rff  ). Then we deleted redundant features, i.e. those 
showing a rff > th2 · rfo . We tuned th2 from 0 to 50% with 
steps of 5%, choosing the value minimizing the misclas-
sification rate in 10-fold cross-validation. The entire pro-
cess is reported in Algorithm 1.

Table 1  Overview of the extracted features, divided according to the domain of analysis

The apex letter represents the classification between LLf and HLf subgroups

Region Study Feature Information

Entire signal [22] IEDCC(1–6) Vocal tract and vocal folds abnormalities [22]

[3, 10, 12] Zero crossing rateH Voice activity (Details in [1])

[10, 16, 22] DFAH Self-similarity of the voice (Details in [14])

Voiced [16] BandwidthL Frequency range

[10, 16, 43] Harmonic ratioL Ratio of signal over noise [16]

[10, 16, 43] F0L Vocal folds vibration and frequency alteration

[46] Spectral features: fluxL , skewnessL , entropyL , crestL , flat‑
nessL , slopeL , roll offL , spreadL , centroidL , kurtosisL

Spectrum shape information (Details in [1])

[6] LPC(1–3)L Formants and resonances (Details in [1])

[10] Short time energy L Energy variation among frames

[16, 45, 46] MFCC(1–13)L , ∆ MFCC(1–13)L , ∆∆MFCC(1–13)L, Subtle changes in the motion of articulators (Details [32, 42])

Transition Present study PTS Ability to promptly interrupt/start vocal fold vibration

Present study ETS Ability to promptly interrupt/start vocal fold vibration

[34] MFCC(1–12), ∆MFCC(1–12), ∆∆MFCC(1–12), Ability to promptly interrupt/start vocal fold vibration

[34] BBE(1–25) Ability to promptly interrupt/start vocal fold vibration

Fig. 3  Comparison between early and late fusion approaches: in the first case, the features derived from each word are joined before performing 
the supervised learning; in the second one, separate scores are learned for each word, joined, and used as input of a second supervised learning 
step
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Once identified the best fusion scheme, we compared 
the quadratic SVM with other classifiers to study whether 
different algorithms can lead to better classification accu-
racy. In more detail, we compared the quadratic SVM to 
the k-Nearest Neighbour (kNN), naive bayes (NB), deci-
sion tree (DT), bagged trees ensemble, and subspace dis-
criminant ensemble. After identifying the best classifier, 
we performed an optimization step by mean of a grid 
search approach to evaluate the best hyper-parameters 
for the model. More specifically, we considered four 
distance metrics (i.e. euclidean, city block, Minkowski, 
and Chebyshev) and k values ranging from 2 to N/2 
(with N equal to the number of samples in the training 
test). In the case of equal optimal accuracy, we preferred 
lower k-values to reduce the computational burden of 
our model. In virtue of the random splitting procedure 
employed, we considered the average accuracy on five 
iterations as a good metric for the optimization proce-
dure. Finally, to provide a comprehensive analysis of our 
model’s performance, together with the classification 
accuracy, we examined the time complexity of the algo-
rithm. More in detail, we computed the computational 
time required to run the classification algorithm when 
varying the input size, the number of words employed, 
and the number of features.

We ran all the experiments on a MacBook Pro with a 
64-bit operating system, a 2.7GHz Intel Core i5 proces-
sor, and 8GB RAM.

Results and discussion
In this section, we present and discuss the results of the 
current study with the aim of selecting the most effective 
vocal features to be extracted from isolated words speech 

We performed feature selection on three different sub-
sets of features:

–	 Set 1: Only features extracted from the entire signal are 
employed;

–	 Set 2: Features extracted from the entire signal and 
features extracted from the voiced segments are 
employed;

–	 Set 3: Features extracted from the entire signal and 
features extracted from the voiced and transitions seg-
ments are employed.

It is worth noting that, as far as concerns set 1, no feature 
selection was performed due to the small number of fea-
tures belonging to this set (i.e. only 6 parameters).

Classification
In this study, we decided to employ a quadratic SVM to 
perform the initial supervised learning steps due to the 
high generalization capability of the algorithm [8] and 
its widespread use in PD patients voice classification [22, 
29, 39]. More in detail, as mentioned in section  “Fea-
ture selection”, we first compared the classification per-
formance obtained using early and late fusion to assess 
how the composition of the feature set affects the classi-
fication results. To this end, we implemented a quadratic 
SVM model and performed 10-fold cross-validation on 
the training set using the different feature sets described 
in section  “Feature selection”. As the dataset is bal-
anced (i.e. the cardinality was the same in every class), 
we considered accuracy a good metric for performance 
evaluation.
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samples pronounced by PD patients. In more detail, 
we compare the performance of early and late fusion 
approaches, and the corresponding computational time; 
we report the performance of different ML models in dis-
criminating PD subjects from HC; we provide a compre-
hensive analysis of the time complexity of the proposed 
algorithm; we report and discuss the most meaningful 
features and words, and finally we compare the perfor-
mance achieved in the present study with that reported 
in similar works.

Early fusion vs late fusion
In Fig.  4 we report a comparison between early and 
late fusion approaches for the three different feature 
sets. Results are expressed in terms of accuracy in a 
10-fold cross-validation, using a non-optimized quad-
ratic SVM classifier and employing the first randomly 
selected training set. For the sake of comparison, the 
results achieved merging all the features extracted from 
each word without performing any feature selection 
procedure are also shown. From Fig. 4 it can be appre-
ciated that increasing the dimension of the feature set 
by adding more specific features (i.e. voiced segments 
and transition regions), enhances the performance of 
the model in the cross-validation phase. In contrast to 
early fusion and no-feature-selection configurations, 
the late fusion scheme exhibits a flat course with opti-
mal performance, suggesting possible overfitting of 
such configuration. Nevertheless, it is evident that the 
best system configurations are early fusion employ-
ing the entire feature set, and late fusion regardless 
of the used feature set. To provide an insight into the 

generalization capability of each of the best configura-
tions, we ran tests on 30% of PC-GITA extracted from 
the initial dataset before selecting the features and opti-
mizing the model. While the late fusion results were 
not satisfactory, the case3-early fusion configuration 
showed an accuracy of 82% (average value over 5 itera-
tions for male and female groups), which demonstrates 
the good generalization capability of the system.

Furthermore, we assessed the computational time 
employed by each feature set-fusion scheme configura-
tion. We computed time from feature selection to clas-
sification and compared it among different models.

Table 2 shows the time employed for processing and 
classifying, proving that the computation burden is far 
smaller for the early fusion configuration. The execu-
tion time reported in Table  2 is defined as the time 
required to select relevant features and words, and test 
on a new single subject.

Fig. 4  Fusion scheme and feature subset analysis. Performance for the first randomly selected subset

Table 2  Execution time of the three most proficient algo-
rithms

Mean values reported between male and female subjects

Model Computa‑
tional time 
(s)

Case 1: Late fusion 3.37

Case 2: Late fusion 4.19

Case 3: Late fusion 6.23

Case 3: Early fusion 0.065
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Classification models
After identifying the best fusion scheme, we investi-
gated if different classification algorithms and their 
involved meta-parameters led to better performance. 
Table 3 reports the results of the comparison expressed 
as average accuracy on 5 iterations obtained using non-
optimized classification algorithms. It is worth noting 
that we decided not to use more complex methods, 

such as artificial neural networks, due to the scarce 
numerosity of training data.

As can be seen from the Table  3, kNN enhances a 
slight improvement of the performance both in valida-
tion and test set. Moreover, a smaller standard devia-
tion indicates more consistent results across random 
splits. Then, we evaluated the computational time 
required to select relevant features and words, and 
test on a new single subject using the kNN model. 
This value was equal to 0.047s (mean value for male 
and female subjects), thus confirming the improve-
ment achievable with the kNN algorithm. As for the 
optimized model parameters, city block distance and k 
equal to 6 for males and 3 for females led to the best 
performance.

Table  5 reports the optimal parameters (found on 
PC-GITA according to the procedure described in sec-
tion “Feature selection”) used for the final test.

In order to further investigate the possible pres-
ence of overfitting, we tested the final model on the 

Table 3  Performance comparison among 6 classifiers

The results report the validation (10-fold applied to 70% of PC-GITA) and test set (30%PC-GITA) accuracy averaged over 5 iterations

Classifier Male Female

Validation set Test set Validation set Test set

SVM 96% ± 3.22 74% ± 18.95 98% ± 2.46 90% ± 7.12

DT 95% ± 4.46 64% ± 17.34 100% ± 0 65% ± 19.56

NB 73% ± 41.10 50% ± 28.36 92% ± 5.65 77% ± 22.36

kNN 96% ± 2.46 74% ± 15.56 99% ± 1.61 97% ± 3.42

Ensemble bagged trees 92% ± 5.05 60% ± 19.56 96% ± 1.31 56% ± 0

Ensemble subspace discriminant 94% ± 5.26 71% ± 16.29 99% ± 1.31 96% ± 3.42

Table 4  Performance comparison among validation set (10-fold applied to 70% of PC-GITA), test set (30%PC-GITA) over 5 
iterations for male and female groups

The model optimal hyper-parameters are reported

Iter. Validation set Test set kNN optimal parameters

Acc. Sens. Spec. AUC​ Acc. Sens. Spec. AUC​

Female 1 100% 100% 100% 1 100% 100% 100% 1 Distance = cityblock
K = 32 100% 100% 100% 1 94% 100% 87% 0.94

3 100% 100% 100% 1 100% 100% 100% 1

4 97% 100% 94% 1 100% 100% 100% 1

5 100% 100% 100% 1 94% 87% 100% 0.94

Mean 99.4% 100% 98.8% 1 97.6% 97.4% 97.4% 0.98

Male 1 100% 100% 100% 1 100% 100% 100% 1 distance = cityblock
K = 62 100% 100% 100% 1 75% 63% 87% 0.75

3 97% 94% 100% 0.97 87% 75% 100% 0.88

4 100% 100% 100% 1 100% 100% 100% 1

5 100% 100% 100% 1 94% 88% 100% 0.94

Mean 99.4% 98.8% 100% 0.99 91.2% 85.2% 97.4% 0.91

Table 5  Set of feature selection parameters employed for 
the final test

Parameter Male value Female value

th1 0.5 0.5

th2 0.1 0.1

th3 10 30
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validation set and the test set, i.e. 30% of the training 
set. Since the splitting procedure is random, we report 
in Table  4 the performance obtained by running the 
algorithm five times.

It can be observed that the model obtained optimal 
correct classification rate in both validation and test set, 
although the selection of different inputs has a strong 
influence on the algorithm performance. This is particu-
larly evident in the male group, in which the classifica-
tion accuracy varies from 75 to 100%. This influence is 
less evident in the female group, in which the classifica-
tion accuracy remains equal to 100% in 3 of the 5 sub-
sets analyzed. Given that we observed higher standard 
deviation and lower performance in the male popula-
tion with most of the models tested (as reported in Fig. 4 
and Table  3), we may assume that this is mainly due to 
the dataset composition itself. Also, to analyze how the 
recording condition may affect the performance of the 
implemented model, we performed further tests on the 
additional dataset, described in section “Dataset” We 
achieved an average accuracy over 5 iterations equal to 
60% and 62% for male and female subgroups, respec-
tively. A general performance reduction is evident in the 
additional dataset, especially in the male group. Given 
that the analysis conducted on the test set resulted in the 
absence of strong overfitting, we can assume that this 
reduction is mainly attributable to the different recording 
conditions which characterize samples in the new dataset 
(section “Dataset”). Nevertheless, further analysis, such 
as the introduction of new subjects into the database, 
will be conducted to assess the robustness of the current 
algorithm through a more homogeneous training set.

Time complexity
Together with the classification accuracy, we studied the 
time complexity of the algorithm. The pseudo-code for 
feature selection (section “Feature selection”) is reported 
in Algorithm  1. For this analysis, we assume that the 
number of training subjects is N, the number of words 
per subject is W, the number of initial features per word 
is F, and the final number of features selected is F1.

More in detail, in Algorithm 1 the selection of the most 
significant features per words and the selection of the 
words with the higher number of features selected takes 
O(nfw). As for the selection of the features with the lower 
inter-features correlation, it takes O(nf 2

1
) since it includes 

the evaluation of the Pearson correlation coefficient 
between couple of features. In the worst-case scenario 
(i.e. when all the features and the words are selected), f1 
is equal to f · w . Thereafter, we can conclude that the fea-
ture selection algorithm takes at most O(nf 2w2) . As far as 
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concerns the classification algorithm, the kNN algorithm 
takes O(log(n)) in Matlab environment [9]; hence, we can 
assume that the worst-case scenario time complexity of 
the overall algorithm is O(nf 2w2) . To verify this theoreti-
cal result, we ran the algorithm several times with dif-
ferent numbers of training inputs, features, and words. 
Moreover, we estimated the value of f1 for each iteration. 
For the sake of brevity, given that we applied the same 
process to both female and male dataset, we present the 
analysis for the former group. The results are showed in 
Figs. 5, 6, and 7. We consider the execution time as the 
time required for feature selection, training, and test-
ing on a new subject. Moreover, to provide more stable 
results, we ran each experiment 5 times on a random 
extracted subset and reported the average time value.

In Fig.  5 we report the execution time versus N. It is 
worth noting that to perform a realistic analysis despite 
the scarce numerosity of the current dataset, after tun-
ing N from 2 to 49, we performed additional measures 
on a simulated larger dataset obtained by including the 
same samples multiple times. As can be observed in 
Fig.  5, the number of features selected is almost inde-
pendent of N, but if the number of training samples 
excessively decreases (i.e. less than 6 subjects per group), 
a higher number of features is selected. This is because 
our selection procedure relies on the Pearson correlation 
coefficient, whose value is inversely proportional to the 
variance of the training group. Thereafter if the number 
of inputs is excessively small, a large number of features 
is associated to a higher correlation coefficient. However, 
if we consider in this analysis only the region where our 
model is stable (i.e. more than 6 subjects per group), the 
regression line of the curve shows as expected a linear 
trend ( R2 = 0.9516).

As far as concerns Figs.  6 and 7 , in the former we 
reported the execution time while tuning the number of 
words from 1 to 25, while in the latter we progressively 

decreased the number of parameters until our feature 
selection algorithm was still applicable. In fact, if the 
number of initial characteristics for each word exces-
sively decreases, the set of words having a number of 
features higher than the threshold specified in Table  5 
is empty. From both figures it becomes evident that 
the computational time is generally increasing as W 
( r = 0.77,P < 0.001 ) and F ( r = 0.88,P = 0.020 ) increase 
although it is not possible to clearly see the nature of this 
relationship. In fact, even if the curve trend is increas-
ing overall, the punctual value also depends on F1 , whose 
value strongly depends on which words and features were 
used for the specific iteration.

Post‑hoc analysis of the model and comparison 
with similar studies
In Table 6 we report the most significant words and fea-
tures for male and female subgroups resulted from the 
post-hoc analysis of the selected models. As can be seen 
from the table, most of the features have been selected 
from the transition regions, confirming their potential 
in PD speech analysis. Among these, PTS and ETS were 
selected for the female and male group, leading to the 
assumption that these new features could be representa-
tive of the pathological condition.

Table 7 provides a comprehensive evaluation of the sys-
tem performance and a comparison with similar studies 
employing isolated words contained in the PC-GITA cor-
pus. The comparative analysis takes into account the best 
validation results reported in [36] (10-fold cross-valida-
tion), in [22](LOSO validation), and in [49](5-fold valida-
tion). It is worth noting that we excluded [37] from this 
comparison. In fact, although the work employed the PC-
GITA corpus, the model was optimized on the test set, 
yielding too optimistic results as reported by the authors 
themselves and mentioned in section  “Related work”. 
From Table 7 it turns clear that performance metrics of 

Table 6  Most significant words and features for male and 
female subgroups resulted from the post-hoc analysis of 
the selected models

F female, M male

Words selected Feature name Region

F Clavo, Crema, Globo, Name Roll off point Voiced

MFCC, BBE,
∆∆MFCC

Onset

PTS, ETS,
MFCC, BBE,
∆∆MFCC

Offset

M Bodega, Braso, Globo, Llueve, 
Name, Presa, Viaje

MFCC, BBE,
∆∆MFCC

Onset

PTS, MFCC,BBE Offset

Table 7  Performance comparison with the best results 
of similar studies employing the PC-GITA database and 
focusing on the isolated word repetition task

n.r. not reported. For the present study mean values between male and female 
subgroups averaged over 5 repetitions are reported

Author [36] [22] [49] Present study

Year 2015 2020 2020 2020

Model SVM SVM CNN kNN

Sensibility 94% n.r. n.r. 99.4%

Specificity 90% n.r. n.r 99.4%

Accuracy 92% 91% 77% 99.4%

F1-score n.r. 0.83 n.r. 0.99
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the proposed algorithm outperform those of the stud-
ies under comparison. On the other hand, it does not 
encompass a large cohort of PD patients;therefore, future 
developments will include a larger population. Further-
more, the non-negligible variance among performance 
achieved during the training of the algorithm with dif-
ferent subsets of patients will be further investigated by 
enlarging the current database.

As for the types of features employed, we emphasize 
the advisability of designing gender-specific software. 
In fact, the feature selection process described in sec-
tion  “Feature selection” yielded two different subsets of 
significant words and features for the two gender sub-
groups. Furthermore, the presence of specific training 
sets leads to slightly diverse classification algorithms, due 
to the different values yielded by the optimization pro-
cess described in section “Classification”.

Conclusions and future work
In this paper, we addressed the language impairment 
of PD patients, based on the analysis of recordings of 
isolated words. We chiefly focused our effort on feature 
extraction and selection to devise a lightweight but very 
performing ML model for classification. In fact, once 
identified the best feature subset, the feature extraction 
and subsequent classification tasks are very computa-
tionally efficient. This work confirmed the possibility 
of a speech-based PD classification, suggesting new 
promising methodologies for vocal feature analysis. 
Furthermore, the usage of features extracted from com-
mon words gives rise to a new perspective on passive 
speech-based monitoring of PD patients. Specifically, 
given the high precision reached by our algorithm, it 
may be employed in the home monitoring of motor 
fluctuations in PD subjects, as well as a decision sup-
port system in early PD diagnosis. On the other hand, 
given the reduced size of the dataset employed in this 
study, our methods and results require further valida-
tion with a much larger cohort of subjects. We intend 
to check whether the subject’s native language can 
influence the classification results and, if so, to what 
extent. Besides collecting additional speech data from 
PD patients, we also plan to employ precious clini-
cal information (e.g. H&Y stage, UPDRS, Mini-Mental 
State Test). We plan to perform data acquisition sev-
eral times on the same patients, both in ON and OFF 
clinical conditions. This would allow to compute the 
test-retest reliability of the system, as well as under-
standing whether the system is capable of detecting 
clinical conditions. Finally, this study is part of a larger 
PD monitoring study [5], involving the implementation 
of an electronic diary for PD patients, which will com-
bine the assessment of the main PD motor symptoms 

(e.g. bradykinesia freezing of gait, postural instability) 
as well as sleep disturbances.
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