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Abstract

The presence of genome-wide DNA hypermethylation is a hallmark of lower grade gliomas (LGG) with isocitrate
dehydrogenase (IDH) mutations. Further molecular classification of IDH mutant gliomas is defined by the presence
(IDHmut-codel) or absence (IDHmut-noncodel) of hemizygous codeletion of chromosome arms 1p and 19q. Despite the
DNA hypermethylation seen in bulk tumors, intra-tumoral heterogeneity at the epigenetic level has not been thoroughly
analyzed. To address this question, we performed the first epigenetic profiling of single cells in a cohort of 5 gliomas with

-

IDH1 mutation using single nucleus Assay for Transposase-Accessible Chromatin with high-throughput sequencing
(sSNATAC-seq). Using the Fluidigm HT IFC microfluidics platform, we generated chromatin accessibility maps from 336
individual nuclei, and identified variable promoter accessibility of non-coding RNAs in LGGs. Interestingly, local chromatin
structures of several non-coding RNAs are significant factors that contribute to heterogeneity, and show increased
promoter accessibility in IDHmut-noncodel samples. As an example for clinical significance of this result, we identify
CYTOR as a poor prognosis factor in gliomas with IDH mutation. Open chromatin assay points to differential accessibility
of non-coding RNAs as an important source of epigenetic heterogeneity within individual tumors and between
molecular subgroups. Rare populations of nuclei that resemble either IDH mutant molecular group co-exist within
IDHmut-noncodel and IDHmut-codel groups, and along with non-coding RNAs may be an important issue to
consider for future studies, as they may help guide predict treatment response and relapse.

A web-based explorer for the data is available at shiny.turcanlab.org.

Introduction

Isocitrate dehydrogenase 1 (IDH1), and to a lesser
extent, its mitochondrial homolog, IDH2, are mutated in
a majority of adult lower grade gliomas (LGGs) [46].
IDH proteins normally serve as the core metabolic
enzymes in the citric acid cycle and convert isocitrate to
a-ketoglutarate (aKG). The most common IDH1 muta-
tion in gliomas (IDH1 R132) occurs in the catalytic
domain of IDH1 and confers the ability to produce 2-
hydroxyglutarate (2-HG) [7]. 2-HG competitively
inhibits enzymes that use aKG as a cofactor, such as
TET family of enzymes and Jmj-C domain containing
histone demethylases, leading to DNA hypermethylation,
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and aberrant methylation of a number of histone marks
along with impaired differentiation leading to an expan-
sion of stem/progenitor cells [10, 27, 40]. Gliomas with
IDH mutation exhibit global DNA hypermethylation and
are subdivided into two distinct molecular subgroups:
IDHmut-codel (hemizygous co-deletion of chromosome
arms 1p/19q) and IDHmut-noncodel (without co-
deletion of 1p/19q) gliomas [4]. While transcriptional
heterogeneity at the single cell level and longitudinal al-
terations in the bulk epigenomes of IDH mutant gliomas
have been investigated, little is known about intratu-
moral epigenetic heterogeneity at the single cell level
[16, 39, 43]. To address this question, we interrogated
the accessible chromatin at the individual cell level in gli-
omas with IDH mutation using single nucleus Assay for
Transposase-Accessible Chromatin with high-throughput
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sequencing (snATAC-seq) on a subset of 5 patient
samples.

Using the Fluidigm microfluidics platform, we estab-
lished a biologically-relevant analysis to overcome the
technical limitation and high background noise associ-
ated with snATAC-seq. We identified heterogeneity in
promoter accessibility within and between IDHmut-
codel and IDHmut-noncodel samples. Interestingly, our
results indicate differential accessibility of non-coding
RNAs such as the CYTOR locus that exhibits a pro-
found increase in promoter accessibility within IDHmut-
noncodel tumors. Furthermore, we identify CYTOR as a
poor prognosis factor in gliomas with IDH mutation.
Opverall, our results point to differential accessibility of
non-coding RNAs as an important source of epigenetic
heterogeneity within individual tumors and between
molecular subgroups. The molecules identified are
promising targets for future molecular research.

Results
Our cohort was primarily composed of WHO grade II
gliomas, with the exception of one WHO grade III
IDHmut-noncodel glioma, and all tumors harbored an
IDH1 R132 mutation (Table 1). We used the Fluidigm
HT IFC microfluids platform to perform snATAC-seq.
We started with 7 tumors samples from glioma patients,
but only 5 samples passed the quality control. We used
stringent cut-offs and excluded unreliable cells, obtaining
DNA accessibility maps for a total of 336 cells (Additional
file 1: Table S1). Our analysis indicated a previously unde-
scribed presence of identical reads leaking across specific
rows and columns of the microfluidic chamber (Additional
file 2: Figure Sla, b). We reasoned that these cross-
contaminating reads were unlikely to be biologically rele-
vant and may indicate an inherent technical issue with the
microfluidics platform. To overcome this technical noise,
we removed the leaky reads from all samples (Additional
file 2: Figure Slc-f). Overall, we obtained high-quality DNA
accessibility maps from 145 cells from 3 IDHmut-noncodel
gliomas (Astrol, Astro2, Astro3), and 191 cells from 2
IDHmut-codel gliomas (Oligo1, Oligo2), with a total of 336
cells (Additional file 1: Table S1).

We applied a pipeline (HOMER), commonly used for
peak calling from ChIP-seq data, to call peaks in our
snATAC-seq datasets on both pseudo-bulk and single

Table 1 Patient samples used for snATAC-seq

Pseudonym IDH mutation Histology Grade Sample ID
NCH5526 IDH1 R132S Astrocytoma Grade Il Astrol
NCH6015 IDH1 R132H  Astrocytoma Grade Il Astro2
NCH5559 IDH1 R132H  Astrocytoma Grade Il Astro3
NCH5540 IDH1 R132H  Oligodendroglioma Grade Il Oligo1
NCH5699 IDH1 R132H  Oligodendroglioma Grade Il Oligo2
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nuclei level. Peaks called from pseudo-bulk profiles of
the snATAC-seq data closely resembled bulk ATAC-seq
data obtained from IDH mutant TCGA LGG samples
(Fig. 1a) [6]. For all samples, majority of the reads cen-
tered around the transcription start sites (TSS) (Fig. 1b).
Reads were distributed evenly and proportionally across
chromosomes (Fig. 1c). The majority of peaks mapped
to intronic and enhancer regions (Fig. 1d). We used the
GREAT toolbox to assess whether the enhancer regions
were enriched for any particular gene sets. Our analysis
indicated that enhancers in IDHmut-noncodel samples
were enriched in gene sets associated with suppression
of pro-B cell differentiation and development. IDHmut-
codel enhancer regions were enriched for gene sets
associated with mRNA regulation, spinal cord oligo-
dendrocyte cell fate and inhibition of neuroepithelial
differentiation (Fig. 1e).

Next, to reduce noise, we decided to limit our analysis
to accessible peaks identified from bulk LGGs. To achieve
this, we overlapped the peaks from our snATAC-seq data
with the peaks called from bulk ATAC-seq of TCGA
LGG samples [6] (Additional file 2: Figures S2 and S3).
We used these overlapping peaks for the remainder of our
study. Subsequently, we applied t-distributed stochastic
neighbor embedding (t-SNE) to reduce the dimensionality
of the snATAC-seq data. The t-SNE mapping showed
three clusters, branched along two trajectories (upper and
lower), coalescing on two clusters as indicated with red
and blue circles (Fig. 2a). Approximately 20% of the cells
could not be classified and remained in a gray zone due to
lack of sufficiently specific peaks, while the upper and
lower clusters were distinct, and almost entirely consisted
of cells from a particular molecular subtype (Fig. 2a).
Heatmap of open promoters unique to each trajectory in-
dicates variable accessibility within or between IDHmut-
codel or IDHmut-noncodel samples (Fig. 2b).

To determine whether 1p/19q codeletion can be de-
tected from the snATAC-seq data, we inferred large-
scale copy number alterations in these chromosomes by
averaging ATAC-seq coverage for each nuclei. This ana-
lysis indicated decreased coverage for both 1p and 19q
arms relative to 1q and 19p in IDHmut-codel tumors,
revealing molecular evidence in the snATAC-seq data
for the codeletion pattern in these samples (Fig. 2c).

Differential accessibility of transcription factors

To determine whether chromatin accessibility within
transcription factor (TF) binding sites differ, we applied
chromVAR to identify highly variable TF motifs [33]
(Additional file 3: Table S2, Additional file 2: Figure S4a).
We used the TF z-scores to visualize the snATAC-seq
data using t-SNE. Similar to Fig. 2a, these features also
separated the data into two states, driven by differences in
molecular subtype (Fig. 2d). A heatmap visualization
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Fig. 1 IDH1 mutant LGGs exhibit differential chromatin accessibility. a Comparison of peaks called from pseudo-bulk snATAC-seq data (black) and

bulk ATAC-seq on TCGA LGG data (green), b Density of read distribution for all samples around transcription start sites (TSS), ¢ Distribution of the

number of reads on all chromosomes for each sample, d Proportion of peaks that fall within each annotation genome class for each sample, e

Gene set enrichment analysis for the enhancer regions of IDHmut-codel (left) and IDHmut-noncodel (right) samples

showed heterogeneity of TF accessibility within samples  expressed downstream of the mitogen-activated protein
belonging to a specific molecular subgroup (Additional kinase (MAPK) signaling cascades (Fig. 2f). A subgroup
file 2: Figure S4b), We identified 14 TFs that exhibited of IDHmut-codel samples also displayed differential
high variability (>1.5) (Fig. 2e). The highest variability = NHLHI accessibility (Fig. 2g). NHLH1 is required for
was observed by differences in two major families of the formation of pre-cerebellar neurons in the hindbrain
AP-1 transcription factors: JUN and FOS that are [34]. In addition, PAX5 showed differential accessibility in
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Fig. 2 Heterogeneity in accessibility of transcription factors within gliomas with IDH mutation. a t-SNE plot of snATAC-seq data, b Accessibility
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t-SNE plot of the transcription factor variability scores obtained from chromVAR, e Ranked plot of variability scores for 386 TF motifs (chromVAR), f
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a subset of cells (Additional file 3: Table S2). PAX5 plays
an essential role for normal development of the midbrain
and cerebellum [41]. Moreover, several known oncogenic
transcription factors, such as the ETS family, that are ab-
errantly activated in a majority of IDHmut-codel tumors,
also exhibited significant variability within IDHmut-codel
and IDHmut-noncodel tumors [19].

Non-coding RNAs and transcription factors are
differentially accessible in gliomas with IDH mutation

We identified IDHmut-noncodel and IDHmut-codel spe-
cific peaks near the promoters of several non-coding RNAs.
These included LINC01193, CCT8L2 and MIR4436A, that
exhibited increased chromatin accessibility in IDHmut-
noncodel samples, and MALAT1 with increased chromatin
accessibility in IDHmut-codel samples (Fig. 3a). MALAT1
and LINCO01193 are known to have functions in cancer
[12, 47]. We also identified accessible promoters
enriched in IDHmut-codel samples, including OLIG2,
and KLF12 (Fig. 3a, Additional file 4: Table S3). Of
note, OLIG2, an essential transcription factor for indu-
cing oligodendrocyte development, has an open pro-
moter in the majority of IDHmut-codel nuclei, whereas
only a few nuclei in IDHmut-noncodel samples harbor
an accessible OLIG2 promoter (Fig. 3a).

CYTOR as an example for differentially enriched non-
coding RNA with clinical significance

Our snATAC-seq data pointed to a striking difference in
accessibility around and within the CYTOR promoter.
The t-SNE visualization revealed accessible CYTOR pro-
moter along the lower branch trajectory, which is largely
defined by IDHmut-noncodel samples (Fig. 3b). Specific-
ally, 70% (101/145) of IDHmut-noncodel samples, and
10.5% (20/191) of IDHmut-codel samples had an open
CYTOR promoter (Fig. 3c). We searched for co-accessible
regions with the CYTOR promoter in the combined
snATAC-seq dataset and identified 50 correlated regions
(Pearson > 0.2) (Fig. 3d, Additional file 5: Table S4). Inter-
estingly, one of the correlated regions was the promoter of
ID2, a transcriptional regulator that supports a pro-
survival role in malignant gliomas by inactivating VHL
[22, 48]. CYTOR (LINC00152) is a long non-coding RNA
that regulates cytoskeleton and plays an oncogenic role in
several cancers, including colorectal cancer, and gastric
cancer [45, 49]. CYTOR is associated with poor prognosis
and is upregulated in diffuse gliomas, and higher grade
IDH wild-type gliomas and glioblastomas [31, 52].

To assess the methylation state of the CYTOR locus,
we utilized data from 68 gliomas with IDH mutation
profiled using the Illumina Infinijum MethylationEPIC
BeadChip (EPIC) arrays as a part of the DNA-methylation
based classification efforts of central nervous system
tumor entities [5]. The methylation data included samples
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from 31 IDHmut-noncodel and 37 IDHmut-codel. We
identified 10,634 differentially methylated sites between
the two IDH molecular subgroups at a g-value <0.001
and absolute B-value> 0.1 (Additional file 6: Table S5). To
determine whether there was an inverse correlation
between accessible chromatin and DNA methylation up-
stream of CYTOR TSS, we overlapped the location of the
EPIC array probes with the snATAC-seq peaks called
from pseudo-bulk regions. This analysis identified two
overlapping CpG probes: ¢g22535363, and ¢g23944790
(Fig. 3e). Both of these probes were significantly hyper-
methylated in IDHmut-codel samples when compared to
IDHmut-noncodel samples (Fig. 3f), further suggesting
the limited chromatin accessibility of CYTOR in IDHmut-
codel gliomas.

Next, we wondered whether these differences in
CYTOR at the DNA level were reflected at a transcrip-
tional level. To answer this question, we analyzed bulk
RNA-seq data from the Chinese Glioma Genome Atlas
(CGGA), which includes two datasets with 693 (CGGA-
1) and 325 (CGGA-2) samples, respectively. We re-
stricted our analyses to IDH mutant gliomas (WHO
Grade II-1V) within the CGGA data, which included 258
CGGA-1 samples and 152 CGGA-2 samples. CYTOR
expression was significantly higher in IDHmut-noncodel
samples compared to IDHmut-codel samples in both
datasets (Fig. 4a). Overlap of genes positively correlated
with CYTOR in both datasets (198 genes in CGGA-1,
and 541 genes in CGGA-2) (Pearson > 0.5) revealed 101
genes with high correlation to CYTOR (Additional file 7:
Table S6) Interestingly, these genes were significantly
enriched for several pathways including regulation of
migration, regulation of vasculature development, and
collagen formation (Fig. 4b, Additional file 8: Table S7).
Finally, we asked whether CYTOR expression was corre-
lated with overall survival in gliomas with IDH mutation
(WHO Grade II-III). We identified the maximal cut-off
point and classified each tumor by high- or low- CYTOR
expression. Comparison of IDHmut-noncodel and
IDHmut-codel samples revealed that high CYTOR ex-
pression was associated with poor overall survival prog-
nosis in both CGGA and TCGA data sets (Fig. 4c, d,
Additional file 2: Figure S6a, b).

Discussion

Gliomas with IDH mutation exhibit global DNA hyper-
methylation. While previous studies have investigated
heterogeneity at the transcriptional level, it is unclear
whether these tumors harbor epigenetic heterogeneity at
the individual cell level. To our knowledge, our study is
the first description of chromatin accessibility of gliomas
with IDH mutation using single nucleus ATAC-seq.
Using conservative cutoff values, and by relying on over-
lapping peaks from bulk ATAC-seq from IDH mutant
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glioma patients samples, we were able to reduce noise
and constrain our analysis to biologically significant re-
gions. We observed differential accessibility of several
transcription factor binding sites, within and between
IDHmut-codel and IDHmut-noncodel samples. Accessi-
bility of DNA binding sites for JUN or FOS were highly
variable, and interestingly were accessible to a much
lower extent in IDHmut-codel tumors. Activity of AP-1,
the transcriptional activator composed of members of
the Jun and Fos families are regulated by MAPK signal-
ing, and control proliferation and apoptosis [35].

Sequence binding-specific sites of AP-1 transcription
factors are reported to be hypomethylated targets in
glioblastoma with poor clinical outcome and low glioma
CpG Island Methylator Phenotype (G-CIMP) [8]. Several
transcription factors, such as NHLH1 and PAX5 with
known roles in neurodevelopment also exhibit differential
accessibility among IDHmut-codel and IDHmut-noncodel
samples. Although this remains to be determined, it is pos-
sible that these accessible TF motifs are vestiges of cell of
origin for these tumors. This is also suggested by gene set
enrichment analysis which showed significant enrichment
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for neural lineage differentiation pathways, particularly for
IDHmut-codel gliomas. In addition, we identify that ETS
transcription factors display heterogeneity with increased
variability in accessibility in IDHmut-noncodel tumors. The
ETS/AP-1 transcription factors regulate a RAS-responsive
gene expression program. PEA3 subfamily of ETS proteins
(ETV1, ETV4, ETV5) amplify transcriptional signals when
RAS/MAPK signaling pathway is active, and abolishing Ets
activity leads to a block in glioma initiation [2, 14].

Our data show that majority of IDHmut-codel nuclei,
and only a subset of IDHmut-noncodel nuclei harbor an
open chromatin within the promoter of OLIG2. Expres-
sion of OLIG2 is restricted to the central nervous system
and determines oligodendrocyte and astrocyte fate deter-
mination in the developing brain [28, 50, 51]. It is ubi-
quitously expressed in gliomas, and was identified as one
of the core transcription factors that can reprogram dif-
ferentiated GBM cells into glioma stem cells [25, 26, 37].
Our results indicate that CYTOR could be of importance
in the pathogenesis of IDH mutant tumors, as high
CYTOR expression is associated with poor overall
survival. Given our small sample size, we were unable to
determine whether chromatin accessibility of CYTOR
varied by grade in IDHmut-codel samples. However, our
integrative data indicates that a subset of IDHmut-codel
tumors also harbors an open chromatin for CYTOR and
having an open promoter might be indicative of a malig-
nant subpopulation associated with progression within
Grade II IDHmut-codel gliomas. Therefore, it may be
possible to target such existing programs at an early stage
of tumor development, that could offer a therapeutic
benefit for patients. However, future studies are needed to
elucidate such interactions during malignant progression.

A limitation of scATAC-seq studies is due to sparsity
of data, it is challenging to determine cell identity. Given
that IDHmut-codel samples harbor chromosome arm
deletions, we were able to infer the presence of 1p/19q
deletions in a large majority of our snATAC-seq data. In
addition, tumor-associated microglia and macrophages
(TAMs) are the most abundant cell types that infiltrate
gliomas [9, 43]. However, we did not observe peaks
within the promoter for several well-described TAM
markers, such as CD11b and CX3CR1, IBA1 or CD45
(data not shown) [1]. Taken together, these results sug-
gest that a large proportion of the signal is obtained
from malignant tumor cells.

Materials and methods

Patients and tumors

All tumors were obtained from patients following sur-
gical resection at the Department of Neurosurgery at
the University Hospital Heidelberg, Germany. Use of
patient material was approved by the Institutional Re-
view Board at the Medical Faculty of Heidelberg.
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Informed consent was obtained from all patients in-
cluded in the study. Each sample was examined histo-
logically for sufficient tumor cell content of at least
60% and diagnosed by a neuropathologist. The patho-
logic characteristics of the tumor samples are summa-
rized in Additional file 1: Table S1. RNA-seq data
obtained from 693/325 Grade II-IV and 514 Grade II-
III glioma samples were downloaded from the Chin-
ese Glioma Genome Atlas (CGGA) and the Cancer
Genome Atlas (TCGA), respectively, along with their
corresponding clinical information.

Sample preparation

Following surgical resection, fresh tumor samples were
separated into single cell suspensions via mechanical
and collagenase enzymatic dissociation (StemCell Tech-
nologies- Canada). Debris was removed using tubes with
strainer cap (Corning, USA-NY). The cells were snap
frozen in a stem cell freezing media (CTS Synth-a-
Freeze Medium, Life Technologies) and stored in liquid
nitrogen until diagnosis was confirmed.

Sequencing and quality control

Nuclei were obtained using Nuclei EZ Prep (Sigma-
Aldrich, USA-MO). The single nucleus ATAC-Seq
protocol performed on HT IFC microfluidics system
(Fluidigm, USA-CA) and HiSeq 2000 sequencing tech-
nologies (Illumina, USA-CA) with an adapted protocol
(Additional file 2: Figure S5). Nuclei were incubated
with Tn5 off-chip. The reaction was stopped with
EDTA and the nuclei are loaded on the C1 HT IFC.
During the amplification in the IFC the first barcode was
added to the library which allows pooling per column.
After harvesting the PCR products were purified with
Ampure beads at a 1.4x ratio. The second barcode was
then introduced by a second PCR off-chip and the
libraries were size selected with AMPure beads (Beckman
Coulter, Brea, CA). Each pool was subjected to quality
control using Qubit (ThermoFischer, USA-MA) and
TapeStation D1000 (Agilent, USA-CA).

Overall, we tested samples from 7 patient samples,
however only 5 samples provided material with sufficient
quality for sequencing. One oligodendroglioma sample
(NCH5540) was sequenced with 75 bp single reads, while
the rest of the samples were sequenced with 50 bp single
reads. Duplicate nuclei in C1-800 chip were estimated
with visual microscopic analysis, and quality control
(QC) was checked at each step. We tested 3 IDHmut-
noncodel and 2 IDHmut-codel patient samples. After
data processing, 145 cells from IDHmut-noncodel, and
191 cells from IDHmut-codel samples passed our cutoffs
with selective peak-calling.
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Computational analysis of snATAC-seq data

Data clean-up and alignment

Our initial analysis revealed that some cells have
exactly the same read sequences; a phenomenon that
cannot be explained by Tn5 enzyme-selectivity alone.
The topological spread of the clustered cells revealed
that they are mostly located along the same row on
the chip, and to a lesser extent along the same col-
umns (Additional file 2: Figure S6-d). These distrib-
uted reads are unlikely to originate from individual
cells, and potentially indicate to an imperfection
within the microfluidics platform. We hypothesize
that some wells with a high number of reads spill
over to neighboring wells along the microfluidic plat-
form. Target wells are probably empty as they have
low number of unique reads with less variability. One
explanation for the event might be that wells with
duplicated nuclei generate irregular fluid movement
that causes asynchronized nuclei lysis or major con-
centration gradient and differences in liquid densities.
This is supported by the fact that the empty cham-
bers are the main target to be filled with the leaking
reads. A large part of our analysis focused on clean-
ing the data and performing quality controls. To han-
dle the well-to-well leakage, we applied the standard
de-duplication with Picard’s MarkDuplicate (http://
broadinstitute.github.io/picard) but failed to reduce
biases due to leakages. We have chosen to remove all
reads that exist in more than one well before align-
ment using custom python3.7 script (described later).
Noticeably, fastq files were inflated with PCR ampli-
cons and some read sequences sustained mutations
after PCR amplification and sequencing. A small per-
centage in total, this kept introducing bias to the final
result. Ultimately, we deduplicated fastq files using
clumpify (sourceforge.net/projects/bbmap/) with de-
fault dedupe parameters which removed most of the
duplicates and the mutant amplicons. Then, we ap-
plied the custom python3.7 script to remove the leaky
reads among the cells. The script reads each individ-
ual fastq file, iterates through each of the other files
in the sample/HT-IFC chip, then removes any dupli-
cated read. The script removed the exact sequence of
DNA that exist in two or more wells. Remaining mu-
tant sequences were not addressed due to unreason-
able computational costs. The amount of leakages is
reduced by 98% (Additional file 2: Figure S6). As ex-
pected, reads tend to gather around transcription start
site (TSS) (Additional file 2: Figure S1-b). Every ana-
lysis that was performed later is done on these cleaned
data. De-duplicated files were aligned with bowtie2 [20]
with default parameters against GRCh37.p13 (GenCode),
sorted, non-standard chromosomes were removed and
bam files were indexed using Samtools 1.9 [23]. Finally,
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the wells were checked for leaky reads in bed files: per-
centage of reads with the same coordinates were mea-
sured with and without the python script (Additional file
2: Figure S5-b).

Bioinformatic analysis

To reduce bias, we called peaks in single cells and used
published bulk ATAC-Seq for LGG from TCGA as
reference [6]. We called peaks with HOMER v4.10 [13],
applying makeTagDirectory with keepAll option. Then we
used findPeaks with style histone, minDist 10,000 and size
10,000. The peaks were converted to bed format using
pos2bed.pl (HOMER) and annotated with annotatePeaks.pl
(HOMER) for hgl9. We overlapped our snATAC-Seq
peaks with the reference peaks. We defined a peak to have
was considered when the overlap is at least 50 bp. Peaks
with less than 5 cells were excluded, then cells with less
than 50 positive peaks. To remove duplicated nuclei, we
removed top 5% of the cells by selecting off the cells with
more than 3000 peaks. After applying those parameters,
we obtained 336 cells and peaks for 4609 genes. Cells were
clustered with t-SNE test for 2 dimensions with per-
plexity =30 using Rtsne v0.15 [42] with R v3.6.1. We
analyzed read distance from Transcription Starting Sites
(TSS). The distance forms a peak of high density in all
samples, and some minor peaks further (Fig. 1b). We used
TSS table based on atacR v0.4.14 [36], and compared the
reads from all wells of a psuedo-bulk file using Samtools
1.9, Rsamtools [30] and GenomicRanges 1.36.0 [21]. Reads
around TSS in a range of 2 kb (- 2000 to + 2000), are 11.4,
8.8, 5.8, 17.2 and 6.6% for samples astrol, astro2, astro3,
oligol and oligo2 respectively.

Enrichment

Most of the peaks fall into intronic and intergenic anno-
tation. We overlapped the intergenic peaks with miRNA
data from USCS and with enhancers from HACER db
[44]. The regions from enhancers were reduced using
GenomicRanges and overlapped with Homer peaks from
each cell. The intergenic peaks that were not classified
as miRNA or enhancers were called “others” (Fig. 1d).
We evaluated functional cis-regulatory regions for en-
hancers using Genomic Regions Enrichment of Annota-
tion Tools (GREAT) [29]. We divided the cells into
Oligodendrogliomas and Astrocytomas, and we obtained
the enhancers that overlapped more than 10 cells. We
generated a BED file from the peaks of each group, and
we uploaded the file to GREAT website. We used gene
ontology for Biological processes with over 4 Binomial
Fold Enrichment.

Clustering
To identify clusters in our data and to find top expressed
genes, we used k-means algorithm (k=5) in R v3.61
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base. The clusters were not perfect, so we improved
manually the borders of the clusters (Additional file 2:
Figure S3). The two branches consist of two clusters
each, and the undefined nuclei cluster in the fifth.

Based on the manual clustering, we looked for top
expressed genes and top specific genes for each group
and each cluster. The equations for those two markers
as follows:

TopGenes = sort( x" /YT -(x—+1)/Y" ), where x™ > 10
SpecificGenes = sort( x" /YT /(x- +1)/Y" ), where x* > 10

x": Number of nuclei with peak(s) for the gene in the
specific group/cluster

Y": Total number of nuclei with peak(s) for the gene

x: Number of nuclei with no peaks for the gene in the
specific group/cluster

Y": Total number of nuclei with no peaks for the gene

ATAC-seq coverage and CNV. We used a method
similar to Satpathy et al. [32]. Chromosomes were tiled
into 10 Mb regions with 2Mb overlap (using the
bedtools makewindows function), and the average
ATAC-seq coverage for each cell was computed inside
this window using the bigWigAverageOverBed function.
Each window was normalized using 100 windows with
matching GC content (excluding windows from the 1p
and 19q arm). The normalized coverage of a window w,
was computed as

1
CovNorm(wy) = mean log cov (wo) 1
i=1..100 cov(w;) +1

were w; represent the GC-content matching windows.
Telomeric and centromeric regions with low mapping
percentage were manually excluded from the plots based
on the mapping profiles over the single-cells.

Transcription factor activity

We used chromVAR v1.6.0 to infer transcription factor
accessibility in our snATAC-seq. Counts were obtained
with getCounts function using peaks from bulk ATAC-
seq TCGA for LGG (peak-names start with LGG), a CG
bias was corrected, and peaks filtered with min_depth =
500 and min_in_peaks =0.013. A total 280 cells passed
the filtering process, which were matched to JasperMotifs
[18] and genome from BSgenome.Hsapiens.UCSC.hgl9
v1.4. Background peaks were prepared, and deviation was
measured via computeDeviations function. Variability was
calculated and plotted. deviationsTsne and plotDevia-
tionsTsne were applied for the top ten genes. A heatmap
for sample correlation was produced by the same tool
with threshold of 1 (Additional file 2: Figure S4). The
difference between number of cells that passed the
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chromVAR criteria and those that passed our method can
be attributed to the differences in the cutoff set by the
method.

Web-based explorer for data visualization

We used the peaks we called and selected against bulk
TCGA ATAC-Seq peaks as starting point to produce a
web-based explorer of the data. Gene annotation were
used from TCGA publication and all peaks related to
one gene were collapsed after t-SNE clustering. A
SHINY-R3.6 app (cran.r-project.org) was developed with
ggplot2 library (H. Wickham. ggplot2: Elegant Graphics
for Data Analysis. Springer-Verlag New York, 2016.) and
tested on amazon cloud service (AWS-EC2) with 1GB of
RAM and 1 core on Ubuntu 18 server instance, and a
duplicate copy was tested on a similar server from
hostinger.com to check platform compatibility. To
visualize the data from selective peak-calling, we produced
an explorer based on R/ shiny package 1.3.2. The clustered
data, the code and a manual are submitted at github.com/
RuslanAlali/SHINY_scATAC-Seq. Data can be visualized
at shiny.turcanlab.org.

Array-based methylation analysis

Methylation analysis was performed using the Illumina
HumanMethylationEPIC bead array at Heidelberg
Neuropathology. R statistical software (v3.6.0) was used for
data analysis. The minfi methylation pipeline was used to
extract and analyze data from idat files, and normalization
was carried out using functional normalization method
[11]. Differentially methylated positions between IDHmut-
codel and IDHmut-noncodel gliomas were detected using
dmpFinder in minfi package. Loci with q-value < 0.001 and
absolute B-value > 0.1 were considered to be differentially
methylated.

CGGA RNA-seq data analysis

CGGA RNA-seq datasets were used to determine the
Pearson’s correlation coefficient for CYTOR versus all
other genes. Genes with correlation coefficients > 0.5
were considered to be positively correlated with CYTOR.
To determine the functional enrichment of genes correlat-
ing with CYTOR, WebGestalt was used to perform over-
representation using the following functional databases:
Gene Ontology databases (molecular function, biological
process), and Pathway (KEGG, and REACTOME) [24].

Statistical analysis

All statistical analyses were performed using the R soft-
ware (v3.6.0). RNA-seq data from the CGGA cohort was
downloaded, and processed in R. The maxstat R package
was used to determine the optimal cut-off points for
CYTOR expression to dichotomize patients into low and
high expression groups [15]. The survival and survminer
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R packages were used for Kaplan-Meier analysis to esti-
mate the survival curves of IDHmut-codel and IDHmut-
noncodel subgroups [17, 38]. Statistical comparison of
groups was calculated using the log rank test. P-value
less than 0.05 was considered statistically significant.

Data availability

Called peaks from Homer pipeline have been deposited
in the Gene Expression Omnibus under accession number
GSE137266.

Conclusion

In conclusion, although we obtained a limited number
of nuclei from five samples, scATAC-seq is shown to be
scalable to scRNA-seq level with thousands of cells [3].
By integrating the snATAC-seq data with unbiased data
analysis from bulk methylation, RNA-seq and ATAC-
seq datasets, we were able to provide initial insights into
glioma epigenetics at the level of individual nuclei. As
new high-throughput single cell ATAC-seq technologies
have become available, we envision that future studies
will further expand our understanding of the epigenetic
order in gliomas.
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