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Abstract 

Though benign, giant cell tumor of bone (GCTB) can become aggressive and can exhibit a high 
mitotic rate, necrosis and rarely vascular invasion and metastasis. GCTB has unique histologic 
characteristics, a high rate of multinucleated cells, a variable and unpredictable growth potential 
and uncertain biological behavior. In this study, we sought to identify genes differentially expressed 
in GCTB, thus building a molecular profile of this tumor. We performed quantitative real-time 
polymerase chain reaction (qPCR), immunohistochemistry and analyses of methylation to identify 
genes that are putatively associated with GCTB. The expression of the ADAM23 and CDKN2A 
genes was decreased in GCTB samples compared to normal bone tissue, measured by qPCR. 
Additionally, a high hypermethylation frequency of the promoter regions of ADAM23 and CDKN2A 
in GCTB was observed. The expression of the MAP2K3, MMP14, TIMP2 and VIM genes was sig-
nificantly higher in GCTB than in normal bone tissue, a fact that was confirmed by qPCR and 
immunohistochemistry. The set of genes identified here furthers our understanding of the mo-
lecular basis of GCTB. 
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Introduction 
Giant cell tumor of bone (GCTB), also known as 

osteoclastoma [1], accounts for approximately 5% of 
all primary bone tumors. GCTB is an expansible oste-
olytic tumor that most often arises at the end of a long 
bone in a skeletally mature patient [2]. This neoplasm 
usually affects young adults – approximately 
two-thirds of the patients are between 20 and 40 years 
of age [3]. GCTB most commonly involves the distal 
femur, proximal tibia, distal radius, proximal humer-

us and the sacral bone, with a slight predominance in 
females [4, 5]. 

Histologically, GCTB comprises 3 distinct cell 
types: multinucleated osteoclast-like giant cells, 
monocytic round-shaped macrophage-like cells, 
spindle-shaped and fibroblast-like stromal cells. The 
stromal cells of GCTB are the primary neoplastic cells; 
they are the only proliferating cell component in 
long-term culture [6]. Although their exact origin has 
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yet to be determined, the stromal cells may descend 
from either an osteoblastic lineage or bone marrow 
mesenchymal cells, which might both regulate the 
formation of multinucleated osteoclast-like giant cells 
in the neoplasm [7]. The stromal cells of GCTB may 
drive the macrophage-like cells to undergo fusion to 
form multinucleated osteoclast-like giant cells, and 
the latter eventually cause aggressive bone resorption 
and skeletal destruction [8]. 

The World Health Organization has classified 
GCTB as an aggressive, potentially malignant lesion 
[4]. Clinically, GCTB is considered benign, but it often 
becomes an aggressive lesion with a tendency for lo-
cal recurrence. Depending on the type of treatment 
and the local presentation of the tumor, recurrence 
rates range from 0 to 65% [9]. GCTB is one of the rare 
benign tumors that can grow [10] intravascularly and 
give rise to distant metastases; slow growth and lung 
metastasis occur in 2 - 10% of cases [11-13]. 

The Epithelial Mesenchymal Transition (EMT) is 
a phenomenon which cancer cell acquires plasticity 
that confers features such as metastasis and recur-
rences. The EMT process is regulated by a number of 
genes distributed in compartments of cancer cell [14, 
15]. To elucidate the molecular mechanisms involved 
in the tumorigenesis of GCTB, selected genes have 
been identified by analyzing gene expression [16-18]. 
Few studies, however, have investigated the genetic 
profile of GCTB, we have searched for to identify dif-
ferentially expressed genes involved in tumorigene-
sis. Elucidation of these genes and the molecular 
mechanisms that may regulate their expression re-
main to be identified to achieve a better understand-
ing of the biology of GCTB [19, 20]. 

The MAP2K3 gene is related to cell proliferation. 
In several types of advanced cancers that lead to cell 
proliferation, this gene has been shown to promote 
cancer cell invasion and metastasis [21]. The 
ADAM23, CDH2, CDKN2A (p16), CDK4, CXCL14, 
MMP14, NFκB, SNAI1, TIMP2, TIMP3, VIM and ZEB1 
genes encode proteins involved in different stages of 
cell transformation, including cell motility, adjacent 
tissue invasion, tumor progression, dissemination 
through the vasculature and finally proliferation from 
a micro-metastasis to macroscopic secondary tumor 
[22-31]. 

In this study, we selected genes involved in cel-
lular differentiation and proliferation in giant cell 
tumors of bone and analyzed their expression by 
qPCR. The genes ADAM23 and CDKN2A were un-
derexpressed in giant cell tumor of bone, and we re-
port that the hypermethylation of the promoter re-
gions of these genes controls their expression in 
GCTB. Furthermore, we showed, by immunohisto-
chemistry, that overexpression of the MAP2K3, 

MMP14, TIMP2 and VIM genes was significantly 
higher in CGTB than in non-neoplastic samples. Be-
cause of their role in the cellular mechanisms involved 
in the alteration of cellular homeostasis, these genes 
may be involved in the development of GCTB. 

Material and methods 
GCTB Sample Collection 

 The samples were collected from 42 patients 
with primary GCTB, including 23 fresh samples of 
GCTB, 24 paraffin-embedded samples of GCTB, 9 
fresh, histologically normal bone tissue samples of 
femur, and 3 paraffin-embedded samples of histolog-
ically normal medullar bone tissues of femur, all of 
which were confirmed by pathologists. Histologically 
normal samples were extracted from the margin of 
tumors of the femur. Tissues were obtained from the 
Tumor Bank at The Pio XII Founda-
tion/IBILCE-UNESP, São Paulo, Brazil. The use of all 
patient-derived material was approved by the institu-
tion's Research Ethics Board at The Pio XII Founda-
tion of the Cancer Hospital of Barretos, and informed 
consent was obtained individually from the patients. 
The diagnosis of GCTB was established by a biopsy 
prior to surgical excision, and the patients had no 
other malignancies at the time of the surgery. The 
tissues were obtained during surgery from patients 
undergoing tumor resection, and the diagnosis of 
GCTB was verified post-operatively by a histo-
pathologist. Microdissection was performed on the 
collected samples. The fresh samples were used to 
perform the quantitative real-time polymerase chain 
reaction, and paraffin-embedded samples were used 
in the methylation and immunohistochemistry anal-
yses. 

RNA Extraction 
 Total RNA was isolated from GCTB tissue and 

normal tissue using TRIzol (Life Technologies, Grand 
Island, NY, USA) and following the protocol instruc-
tions. For qPCR, approximately 5 µg of total RNA 
from each sample were used to synthesize cDNA with 
a High-Capacity cDNA Archive Kit (Life Technolo-
gies, Grand Island, NY, USA), according to the man-
ufacturer’s instructions. β-ACTIN (ACTB) amplifica-
tion served as a control for cDNA quality.  

Quantitative Real-time Polymerase Chain 
Reaction (qPCR) 

 Twenty genes related to tumorigenesis, pro-
gression, cell migration and tumor malignancy were 
selected. We used 23 fresh CGTB samples and a pool 
of total RNA from a subset of 9 fresh tissue samples of 
normal bone, defined as the normal reference (control 
group). Gene-specific primers for qPCR were de-
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signed for optimal hybridization kinetics using the 
Primer 3.0 program (provided by the Whitehead/MIT 
Center for Genome Research, Cambridge, MA, USA).  

  Quantitative real-time PCR involved an ABI 
prism 7300 sequencer detector system and SYBR 
Green PCR Core Reagent (Life Technologies, Grand 
Island, NY, USA). The reaction mixture (20 µL total 
volume) contained 25 ng of cDNA, gene-specific for-
ward and reverse primers for each gene, and 10 µL of 
2× Quantitative SYBR Green PCR Master Mix. Rela-
tive quantification was performed using the CT val-
ues and triplicate reactions for GCTB samples and a 
reference sample from each gene and from the en-
dogenous control (glyceraldehyde-3-phosphate de-
hydrogenase; GAPDH). The primers were designed in 
different exons, and the sequences are available in 
Table 1. Therefore, the relative expression of each 
specific gene was calculated by using the formula: R =
(E target)ΔCt target (control - sample)/(E endogenous)ΔCt endog-

enous (control - sample), as previously described [32]. The 
cut-off for the analysis of gene expression was ≥ 2 for 
increases and decreases in expression. A value below 
this cut-off was considered to indicate that the in-
crease or decrease in expression was not significant. 

DNA Extraction 
DNA samples of fresh tissue were isolated using 

TRIzol (Life Technologies, Grand Island, NY, USA). 
For the extraction of DNA from paraffin, the samples 
were deparaffinized with xylene, and the tissue sam-
ples were digested in a buffer (100 mmol/L NaCl, 10 
mmol/L Tris-HCl pH 8.0, 25 mmol/L ethylenedia-
mine tetraacetic acid (EDTA) and 1% sodium dodecyl 
sulfate) containing 20 mg/mL proteinase K at 50°C for 
3 days. Total DNA was isolated using phe-
nol-chloroform extraction and ethanol precipitation. 
The DNA pellets were resuspended with 20 mL of TE 
buffer (10 mmol/L Tris-HCl, 1 mmol/L EDTA, pH 
8.0) and stored at -20°C until PCR amplification. 
β-Globin gene (HBB) amplification served as a control 
for DNA quality.  

Bisulfite Modification of DNA and Methyla-
tion-Specific PCR 

The genomic DNA extracted from tissues was 
modified using bisulfite treatment according to 

Calmon et al. [33]. The DNA methylation status in the 
CpG island promoter was determined using the pre-
viously described MSP procedure, which used pri-
mers specific for the methylated (M) or unmethylated 
(U) sequences of the bisulfite-modified DNA. The 
primers used for each gene in the PCR reaction were 
specific to methylated and unmethylated DNA (Table 
2). Bisulfite-modified DNA from peripheral blood 
lymphocytes from a healthy individual was previ-
ously treated and untreated with CpG methyltrans-
ferase (M.SssI) (New England Biolabs, Ipswich, MA, 
USA) and served as a positive control for hypermeth-
ylated and unmethylated DNA. A blank control con-
taining all the PCR components (except template 
DNA) was also included in all of the experiments. 
Reaction products were separated using electropho-
resis on an 8% polyacrylamide gel and stained with 
silver nitrate. 

 
 

Table 1. Primer sequences used in quantitative real-time poly-
merase chain reaction 

Gene Primer Sequence (5’ – 3’) Size of product 
ADAM23 F:CCACTCGATTCCAAGGGTAAAGT 

R:ATGCAGGTGGCTTCATTACTACAC 
64bp 

CDH2 F:ATATGGCCTTTCAAACACAGC 
R:CGTCATGGCAGTAAACTCTGG 

82bp 

CDKN2A (p16) F:ACCAGAGGCAGTAACCATGC 
R:AAGTTTCCCGAGGTTTCTCAG 

99bp 

CDK4 F:CCCGAAGTTCTTCTGCAGTC 
R:CTGGTCGGCTTCAGAGTTTC 

119bp 

CXCL4 F:GAAATGAAGCCAAAGTACCCG 
R:TACAACGCCTGGAACG 

152bp 

GAPDH F:ACCCACTCCTCCACCTTTGA 
R:CTGTTGCTGTAGCCAAATTCGT 

79bp 

MAP2K3 F:GCCTATGGGGTGGTAGAGAAG 
R:TTGATGTCCAGGTCCATGAG 

102bp 

MMP14 F:CACTGCCTACGAGAGGAAGG 
R:GAGCAGCATCAATCTTGTCG 

149bp 

NFκB F:CCAGCTGGCAGGTATTTGAC 
R:TCAGCCAGCTGTTTCATGTC 

100bp 

SNAI1 F:CTCTTTCCTCGTCAGGAAGC 
R:AGGGCTGCTGGAAGGTAAAC 

95bp 

TIMP2 F:GTAGTGATCAGGGCCAAAGC 
R:TCTCAGGCCCTTTGAACATC 

124bp 

TIMP3 F:GGGGAAGAAGCTGGTAAAGG 
R:CCACAGAGACTCTCGGAAGC 

135bp 

VIM F:GAAATTGCAGGAGGAGATGC 
R:ATTCCACTTTGCGTTCAAGG 

116bp 

ZEB1 F:TGCACTGAGTGTGGAAAAGC 
R:AAGCGTTTCTTGCAGTTTGG 

107bp 

 

Table 2. Primer sequences used in methylation-specific polymerase chain reaction 

Gene External Primer T°C Primer sequence T°C Size of 
product 
M 

Methylated sequence (5’-3’) Unmethylated sequence (5’-3’) 

ADAM23   F:ATTGTTTTTTGGTTAGAATGTCG F:ATTGTTTTTTTGTTAGAATGTTG 59 100 
R:TAAAAAAAACACAAAAAACCGAACG R:TAAAAAAAACACAAAAAACCAAACA 

CDKN2A 
(p16) 

F:GGAGAGGGGGAGAGTAGGT 60 F:CGGGGAGTAGTATGGAGTCGGCGGC F:TGGGGAGTAGTATGGAGTTGGTGGT 64 81 
R:CTACAAACCCTCTACCCACCT R: GACCCCGAACCGCGACCGTAA R: CAACCCCAAACCACAACCATAA 

T= annealing temperature (°C), U= Unmethylated sequence, M= Methylated sequence. 
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Immunohistochemistry 
Unstained 4.5 µm sections were cut from each 

paraffin block, deparaffinized and rehydrated using 
routine techniques. Endogenous peroxidase activity 
was blocked with 0.3% H2O2 for 30 min in a citrate 
buffer (10 mM, pH-6) at 95°C. Monoclonal antibodies 
used were anti-human MMP14 (Abcam Inc., Cam-
bridge, MA, USA) (1:50 dilution), anti-human TIMP2 
(Chemicon/Millipore, Billerica, MA, USA) (1:150 di-
lution), anti-human VIM (Dako, Carpinteria, CA, 
USA) (1:100 dilution) and polyclonal rabbit an-
ti-human MAP2K3 (Abcam Inc., Cambridge, MA, 
USA) (1:50 dilution). They were applied and incu-
bated at 4°C overnight. Afterward, sections were in-
cubated with a biotinylated secondary antibody and 
exposed to a streptavidin complex (HRP Ready-to 
Use, DakoCytomation, Carpinteria, CA, USA). Posi-
tive reactions were visualized with 3,3' diaminoben-
zidine tetrahydrochloride (DAB, Signet® Laborato-
ries, Dedham, MA, USA), followed by counterstaining 
with hematoxylin. 

Normal pancreas tissue was used as a positive 
control for TIMP2, and breast carcinoma tissue was 
used as the positive control for MAP2K3, MMP14 and 
VIM. Sections treated without primary antibodies 
were used as negative controls. TIMP2, MAP2K3, 
MMP14 and VIM densitometric analyses were con-
ducted with an Axioskop II microscope (Zeiss, Ger-
many) using the Software AxiovisionTM (Zeiss). For 
these analyses, 3 different fields from each tumor 
fragment were used, and 20 different points were an-
alyzed to calculate an average intensity of immuno-
reactivity. The values were obtained as arbitrary units 
(a.u.).  

Statistical Analysis  
 Minitab Student 14 software was employed to 

perform the statistical analyses, with significance set 
at p < 0.05. Relative expression levels detected by 
qPCR in CGTBs samples were transformed into nat-
ural logarithms. The Wilcoxon signed-rank test was 
applied to compare the gene expression levels in tu-
mor tissue and normal bone tissue. The Krus-
kal-Wallis test was used to determine whether there 
was an association between gene expression and re-
currence or metastasis. The data from protein expres-
sion were obtained using immunohistochemistry and 
were statistically examined with the Mann-Whitney 
test.  

Results 
Patients 

The study population involved 42 patients. 
Twenty-one (50%) were male and 21 (50%) were fe-

male. Their minimum and maximum ages were 13 
and 74 years, respectively, with a mean of 35.9 years ± 
14.9. The most common locations of the GCTB were 
femur (26%), tibia (21%) and radius (14%). Eight pa-
tients (17%) experienced a recurrence between 11 and 
42 months after surgery, and 6 patients (12.7%) expe-
rienced metastases between 1 and 65 months after 
surgery (Table 3). 

 

Table 3. Epidemiological, clinical and pathological characteristics 
of patients diagnosed with GCTB 

Sample Age(y) Sex Anatomic location Outcome 
Recurrence 
(date) 

Metastasis 
(date) 

1F 37 M Proximal tibia L ned 19 months 
2F 41 F Distal radius R ned ned 
3F 24 M Proximal femur L ned ned 
4F/P 52 F Distal femur L ned ned 
5F 17 M Scapula L ned ned 
6F 32 F Olecranon R 11 months ned 
7F/P 52 M Distal femur L 11 months ned 
8F/P 74 F Distal femur L 19 months ned 
9F 35 M Distal femur L ned ned 
10F 33 M Proximal tibia R 20 months ned 
11F 21 F Proximal tibia R ned ned 
12F 37 F Proximal tibia L ned ned 
13F 13 F * ned 41 months 
14F/P 28 F Distal femur R 19 months ned 
15F 19 F Sacrum ned ned 
16F 22 F Distal fibula R ned ned 
17F 16 F Ischium R ned ned 
18F 22 M Distal fibula L ned 20 months 
19F 27 M Proximal humerus L ned No 
20F 69 F Occipital ned ned 
21F 24 M Proximal tibia R 22 months ned 
22F 46 F Distal radius L ned ned 
23F 58  F Hemipelvis R ned ned 
24P 55 M Proximal tíbia L ned ned 
25P 22 F Ischium R ned 65 months 
26P 57 M Proximal tibia L 42 months ned 
27P 34 M Proximal tibia R ned ned 
28P 24 M Distal radius L ned ned 
29P 27 M Distal femur L ned ned 
30P 51 F Scapula L Yes* 07 months 
31P 31 M Wrist R ned ned 
32P 22 F Distal radius R ned ned 
33P 41 M Distal femur L ned 01 months 
34P 24 F Wrist L ned ned 
35P 41 M Distal femur R ned ned 
36P 55 M Distal radius L ned ned 
37P 41 F Distal radius L ned ned 
38P 35 M Thumb L ned ned 
39P 39 M Proximal fibula L ned ned 
40P 53 M Proximal tibia R ned ned 
41P 38 F Distal femur L ned ned 
42P 19 F Distal femur L ned ned 
Abbreviations: f: fresh tumor; p: paraffin-embedded tumor; f: female; m: male; r: right; l: left; 
ned: no evidence of disease, * = no information was obtained. 

 

Expression of the Selected Genes 
 The CXCL14, CDH2, CDK4, MAP2K3, MMP14, 

SNAI1, TIMP2, TIMP3, VIM and ZEB1 genes were 
overexpressed in the GCTB samples compared to the 
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reference samples (p < 0.001), and the fold change of 
gene expression ranged from 2.03 to 6.58. CDKN2A 
(p16) and ADAM23 were significantly downregulated 
in tumor tissues compared to normal bone tissue (p < 
0.001), and the fold change of gene expressions was 
found to be -6.46 and -4.70, respectively. The NFκB 
gene was not differentially expressed (Figure 1).  

Methylation Analysis of the ADAM23 and 
CDKN2A (p16) genes 

After gene expression analysis, the methylation 
pattern in the promoter region of the ADAM23 and 
CDKN2A (p16) genes was analyzed using MSP-PCR in 
26 GCTB samples. 

 Hypermethylation in the promoter regions of 
the ADAM23 and CDKN2A (p16) genes was detected 
in 92% (24/26) and in 83.3% (20/24) of the tumors 
analyzed, respectively (Figure 2 and Table 4). The 
hypermethylation of ADAM23 and CDKN2A (p16) 
was statistically associated with the presence of GCTB 
(p < 0.001 and p < 0.05, respectively). In addition, the 
sets of primers for the genes used in this study gave 
no indication of hypermethylation in the normal 
lymphocytes analyzed. The hypermethylation of the 
ADAM23 gene was detected in 90.5% of the 
non-recurrent tumors samples and in 90.5% of the 
non-metastatic tumor samples. The promoter region 
of the ADAM23 gene was hypermethylated in all the 
samples that exhibited metastasis or recurrence. Be-
cause of the small number of samples, however, no 
significant association could be found between the 

presence of hypermethylation in the promoter regions 
of ADAM23 and CDKN2A (p16) genes and the clini-
copathologic parameters of these genes in GCTB. 

 
 

Table 4. Methylation pattern of ADAM23 and CDKN2A (p16) in 26 
GCTB samples 

Samples ADAM23 p16 
3F   
4F   
7F   
9F   
10F   
11F   
12F   
13F   
14F   
15F   
18F  X 
19F   
23F   
24P   
25P  X 
28P   
29P   
30P   
35P   
37P   
38P   
39P   
40P   
41P   
42P   

legend: : methylated genes; : unmethylated genes and x: not amplified. 

 
 

 
Figure 1. mRNA expression levels media in GCTB samples. mRNA expression of the selected genes using qPCR. The results are shown as the fold change 
in expression relative to normal bone of femur. (*p < 0.001, Wilcoxon Signed Rank Test) 
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Figure 2. Representative data showing the methylation status of the 
promoter regions of the genes ADAM23 and CDKN2A (p16). Lanes U 
and M correspond to unmethylated and methylated reactions, respectively. In 
each case, 3F indicates GCTB patient sample, C- indicates DNA from lym-
phocyte, C+ indicates in vitro methylated DNA (IVD), H2O indicates negative 
PCR control. On the left: molecular weight marker; and below: size of meth-
ylated PCR product. 

Immunohistochemistry of the Overexpressed 
Genes (MAP2K3, MMP14, TIMP2 and VIM)  

 Immunohistochemistry was performed on 24 
samples of GCTB and on the normal tissue margins of 
the tumors. Immunohistochemical staining of GCTB 
samples confirmed the presence of MMP14, MAP2K3, 
TIMP2 and VIM in the GCTB microenvironment. 
Staining of the samples for MMP14, MAP2K3, TIMP2 
and VIM was positive in the cytoplasm of multinu-
cleated giant cells, stromal cells and monocytic cells 
(Figure 3A-D). In normal bone tissue there was very 
weak staining in different cell types of these 4 gene 
products (Figure 3 E-H) and breast carcinoma and 
normal pancreas showed immunostaining, as repre-
sentative positive controls for the selected gene 
products (Figure 3I-L). GCTB samples were found to 
have an increased expression of MMP14, MAP2K3, 
TIMP2 and VIM compared to the normal tissue mar-
gins of the tumor (p < 0.05) (Figure 3M).  

 
 
 
 
 
 
 
 

 
Figure 3. Immunohistochemistry in GCTB and control samples. Protein detection of (A) MAP2K3, (B) MMP14, (C) TIMP2 and (D) VIM in giant cell tumor 
of bone samples by immunohistochemistry. (E-H) Normal bone samples were used as negative controls and (I, J, L) breast carcinoma and (K) normal pancreas were 
used as positive controls. The presence of multinucleated giant cells is marked with asterisk. (M) Graphic of densitometry of the immunostaining of MAP2K3, MMP14, 
TIMP2 and VIM in the samples analyzed. Bars = 20 μm. (*p < 0.05, Mann-Whitney test). 
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Discussion 
 Giant cell tumor of bone is a rare type of bone 

tumor that is generally benign and characterized his-
tologically by multinucleated giant cells with a back-
ground of mononuclear stromal cells [34]. GCTB is a 
tumor that, while benign, often becomes aggressive 
and exhibits local recurrence and small rates of me-
tastasis [5, 35]. This type of tumor belongs to a group 
of benign tumors of bone, including osteoblastoma, 
chondroblastoma and chondromyxoid fibroma that 
share characteristics that are both benign and aggres-
sive [36, 37]. GCTB has unique histological character-
istics consisting of mononuclear cells and multinu-
cleated giant cells with a variable and unpredictable 
growth potential [10]. Thus, it has several characteris-
tics of aggressive, including a high mitotic rate, ne-
crosis and recurrence after resection [38]. However, 
the identification of aggressive GCTB is often difficult 
because these tumors are rare and diagnostic criteria 
remain poorly defined [39]. The molecular mecha-
nisms responsible for the post-surgical recurrence and 
rarely metastasis of GCTB are not well understood. To 
better understand this rare type of tumor and to avoid 
recurrences, it is important to elucidate the molecular 
biology of the tumor and the genes involved in tu-
morigenesis of giant cell tumor of bone. 

Tumor cells are characterized by changes in gene 
expression and transcriptional inactivation caused by 
epigenetic events that can initiate the expansion of 
altered cells during the early stages of tumorigenesis 
[40]. Methylation is a major epigenetic modification 
process in human cells; changes in methylation pat-
terns play an important role in the genesis of tumors 
via transcriptional inactivation. The methylation of 
the C-5 methyl group in DNA’s 5'-cytosine results in 
the formation of 5-methylcytosine. Methyl groups 
decrease the binding affinity between the promoter 
regions of DNA and transcription factors, which si-
lences genes that play important roles in maintaining 
cellular homeostasis [41]. Methylation events play an 
important role in tumor progression and are frequent 
in transformed cells. The methylation of CpG islands 
is found in gene promoter regions, which may be as-
sociated with the repair of damaged DNA, metastases 
and invasiveness of the cancer genesis process [42]. 
The process of hypermethylation in the promoter re-
gion was reported in giant cell tumor of bone, for 
example, in the genes UCHL1, IGFBP4 and RUNX3, 
which are involved in the regulation of cell prolifera-
tion, apoptosis and cell transformation [43] [44]. 
Therefore, we investigated if hypermethylation in the 
promoter region regulates the expression of the genes 
ADAM23 and CDKN2A (p16) in giant cell tumor of 
bone.  

The hypermethylation of the promoters of the 
ADAM23 and CDKN2A (p16) genes is a mechanism 
of silencing these genes, similar to hypermethylation 
in other tumor types [22, 45]. This is the first time that 
hypermethylation in the promoter region of the 
ADAM23 and CDKN2A (p16) genes has been de-
scribed in this type of tumor.  

The ADAM23 gene is located on chromosome 
2q33 and encodes ADAM domain 23; this constitutes 
an Adam family of type I transmembrane glycopro-
teins that has a common structural organization, in-
cluding a metalloprotease and disintegrin domain. 
This protein possesses a potent adhesion domain and 
is involved in cell-cell and cell-matrix interactions 
[33], which allow for contact between cells. This con-
tact can prevent growth through contact inhibition, 
particularly in normal cells. 

An analysis of the ADAM23 gene promoter 
suggests that methylation is an active epigenetic event 
in the silencing of gene activity. Hypermethylation of 
the promoter region of the ADAM23 gene has been 
associated with advanced breast, brain, gastric, and 
head and neck cancers [33, 46-48]. Furthermore, one 
study shows that the promoter region of this gene 
tends to be more frequently methylated in metastatic 
gastric carcinomas [49]. Hypermethylation of the 
ADAM23 gene in primary breast tumors is signifi-
cantly associated with an incidence of metastases. The 
loss of ADAM23 expression may promote αvβ3 integ-
rin activation leading to enhance tumor cell migration 
[50, 51]. In our study, we observed that the most 
GCTB samples exhibited hypermethylation in the 
promoter region of the ADAM23 gene. Thus, we 
suggest that the silencing of ADAM23 could lead to 
GCTB progression because of the loss of contact inhi-
bition and abnormal cell-matrix interactions that lead 
to uncontrolled cell proliferation.  

The CDKN2A gene, also known as p16INK4, is 
considered a tumor suppressor gene because it is 
frequently observed in human cancers to be silenced 
through deletion or via an inactivating mutation 
[52-56]. Typically, p16 induces cell cycle arrest and 
prevents cell division by inhibiting the cy-
clin-dependent kinases CDK4 and CDK6, as well as 
CDK-mediated phosphorylation of the retinoblasto-
ma gene [57]. The CDKN2A protein plays an im-
portant role in suppressing cell cycle progress, and 
downregulation of p16 could increase cell prolifera-
tion and contribute to the development of a variety of 
cancers [58, 59]. Moreover, CDKN2A downregulation 
has been confirmed using immunohistochemistry 
analysis in chondrosarcoma cell lines [60] and the 
presence of CDKN2A gene in enchondromas leads to 
low proliferative activity and the inhibition of 
cell-cycle progression [61]. The CDKN2A gene pro-
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tects cells from undergoing transformation and pro-
tects the genome from mutagenic events. It also in-
duces apoptosis in cells that escape the control of the 
cell [62]. 

Methylation of cytosine at CpG sites in the 
CDKN2A gene promoter, which results in the silenc-
ing of p16 expression, occurs in many cell lines, in-
cluding those of colorectal cancer and various pri-
mary carcinomas of colon, breast, bladder, ovary, 
lung and bone marrow [63-68]. Aberrant inactivation 
of the CDKN2A gene by methylation is a frequent 
early event in multiple human cancers [69, 70], which 
means it is a factor of interest as a biomarker of 
pre-malignant alterations [71]. In this study, CDKN2A 
gene expression is suppressed possibly because of the 
high frequency of DNA methylation in its promoter 
region. The loss of CDKN2A activity as a consequence 
of mutations or promoter hypermethylation is a 
common step in the genesis and progression of tu-
mors [62] because the inactivation of CDKN2A allows 
tumor cells to pass through the G1 cell cycle check-
point [72]. Thus, we suggest that the inactivation of 
CDKN2A in GCTB contributes to inappropriate mi-
totic divisions in the giant cells leading to increased 
cell proliferation. 

Epithelial mesenchymal transition (EMT) is es-
sential for driving plasticity during cancer progres-
sion. Furthermore, the recurrence after therapy, 
common in GCTB, is one cancer-related function of 
EMT, cancer cells to trans-differentiate to mesenchy-
mal cancer cells with an increased expression of many 
genes [14]. Through gene expression and immuno-
histochemical analyses, 4 overexpressed genes in 
GCTB have been identified. The expression of 
MMP14, MAP2K3, TIMP2 and VIM genes were sig-
nificantly higher in GCTB than in non-neoplastic 
samples. Changes in these genes might be critical to 
the development of GCTB. 

The MMP14 gene, which belongs to the family of 
zinc metalloendopeptidases, is thought to be respon-
sible for the accelerated breakdown of the extracellu-
lar matrix (ECM), an essential event in tumorigenesis. 
Generally, MMPs at the metastastic sites are ex-
pressed at a higher level compared to corresponding 
primary tumors [73]. MMP-9 is expressed in giant cell 
tumor of bone and because normal cells such as fi-
broblasts do not synthesize MMP-9, the production of 
MMP-9 may be important for the migration of cells 
into the blood stream, lymphatic vessels or adjacent 
normal tissues [74]. MMP-13 has been reported to 
accelerate bone remodeling and promotes prolifera-
tion while inhibiting apoptosis in human osteo-
blast-like cells, and its expression is upregulated in 
giant cell tumor of bone [75-77]. Our study observed, 
for the first time, the overexpression of the MMP14 

gene in multinucleated giant cells, stromal cells and 
monocytic cells of GCTB. MMP14 has been detected in 
bone lesions from metastatic prostate cancer, and 
MMP14 immunostaining was detected in 80% of brain 
metastases from lung adenocarcinomas [78]. The data 
support the hypothesis that high levels of MMP14 
might play a role in the aggressiveness of giant cell 
tumor of bone, which has also been suggested for 
breast cancer [79].  

The VIM has shown an association in different 
types of cancer, including prostate cancer, breast 
cancer, gastric cancer and gallbladder cancer [80-83]. 
Studies of the ectopic overexpression of vimentin 
have shown the invasive behavior of epithelial carci-
noma cells, which reveal the association of vimentin 
with tumor invasiveness and motility [84, 85]. One 
previous study found expression of VIM in mononu-
clear cells of GCTB [86]. Our results show that the 
increased expression of vimentin in multinucleated 
giant cells, stromal cells and monocytic cells of GCTB 
is significantly associated with GCTB, and therefore, 
the increased expression of vimentin may act as a new 
indicator of this tumor. Zhao et al. [87] demonstrated 
that vimentin affects prostate cancer cell motility and 
invasion, and vimentin could be a predictive marker 
of tumors that might progress to metastatic disease. 
The MAP2K3 gene is translated into a mito-
gen-activated protein kinase 3 and is involved in the 
signal transduction that controls proliferation and 
programmed cell death [88]. MAP2K3 protein is in-
volved in the Ras-MKK3-p38-signaling cascade, the 
components of which may confer an invasive pheno-
type to the cell [89]. Our study shows that the 
MAP2K3 gene is overexpressed in GCTB compared to 
normal tissue. The data support the hypothesis the 
MAP2K3 protein is implicated in tumor invasion and 
growth [90, 91]. 

The metallopeptidase inhibitor 2 (TIMP2) gene be-
longs to the TIMP family. Its function is to inhibit the 
activity of matrix metallopeptidases [92]. The binding 
of TIMP2 with MT1-MMP stimulates invasion in the 
most aggressive cancers, and TIMP2 expression is 
associated with both tumor recurrence and a poor 
prognosis. Our study shows that the TIMP2 gene is 
overexpressed in GCTB compared to normal tissue. 
Giannopoulos et al. [93] found increased TIMP2 con-
centration in pancreatic cancer cells and this concen-
tration correlates with the degree of lymphatic vessel 
infiltration, which ultimately leads to lymphatic node 
metastases. 

In summary, hypermethylation of the promoter 
region of ADAM23 and CDKN2A occurs in GCTB. The 
silencing of these genes may contribute to tumor 
progression because of a possible relationship be-
tween these genes and the adhesion domains in-
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volved in cell-cell and cell-matrix interactions, which 
can negatively regulate cell growth. The study also 
shows that overexpression of the MAP2K3, MMP14, 
TIMP2 and VIM genes was significantly higher in 
GCTB than in non-neoplastic samples. The expression 
of these genes may be involved in any step of the de-
velopment of GCTB because of their role in the cellu-
lar mechanisms involved in the alteration of cellular 
homeostasis. For the first time, we were able to iden-
tify altered genes in GCTB and provide insight into 
tumor biology. Once these genes have been charac-
terized in GCTB, molecular genetic tools may be used 
to explore the biological processes involved in this 
disease. In addition, our approach may provide rele-
vant information and motivation in the development 
of new therapies for GCTB. Further studies with 
larger cohorts are required to evaluate whether the 
identified genes are associated with any clinicopath-
ologic parameters of GCTB. These findings contribute 
to a better understanding of the tumorigenesis of 
GCTB and may therefore help to improve diagnosis 
and patient outcome.  
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