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Abstract: Protein structure refinement is a crucial step for more accurate protein structure predictions.
Most existing approaches treat it as an energy minimization problem to intuitively improve the
quality of initial models by searching for structures with lower energy. Considering that a single
energy function could not reflect the accurate energy landscape of all the proteins, our previous AIR
1.0 pipeline uses multiple energy functions to realize a multi-objectives particle swarm optimization-
based model refinement. It is expected to provide a general balanced conformation search protocol
guided from different energy evaluations. However, AIR 1.0 solves the multi-objective optimization
problem as a whole, which could not result in good solution diversity and convergence on some
targets. In this study, we report a decomposition-based method AIR 2.0, which is an updated version
of AIR, for protein structure refinement. AIR 2.0 decomposes a multi-objective optimization problem
into a number of subproblems and optimizes them simultaneously using particle swarm optimization
algorithm. The solutions yielded by AIR 2.0 show better convergence and diversity compared to
its previous version, which increases the possibilities of digging out better structure conformations.
The experimental results on CASP13 refinement benchmark targets and blind tests in CASP 14
demonstrate the efficacy of AIR 2.0.

Keywords: protein structure prediction; structure refinement; multi-objective particle swarm opti-
mization; decomposition strategy; AIR

1. Introduction

The functions of a protein are closely related to its 3D structure, and high-resolution
protein structure can increase the understanding of what it does and how it works. In the
past decades, dramatic progress has been made in structure determination using wet-lab
experimental methods, such as X-ray crystallography, nuclear magnetic resonance (NMR)
spectroscopy, and recent electron microscopy techniques [1]. However, these experiments
are still expensive and time-consuming [2]. Many popular automated protein structure
prediction methods play important complementary roles [3–5], such as AlphaFold [6],
trRosetta [7], I-TASSER [8], and MULTICOM [9,10]. Especially in recent years, protein
structure prediction performance has been largely improved due to the advances in both
theoretical and computational studies as demonstrated in recent CASP (Critical Assessment
of protein Structure Prediction) assessment, e.g., coevolution analysis-based investiga-
tion [11–14], powerful deep learning computational techniques [15–17], etc.

Although remarkable results have been achieved in protein structure prediction, the
predicted models still contain inaccurate regions deviating from the native structures [18].
Thus, there have been increasing efforts on improving predicted models via refinement
as a following step. Since the 8th competition of Critical Assessment of protein Structure
Prediction, the protein structure refinement task has been introduced to evaluate the per-
formance of computational methods for structure refinement by given an initial predicted
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model [19–21]. However, it is a challenging task until now, as it is a blind refinement
and on some hard targets, refinement methods degrade their initial models rather than
improve them.

One of the common strategies for protein structure refinement is to implement
the work pipeline through the combination of energy functions and optimization al-
gorithms [22–25]. The energy function is designed to describe a protein’s state that is
near-native or non-native from its view, which will guide the refinement search to its lower
energy state. Considering its importance, a number of molecular mechanics force fields and
knowledge-based energy functions have been proposed, i.e., AMBER [26], CHARMM [27],
OPLS [28], RWplus [29], DFIRE [30], GOAP [31], and Rosetta [32]. However, it is still diffi-
cult to apply a single energy function to exactly describe the states of all proteins due to the
large diversities of the protein structures. Each energy function would have its advantages
and disadvantages on specific targets, which is a potential reason the performance of the
refinement algorithms often varies with the targets in the CASP experiments.

In addition to the energy functions, the optimization algorithms are also crucial in
protein structure refinement, which are designed to search for the lowest-energy structure
conformation. Popular optimization algorithms include Molecular Dynamics (MD) sim-
ulation [33] and Monte Carlo (MC) simulation [34]. It is still very challenging to achieve
consistent refinement over initial models, and one potential reason is that most existing
approaches are conducted based on a single energy function.

Motivated by those observations, we have developed one multi-objective-based re-
finement method called AIR [35] to alleviate the potential bias caused by minimizing only
one energy function. The AIR is a multi-objective particle swarm optimization (PSO)-based
protocol [36], where each structure is treated as a particle. The quality of the particles in
each iteration is evaluated by three energy functions based on dominance relations [37],
and the non-dominated particles are put into a set called Pareto set (PS) [38], which is used
to select the final refined structures.

However, the dominance-based AIR has no direct control over the movement of
each particle in the swarm and no suitable mechanism to maintain the diversity of Pareto
front (PF) [39]. The loss of diversity may deteriorate the advantage of multi-objective
optimization. Moreover, the crucial parameter Gbest in PSO is difficult to choose, since
there are many non-dominated candidates in the PS. Using Pareto dominance alone
would deteriorate the selection pressure toward the PF and slow down the searching
process [40], since the update of another important parameter Pbest only needs to reduce
one energy function.

To solve the above problems, we present a decomposition-based approach AIR 2.0,
which is an updated version of AIR 1.0 to further increase the conformation optimization
capability. In AIR 2.0, each particle is associated with a unique subproblem defined by a
weight vector, which is different from the protocol of AIR 1.0 that solves a multi-objective
optimization problem as a whole. Thus, the diversity is accordingly improved, since each
particle is moving toward PF in its own direction. In addition, the Pbest and Gbest of
each particle have a determined choice according to its own subproblem, helping avoid
oscillation in the searching process. The benchmark tests of CASP13 refinement targets
and blind tests in CASP14 demonstrate the efficacy of the new updated version of AIR
refinement pipeline.

2. Experiments and Results

We have evaluated AIR 2.0 pipeline on the refinement targets of CASP13 and CASP14.
To demonstrate the advantage of AIR 2.0, we compare it with state-of-the-art methods,
including its previous version AIR 1.0 and other state-of-the-art refinement methods in
CASP13 such as FEIGLAB [18], BAKER [24], and Zhang-Refinement [41]. Global distance
test total score (GDT-TS) [42], template modeling score (TM-score) [43], and root mean
square deviation (RMSD) are the metrics for evaluating the effectiveness of AIR 2.0.
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For each target, the number of divisions H in (10) (see Methods) is set to 10 according to

our local tests, resulting in N =

(
H + M− 1

M− 1

)
=

(
10 + 3− 1

3− 1

)
= 66 weight vectors

or subproblems and the same number of particles. M = 3 is the number of objectives.
The single initial model provided by CASP is taken as input, and another 65 models are
generated by applying random perturbations to the initial model. The neighborhood size
T is set to 8 according to [44], and the maximum number of iterations is set to 3000 as
AIR 1.0. We set S = 20,000 in (9) (see Methods) to get a stable result and output the top five
ranked solutions.

2.1. Effectiveness of AIR 2.0 on CASP13

We test AIR 2.0 on the 29 CASP13 refinement targets (two cancelled targets were
excluded), and the results are summarized in Figure 1. We compare the best model and
Model 1 with the initial model. The best model achieves consistent improvements over
the initial model and almost all targets are to a certain degree refined. The average gains
in the quality of the best model are +1.98 in GDT-TS, +0.014 in TM-score, and −0.18 Å in
RMSD. Compared to Model 1, the average improvement in GDT-TS is 1.22, and 82% of
the targets (24 out of 29 targets) are refined. In terms of TM-score and RMSD, the average
improvements are +0.0076 and −0.0752 Å with 72% (21 out of 29 targets) and 69% (20 out
of 29 targets) being refined, respectively.

It is observed that the targets with a medium quality are more likely to be refined
(Figure 2). Specifically, AIR 2.0 improves those targets with the following quality: (1) initial
GDT-TS is between 60 and 80, (2) initial RMSD is between 2 and 5 Å, and (3) initial TM-
score is between 0.65 and 0.8. The potential reason is that high quality models leave a few
spaces to refine, while the relatively bad models might be trapped in a deep local minimum
caused by a rough energy landscape.

2.2. AIR 2.0 Is Superior to AIR 1.0

We compare the updated method AIR 2.0 with our previous AIR 1.0. The CASP13
results of AIR 2.0 and AIR 1.0 are summarized in Table 1. Figure 3 illustrates the GDT-TS
of all targets refined by AIR 2.0 and 1.0 based on the best model and Model 1. The results
indicate that AIR 2.0 achieves better or comparable performance over AIR 1.0. Compared
to AIR 1.0, AIR 2.0 obtains a better quality in 21 out of 29 targets for the best model and 24
of 29 targets for Model 1.

For AIR 1.0, a refinement of hard targets in CASP13 often obtained model degradation
rather than improvement, such as R0949, R0977D2, R0996D4, and R1016. However, AIR 2.0
achieves promising refinement results on these hard targets. The potential reason is due to
the diversity of PS introduced by the decomposition strategy. In the case of R0981D5, the
non-dominance solutions in the final PS of AIR 2.0 and 1.0 are plotted in Figure 4b. We
can see that AIR 2.0 finds more non-dominated solutions than AIR 1.0, and these solutions
are distributed with a high diversity. Moreover, as shown in Figure 4a,c,d, the solutions
obtained by AIR 2.0 completely dominate those obtained by AIR 1.0, indicating a more
convergence toward the true PF. Thus, the overall quality of the solutions obtained by
AIR 2.0 is higher than those of AIR 1.0, which is beneficial for the selection of high quality
Model 1.

Table 1. Overall performance of AIR 1.0 and AIR 2.0 in terms of GDT-TS on 29 refinement targets
from CASP13.

Method Best Model (GDT-TS) Model 1 (GDT-TS)

AIR 1.0 +1.07 +0.16
AIR 2.0 +1.98 +1.22
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Figure 1. Effectiveness of AIR 2.0 on CASP13 measured by GDT-TS, TM-score, and RMSD. The comparison of the best
model refined by AIR 2.0 and the initial model in terms of GDT-TS, TM-score, and RMSD are shown in (a–c), respectively.
The comparison of AIR 2.0 refined Model 1 and the initial model in terms of GDT-TS, TM-score, and RMSD are given in
(d–f) respectively.
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The dominance-based method AIR 1.0 drives the whole population toward the PF
without direct control over the movement of each individual in the population. Thus, AIR
1.0 prefers the regions that are easy to access and does not sufficiently account for the
diversity. As a result, the solutions obtained by AIR 1.0 are only distributed in a small
area. Moreover, due to the lack of stable guidance on Pbest and Gbest (see Methods), the
searching process of each particle would be difficult. However, the decomposition strategy
in AIR 2.0 assigns a single objective optimization subproblem for each particle. In this
way, each particle has an exact update direction or a clear target position in PF, which
results in better diversity and convergence features. This is the potential reason why AIR
2.0 outperforms AIR 1.0 in most targets.

2.3. Comparison with Other State-of-the-Art Refinement Methods

The test data consist of those targets in which each group performs the best on CASP13
in order to highlight the characteristics of each method. The refined models of BAKER,
FEIGLAB, and Zhang are available at the CASP official website. As shown in Table 2, AIR
2.0 yields promising improvement over initial models. For the target R0949, R0979, and
R0989D1, AIR 2.0 is the only method that achieves improvement rather than degradation
over initial models and the GDT-TS gains is 0.59, 3.53, and 0.37, respectively. However, for
the targets such as R0968s1, R0974s1, and R0986s1, the GDT-TS gains obtained by BAKER
or FEIGLAB are larger than AIR 2.0. The potential reason is probably that AIR 2.0 uses
multiple energy functions that constrain each other, resulting in a limited deviation from
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initial models. These results also highlight that the protein structure map is huge, and
it is very hard to achieve a general better refinement algorithm on all proteins. For hard
targets, AIR 2.0 would be reliable, since we extend the one-dimension optimization to a
new three-dimension space optimization, partially alleviating the bias caused by using
only one energy function.
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Table 2. GDT_TS comparison of AIR 2.0 and other refinement methods on CASP13 refinement targets.
The results of BAKER, FEIGLAB, and Zhang come from the CASP official website. The best model
among the four methods is bolded on each target.

Target Initial Model AIR 2.0 BAKER FEIGLAB Zhang

R0949 64.53 65.12 56.01 62.98 64.53
R0957 60.97 64.08 60.32 61.45 61.61

R0968s1 66.74 69.71 78.81 72.25 69.07
R0974s1 84.78 85.96 99.64 97.10 84.06
R0976D2 83.06 84.27 89.11 80.64 83.87

R0979 70.65 74.18 60.60 70.38 70.38
R0986s1 80.16 83.15 90.76 93.21 77.99
R0989D1 50.75 51.12 44.22 50.75 N/A
R0999D3 75.14 76.94 76.11 76.94 74.31
R1002D2 88.14 88.56 89.41 79.24 88.14
R1004D2 78.57 77.60 81.49 93.51 79.22

R1016 81.06 82.11 78.22 81.68 80.45

2.4. Blind Test in CASP14

We also test our method in the recent CASP14 blind test. Overall, our AIR ranks the
ninth among 37 groups in the competition according to SUM Zscore > −2.0 (including
the reference group named STARTING MODEL). There are 51 refinement targets in total,



Int. J. Mol. Sci. 2021, 22, 4408 7 of 17

where two targets were cancelled during the competition and five targets do not have a
native structure for reference. The results of AIR on the remaining 44 targets are sum-
marized in Figure 5 (for more details, please refer to the CASP14 website). The average
gains in the quality of the best model among Model 1–5 are +0.36 in GDT-TS, which is
slightly lower than CASP13. The main reason is that our solution ranking method per-
formed relatively poorly on these targets, and we found locally that a number of better
structures were not selected as the top five submission models. This is also one of our
future efforts to further improve the AIR program. However, there are also some successful
cases. For example, AIR ranks the first on the target R1042v2 among the models submit-
ted by 31 groups (https://predictioncenter.org/casp14/results.cgi?view=tables&target=
R1042v2&model=1&groups_id=, accessed on 21 April 2021). Considering the Model 1
submission models, the AIR approach is the only one that successfully achieves improve-
ment rather than degradation over the initial model. Considering the best submission
models, our predictions for the target R1029 are among the most accurate in all sub-
missions (https://predictioncenter.org/casp14/results.cgi?view=tables&target=R1029&
model=all&groups_id=, accessed on 21 April 2021).

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 8 of 18 
 

 

will go on to find a better mechanism that could guide the search process to achieve sig-
nificant improvement and a new method to accurately score all the candidate solutions. 

 
Figure 5. The overall performance on 44 refinement targets of AIR in CASP14 blind test measured 
by GDT-TS. 

3. Discussion 
3.1. The Importance of the Diversity on AIR 2.0 

In AIR 1.0, we have shown that multi-objective optimization is a promising way to 
improve protein structure refinement. The two goals of the multi-objective optimization 
are: (1) a set of solutions as close as possible to the 𝑃𝐹; (2) a broadly distributed set of 
solutions that cover the entire 𝑃𝐹 [45]. The two goals are also referred to convergence 
and diversity. In the field of protein structure refinement, the diversity of the solutions is 
important. When given a model to be refined, we have no idea which direction or what 
combination of multiple energy functions is feasible for improvement due to the diversity 
of protein structures. In order to improve the initial model, AIR 2.0 tries different direc-
tions to obtain a well-distributed 𝑃𝐹 that covers all potential solutions. As mentioned be-
fore, dominance-based method AIR 1.0 prefers the regions that are easy to access, result-
ing in insufficient diversity, which may lose the solution diversity.  

To give a more intuitive understanding of the conformation solution diversity, Figure 
6 shows a comparison between AIR 1.0 and AIR 2.0 on the target R0949 from CASP13 
whose 𝑃𝐹 is irregular, consisting of at least two parts. The solutions of AIR 1.0 cover only 
one part, and the GDT-TS of the Model 1 is 62.98, which is a degradation of the initial 
model with a GDT-TS of 64.53. However, Model 1 of AIR 2.0 yields a GDT-TS of 65.12 on 
the other part of the 𝑃𝐹, demonstrating improvement over the initial model. Therefore, if 
we do not take the diversity carefully, the possibility of improvement would decrease. 

Figure 5. The overall performance on 44 refinement targets of AIR in CASP14 blind test measured by
GDT-TS.

The success of these two cases indicates the potential advantages of multi-objective
optimization and the PSO algorithm that can efficiently explore the high-dimensional
energy landscape to get a reliable refined model. On the other hand, the performance of
AIR in CASP14 also indicates that there is still room for improvement of our algorithm.
For instance, on the target R1042v2, the improvement is still limited to a moderate level.
For target R1029, our Model 2 submission is better than our Model 1, implying that we
still need to investigate how to rank the final solution. In our AIR’s future development,
we will go on to find a better mechanism that could guide the search process to achieve
significant improvement and a new method to accurately score all the candidate solutions.

3. Discussion
3.1. The Importance of the Diversity on AIR 2.0

In AIR 1.0, we have shown that multi-objective optimization is a promising way to
improve protein structure refinement. The two goals of the multi-objective optimization
are: (1) a set of solutions as close as possible to the PF; (2) a broadly distributed set of
solutions that cover the entire PF [45]. The two goals are also referred to convergence
and diversity. In the field of protein structure refinement, the diversity of the solutions is
important. When given a model to be refined, we have no idea which direction or what
combination of multiple energy functions is feasible for improvement due to the diversity

https://predictioncenter.org/casp14/results.cgi?view=tables&target=R1042v2&model=1&groups_id=
https://predictioncenter.org/casp14/results.cgi?view=tables&target=R1042v2&model=1&groups_id=
https://predictioncenter.org/casp14/results.cgi?view=tables&target=R1029&model=all&groups_id=
https://predictioncenter.org/casp14/results.cgi?view=tables&target=R1029&model=all&groups_id=
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of protein structures. In order to improve the initial model, AIR 2.0 tries different directions
to obtain a well-distributed PF that covers all potential solutions. As mentioned before,
dominance-based method AIR 1.0 prefers the regions that are easy to access, resulting in
insufficient diversity, which may lose the solution diversity.

To give a more intuitive understanding of the conformation solution diversity, Figure 6
shows a comparison between AIR 1.0 and AIR 2.0 on the target R0949 from CASP13 whose
PF is irregular, consisting of at least two parts. The solutions of AIR 1.0 cover only one
part, and the GDT-TS of the Model 1 is 62.98, which is a degradation of the initial model
with a GDT-TS of 64.53. However, Model 1 of AIR 2.0 yields a GDT-TS of 65.12 on the other
part of the PF, demonstrating improvement over the initial model. Therefore, if we do not
take the diversity carefully, the possibility of improvement would decrease.
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Figure 6. Candidate solutions obtained by AIR 2.0 (red) and AIR 1.0 (blue) on the target R0949.
The Pareto front of R0949 is irregular and consists of at least two parts. The solutions of AIR 1.0
covers only one part, and the GDT-TS of its Model 1 marked with a green star is 62.98, which is
a degradation to the initial model with a GDT-TS of 64.53. However, Model 1 of AIR 2.0 marked
with a magenta star yields a GDT-TS of 65.12 on the other part of the Pareto front, demonstrating
improvement over the initial model.

3.2. The Influence of Hyperparameters on AIR 2.0

The neighborhood size T (see Methods) is a major control parameter in AIR 2.0 since
the solutions in the neighborhood of a subproblem can be used to guide the searching
process. In a sense, each subproblem with its neighborhood is regarded as a swarm. To
test the influence of T, we perform some experiments on those targets with different size.
The results are summarized in Table 3. When T = 3, the neighborhood is too small, and
the particles in a swarm are similar, resulting in the inability to explore the new area and
achieve a good result. It should also be noted that AIR 2.0 performs similarly with T
larger than 8. That is because the gbest for each subproblem depends on only a certain
number of neighbors, while others play a small role. Moreover, a large T will increase the
computational burden and might undermine the diversity of solutions. Thus, we set T = 8
to make a tradeoff between the performance and running time.

The penalty value θ (see Methods) in the PBI decomposition approach is another
important parameter [46]. In this study, we adopt an adaptive penalty scheme (APS) [47]
that linearly increases θ with the number of generations from 5 to 20. At the early stage, a
small θ is beneficial for convergence toward PF, and the value of θ is gradually increased
to promote the diversity of solutions. For the number of iterations MaxIt and the number
of particles N, generally, the larger the two numbers are, the better the performance is.
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However, large values of these two parameters will increase the time cost. To make a
tradeoff, we finally set MaxIt = 3000 and N = 66.

Table 3. Comparison of GDT-TS gains on different value of T.

Target Length T = 3 T = 8 T = 15 T = 30

R0974s1 69 −0.27 1.18 0.81 1.24

R1004D2 77 −1.05 −0.97 −0.98 −0.95

R0968s1 118 2.58 2.97 3.18 2.94

R0981D5 127 −0.79 0.59 0.44 0.20

R0959 189 3.30 3.83 3.97 3.74

R0981D3 203 0.49 0.13 0 0.13

4. Methods
4.1. Overview of Refinement Pipeline AIR 2.0

As shown in Figure 7, AIR 2.0 consists of three main steps. The first step is swarm
initialization, which generates multiple particles. If a single initial model is used as the
input, other particle models can be generated by applying perturbations to the initial one.
In total, an initial swarm of N particles is obtained. In the second step, each particle is
associated with a unique weight vector generated by the simplex-lattice design method [48].
Then, the main loop of optimization is performed, where Rosetta, RWplus, and CHARMM
are selected as three fitness functions. Each particle updates the position according to its
own subproblem formulated by the weight vector. In each iteration, the non-dominated
solutions in the whole population are added to the Pareto set. In the third step, all solutions
in the Pareto set are ranked using the expected utility rule [49] and the top five of them are
selected as the final refined structures.
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4.2. Representations of Protein Conformations

Mathematically, protein conformation could be represented by the Cartesian coor-
dinates of the atoms or internal coordinates (bond lengths and angles) [50]. The former
is suitable for describing physical force fields, and the latter is a better representation to
describe bonded interactions as well as certain kinds of experimental information [51]. In
AIR 2.0, we use both coordinate systems.

During the sampling stage, the protein backbone is represented by a list of main-chain
torsion angles using internal coordinates:

C = [φ1, ψ1, ω1, . . . , φL, ψL] (1)

where L stands for the protein length. We further use the Denavit and Hartenberg (DH)
method [52] to convert internal coordinates to corresponding Cartesian coordinates, since
certain energy functions, such as the Rosetta, explicitly encode Cartesian energy terms.
This conversion goes back and forth until the end of the pipeline.

4.3. Multi-Objective Optimization

Similar to its previous version, the AIR 2.0 uses three energy functions to perform
conformation search in a 3D energy space composed by Rosetta, RWplus, and CHARMM.
It is crucial to select accurate force fields for protein structure refinement. There are roughly
two types of force fields in the community. One is physics-based force fields that are
designed on the basis of all kinds of interactions at the atomic and molecular levels. The
other is knowledge-based energy function deduced from diverse sets of known protein
structures. Each type of force field has it its merits and drawbacks. To take advantage of
both types of force fields, we choose one popular physics-based force field CHARMM and
one typical knowledge-based energy function RWplus. Rosetta energy function could be
classified into both types and is widely used in protein structure prediction and refinement
for its good performance. Therefore, we use it as a complementary part for the other
two force fields. This will formulate the protein structure refinement as a multi-objective
optimization (MOP) problem as follows:

minimize F(C) =
(

fRosetta(C), fRW plus(C), fCHARMM(C)
)T

subject to C ∈ Ω
(2)

where C is the conformation of a protein and Ω is the overall conformational space.
fRosetta(C), fRW plus(C), and fCHARMM(C) are three energy values in terms of C.

Due to potential conflicts among multiple objectives, usually, one single solution
(conformation) cannot optimize all objectives simultaneously. Instead, a set of optimal
solutions representing the trade-offs among different objectives could be obtained. A
dominance relation between different solutions is often used to suggest the acceptance of
current conformations.

Let Ci, Cj ∈ Ω; we say that Ci dominates Cj (denoted as Ci < Cj) if and only if
∀k = 1, 2, 3, fk(Ci) ≤ fk

(
Cj
)

and F(Ci) 6= F
(
Cj
)
, where f1, f2, and f3 correspond to

fRosetta(C), fRW plus(C), and fCHARMM(C) respectively. If C∗ ∈ Ω and there is no other
solution in Ω that dominates C∗, then C∗ is considered as a Pareto optimal solution. The
Pareto set (PS) is defined as:

PS = {C ∈ Ω|C is a Pareto optimal solution}. (3)

The energy map of all Pareto optimal solutions in PS is called a Pareto front (PF) [53]
and can be described as:

PF =

{
F(C) =

(
fRosetta(C), fRW plus(C), fCHARMM(C)

)T
∣∣∣∣C ∈ PS

}
. (4)
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The goal of multi-objective optimization is to obtain widely distributed Pareto optimal
solutions that are as close to true PF as possible.

4.4. Decomposition Approach in Multi-Objective Optimization

Our original protocol AIR 1.0 solves the multi-objective optimization based on Pareto
dominance [37]. It mainly evaluates each solution by its Pareto dominance relations to
other solutions and aims to drive the population toward the PF as a whole. However,
the movement of each particle in the population and the distribution of computational
effort over different ranges of the PF can be further investigated. Otherwise, the whole
population would prefer to the regions that are easily accessible and cannot maintain the
diversity of the solutions.

Generally speaking, a Pareto optimal solution for the multi-objective optimization
problem can be seen as the optimal solution of a scalar optimization subproblem whose
objective is an aggregation function of all the individual objectives ( fRosetta, fRW plus,
fCHARMM) [44]. Thus, a multi-objective optimization problem can be decomposed into
a number of optimization subproblems, and each subproblem is distinguished by one
unique weight vector. Then, Pareto solutions could be achieved by minimizing such
subproblems. There exists several methods to construct the aggregation function [54] for
each subproblem with a weight vector, such as weight sum approach [44], Tchebycheff
approach [55], penalty-based boundary intersection (PBI) [44], etc. Here, AIR 2.0 uses
the PBI approach to construct the aggregation function for each subproblem. Formally,
an optimization subproblem in AIR 2.0 can be stated as:

minimize gpbi(C|λi, z∗) = d1 + θd2
subject to C ∈ Ω

(5)

where

d1 =
‖ (F(C)− z∗)Tλi ‖

‖ λ ‖ (6)

d2 =‖ F(C)−
(

z∗ + d1
λi
‖ λi ‖

)
‖ (7)

where C is a candidate solution (conformation) that belongs to overall conformational

space. F(C) =
(

fRosetta(C), fRW plus(C), fCHARMM(C)
)T

consists of three components from

Rosetta, RWplus, and CHARMM. λi =
(
λ1

i , λ2
i , λ3

i
)T is the weight vector of the ith sub-

problem satisfying λ
j
i ≥ 0 and ∑3

j=1 λ
j
i = 1. z∗ =

(
z∗Rosetta, zRW plus, z∗CHARMM

)T
is the

ideal objective vector with z∗k ≤ min
C∈Ω

fk(C), k ∈ {Rosetta, RW plus, CHARMM}, θ is a

user-defined penalty parameter. d1 is the distance between the ideal objective vector z∗

and the solution F(C), d2 is the direction error between λi and F(C). The PBI approach tries
to minimize both d1 and d2, and their relative importance is control by θ.

Figure 8 presents a simple example to illustrate the PBI approach given the weight
vector λi = (0.33, 0.33, 0.33)T . F(C) and z∗ are denoted as two points in the energy map.
The orange plane is PF, and d1, d2 are marked in the figure. It is clear that the intersection
of the weight vector and PF, which is marked by a black point, is the optimal solution of
the subproblem defined by PBI with λi .

Thus, the optimal solution to (5) is a Pareto optimal solution to (2). We use λi to
emphasize that (5) is the ith subproblem defined by a weight vector. In order to obtain a set
of different Pareto optimal solutions, we can use different weight vectors. A natural idea
comes that if we have a large number of uniformly distributed weight vectors, we could
get a set of Pareto optimal solutions that approximates PF very well.
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corresponding point of the candidate solution in the energy space. z∗ is the ideal objective vector.
d1 is the distance between the ideal objective vector z∗ and the solution F(C), d2 is the direction
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4.5. Particle Swarm Optimization

Particle swarm optimization (PSO) [56] is a meta-heuristic algorithm simulating the
behaviors of groups of birds and fishes. It solves a problem by iteratively improving
candidate solutions with the information coming from their population. Each candidate
solution not only has its own exploration behavior, but its trajectory is also affected by
other solutions in the population. In PSO, every individual in the population is called
a particle, and swarm is another name for population. In AIR 2.0, each particle in the
swarm represents a candidate conformation in the overall conformational space. A particle
is characterized by its position and velocity, where the position is the conformation of a
protein represented by (1) and the velocity represents the change of torsion angles. The
particle uses the position of the selected global leader and its own personal movement
trajectory to update the velocity and position values using (8) and (9).

vt+1
i = w ∗ vt

i + c1 ∗ r1 ∗
(

Pbestt
i − Ct

i
)
+ c2 ∗ r2 ∗

(
Gbestt

i − Ct
i
)

(8)

Ct+1
i = Ct

i + vt+1
i (9)

where vt
i is the velocity of the ith particle in the tth generation, Ct

i is the new conformation
of the ith particle in the tth generation, and w is the inertia weight.

According to our previous study [35], we set w to 1.3 at the beginning; it linearly
decreases to 0.7 as the number of iterations increases. c1 and c2 are two learning coefficients
that are both set to be 2 [57]. r1,r2 ∈ [0, 1] are uniformly distributed random variables.
Pbestt

i is the best conformation that the ith particle has ever been until the tth generation.
Similarly, Gbestt

i is the best conformation that the whole swarm has ever met until the
tth generation. Each time the conformation updates, the non-dominated ones are added
into PS.
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For only one objective, each solution can be ranked according to the objective. Thus,
both Pbestt

i and Gbestt
i have a determined choice. However, for multiple objectives, there

are always many non-dominated solutions that are equally good under the concept of the
dominance. Thus, it is difficult to choose Pbestt

i and Gbestt
i to lead the searching process.

In our previous protocol of AIR 1.0, Pbestt
i is updated when any one of the three energy

functions decreases, and Gbestt
i is randomly selected from current PS. This will severely

deteriorate the selection pressure toward the PF and considerably slows down the searching
process due to ambiguous search direction.

4.6. Obtaining Pareto Optimal Set with Multi-Objective Particle Swarm Optimization Based on
Decomposition Strategy

Due to the diversity of protein structures, we use multiple energy functions as multi-
objectives to alleviate the bias problem caused by minimizing one single energy function.
Given a particular protein, which energy function or what combination of these energy
functions is appropriate for a particular protein is still unknown. Each candidate solution
on PF represents a potential optimization direction. Thus, the diversity of solutions on the
PF is of importance for multi-objective optimizations in protein structure refinement. In
order to make good use of three energy functions, we need to find as many Pareto optimal
solutions as possible and maximize the distribution of solutions in the PF. However, using
Pareto dominance alone could discourage the diversity of solutions, since it has no direct
control over the movement of each individual in its population and no good mechanism to
control the distribution of the computational effort over different ranges of the PF. As a
result, the whole population is updated in a random direction and prefers those regions
that are easily accessible. Finally, the solutions will end up in a small range of PF, resulting
in the loss of the diversity.

In order to overcome the above shortcomings, AIR 2.0 uses a decomposition strategy
to define a single objective optimization subproblem for each particle. A Pareto optimal
solution to an MOP could be an optimal solution of a scalar optimization subproblem, in
which the objective is an aggregation of all the objectives in AIR 2.0. In this way, each
particle has an exact updating direction and increasing evolutionary pressure, which is
beneficial to the convergence. In addition, the diversity is inherently guaranteed since each
particle is moving toward PF in its own direction. The general framework is as follows.

At the beginning, a set of weight vectors {λ1, . . . , λN} (N is the number of particles)
are generated using the canonical simplex-lattice design method [48], whose weight vectors
are sampled from a unit simplex.

λi =
(
λ1

i , λ2
i , λ3

i
)

λ
j
i ∈

{
0
H , 1

H , . . . , H
H

}
,

3
∑

j=1
λ

j
i = 1 (10)

where i = 1, . . . , N is the index of uniformly distributed weight vector. λi has three
components corresponding to three energy functions, Rosetta, RWplus, and CAHRMM.
H > 0 is the number of divisions along each objective coordinate. In total, there are

N =

(
H + M− 1

M− 1

)
=

(
H + 3− 1

3− 1

)
different weight vectors for M = 3 objectives.

Then, each particle is associated with a different weight vector, which defines a unique
subproblem. Solving these subproblems is equivalent to solving the original multi-objective
optimization problem.

In AIR 1.0, the velocity and position of a particle are updated using the information
from its individual best Pbestt

i and the global best Gbestt
i . However, it is difficult to select

a suitable one, since multiple objectives result in a large number of equally good non-
dominated solutions. Now with the decomposition strategy, Pbestt

i is obvious for a particle
with a weight vector λi using the aggregation function gPBI(C∣∣λi, z∗

)
. For Gbestt

i , there is a
small difference, since each particle corresponds to a different subproblem. However, if two
weight vectors λi and λj are close enough, the optimal solutions to both two subproblems,
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gPBI(C|λi, z∗) and gPBI(C∣∣λj, z∗
)
, will also be similar. Therefore, the information from the

searching process of λi is useful to λj and vice versa. According to this observation, a
neighborhood of the weight vector λi is defined as a set of weight vectors

{
λi1 , λi2 . . . , λiT

}
that are closest to λi, where T is the size of the neighborhood. Correspondingly, the
neighborhood of the ith particle is composed of those particles whose weight vectors are
in the neighborhood of λi. With the notion of neighborhood, Gbestt

i is defined as the best
position in the neighborhood of the ith particle during t generations. Then, we could use
the particle swarm optimization algorithm to optimize those subproblems simultaneously
and finally obtain a Pareto optimal set. The pseudocode of the main framework for AIR 2.0
is summarized in Algorithm 1.

Algorithm 1 Main Framework of AIR 2.0

Input: Initial model C0, the maximum number of iterations MaxIT, the number of particles N.
Output: Pareto set PS.
/*Initialization*/

1. Generate weight vectors {λ1, . . . , λN} using the simplex lattice method.
2. Create initial population

{
C0

1 , . . . , Ct
N
}

by perturbing C0 and assign weight vectors to each
particle individually.

3. Compute the Euclidean distances between any two weight vectors. For each particle C0
i ,

i = 1, . . . , N, set B(i) = {i1, ..iT}, where λi1 , . . . , λiT are the T closest weight vectors to λi.
4. Initialize ideal objective vector z∗, set the initial velocity randomly, pbest0

i = gbest0
i = C0

i ,
add initial non-dominated particles into PS. /*Main Loop*/

5. while t < MaxIt do:
6. for i = 1, . . . , N do:
7. Update the position of the Ct

i using PSO Formulas (8) and (9).
8. Update z∗

9. if g
(
Ct

i
∣∣λi
)
< g

(
pbestt

i
∣∣λi
)

then
10. pbestt

i = Ct
i

11. end if
12. for each j ∈ B(i) do:

13. if g
(

Ct
i

∣∣∣λj

)
< g

(
gbestt

j

∣∣∣λj

)
then

14. gbestt
j = Ct

i

15. end if
16. end for
17. Remove all the vectors dominated by Ct

i from PS.
18. Add Ct

i into PS if no vectors in PS dominate it.
19. end for
20. end while

4.7. Model Selection

After enough iterations, there are plenty of non-dominated solutions or candidate
models in the PS. To obtain the final refined structures, we need to assess and rank the
generated models. Many methods for estimation of model accuracy have been described
such as MULTICOM_CLUSTER [10], Pcons [58], PRESCO [59], DeepAccNet [60], and
ProQ3D [61]. Here, for a quick ranking purpose, we use a widely used knee-based ranking
method [49] in a multi-objective optimization problem to rank those models. Since the
three energy functions are treated equally, AIR 2.0 has no preference to any regions of
the PF. However, there will be some special solutions called ‘knee’ in the PF. In such
‘knees’ solutions, a small improvement in one objective will cause large depravation in
other objectives. Thus, three objectives reach a balance that all objectives are relatively
optimal and no objective can decrease further without seriously increasing other objectives.
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To obtain these ‘knee’ solutions, we adopt a utility-based method similar to the AIR
1.0, which uses the expected marginal utility to measure the importance of the solutions in
the PS:

UC,w = w1 f1(C) + w2 f2(C) + w3 f3(C))
s.t. w1 + w2 + w3 = 1 and w1, w2, w3 ≥ 0

(11)

where C is the non-dominated solution in the PS and w1, w2, w3 are the weight coefficients.
The expected margin utility is approximated by random sampling of wi. For each confor-
mation, we obtain a large number of utility values

{
Ui

C,w, i = 1, . . . S
}

by using different
combinations of weight coefficients. The expected margin utility could be approximated
by the average of these sample values:

E(UC,w) =
1
S

S

∑
i=1

Ui
C,w. (12)

Then, we can rank the solutions in PS according to individual expected marginal
utility and output the top-ranking solutions.

5. Conclusions and Future Direction

In this study, we developed a decomposition-based method AIR 2.0 for protein struc-
ture refinement. AIR 2.0 employs a decomposition strategy that divides the multi-objective
optimization into a set of subproblems and optimizes them in a collaborative manner. The
performance on CASP 13 refinement targets and a blind test on CASP 14 shows that AIR
2.0 is capable of achieving promising results. In the future, we will further improve the
AIR refinement protocol to use deep learning methods to design new energy functions that
could guide the search process and identify those local structure regions need to be refined.
With this information, we could reduce the searching space largely and make the sampling
process more efficient. Moreover, the new energy function could be used as the final model
selection criterion to rank the models in Pareto set, which may bridge the gap between
Model 1 and the best model.
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