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Abstract

We provide a novel computational framework on how biological and artificial agents can

learn to flexibly couple and decouple neural task modules for cognitive processing. In this

way, they can address the stability-plasticity dilemma. For this purpose, we combine two

prominent computational neuroscience principles, namely Binding by Synchrony and Rein-

forcement Learning. The model learns to synchronize task-relevant modules, while also

learning to desynchronize currently task-irrelevant modules. As a result, old (but currently

task-irrelevant) information is protected from overwriting (stability) while new information

can be learned quickly in currently task-relevant modules (plasticity). We combine learning

to synchronize with task modules that learn via one of several classical learning algorithms

(Rescorla-Wagner, backpropagation, Boltzmann machines). The resulting combined model

is tested on a reversal learning paradigm where it must learn to switch between three differ-

ent task rules. We demonstrate that our combined model has significant computational

advantages over the original network without synchrony, in terms of both stability and plas-

ticity. Importantly, the resulting models’ processing dynamics are also consistent with empir-

ical data and provide empirically testable hypotheses for future MEG/EEG studies.

Author summary

Artificial and biological agents alike face a critical trade-off between being sufficiently

adaptive to acquiring novel information (plasticity) and retaining older information (sta-

bility); this is known as the stability-plasticity dilemma. Previous work on this dilemma

has focused either on computationally efficient solutions for artificial agents or on biologi-

cally plausible frameworks for biological agents. What is lacking is a solution that is both

computationally efficient and empirically testable on biological agents. Therefore, the cur-

rent work proposes a computational framework on the stability-plasticity dilemma that

provides empirically testable hypotheses on both neural and behavioral levels. In this

framework, neural task modules can be flexibly coupled and decoupled depending on the

task at hand. Testing this framework will allow us to gain more insight in how biological

agents deal with the stability-plasticity dilemma.
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Introduction

Humans and other primates are remarkably flexible in adapting to constantly changing envi-

ronments. Additionally, they excel at integrating information in the long run to detect regular-

ities in the environment and generalize across contexts. In contrast, artificial neural networks

(ANN), despite being used as models of the primate brain, experience significant problems in

these respects. In ANNs, extracting regularities requires slow, distributed learning, which does

not allow strong flexibility. Moreover, fast sequential learning of different tasks typically leads

to (catastrophic) forgetting of previous information (for an overview see [1]). Thus, ANNs are

typically unable to find a trade-off between being sufficiently adaptive to novel information

(plasticity) and retaining older information (stability), a problem known as the stability-plas-

ticity dilemma.

In recent years, a wide variety of solutions have been provided for this stability-plasticity

dilemma. These solutions can broadly be divided in two classes. The first class is based on the

fact that catastrophic forgetting does not occur when tasks are intermixed. Thus, one solution

is to keep on mixing old and new information [2–5]. [3] suggested that new information is

temporarily retained in hippocampus. During sleep (and other offline periods), this informa-

tion is gradually intermixed with old information stored in cortex. This framework inspired

subsequent computational and empirical work on cortical-hippocampal interactions [6–8].

The second class of solutions is based on the protection of old information from being over-

written. Protection can occur, first, at the level of synapses. For example, [9] combined a slow

and fast learning system, with slow and fast weights reflecting long- and short-time-scale con-

tingencies, respectively. This allows the network to both extract stable regularities (slow learn-

ing system) and flexibly adapt to fast changes in the environment (fast learning system).

Another recent idea is to let synapses (meta-)learn their own importance for a certain task

[10], [11]. Weights that are very important for some task are not allowed to (and thus pro-

tected from) change. Hence, information encoded in those weights is preserved. Second, pro-

tection can also be implemented at the level of (neural) activation. The most straightforward

approach to implement such protection is to orthogonalize input patterns for the relevant

tasks [12], [13]. Another approach to achieve protection at the level of neural activation, is gat-

ing. This means that only a selected number of network nodes can be activated. Because weight

change depends on co-activation of relevant neurons [14], [15], this approach protects the

weights from changing. For example, [16] proposes that in each of several tasks a (randomly

selected) 80% of nodes is gated out, thus effectively orthogonalizing different contexts. They

showed that synaptic gating allowed a multi-layer network to deal with several computation-

ally demanding tasks without catastrophic forgetting.

Crucially, it remains unknown how biological agents deal with this dilemma. The current

study aims to provide a novel computational framework focused on biological agents that

makes empirically testable predictions at MEG/EEG level. For this purpose, we combine two

prominent principles of computational neuroscience, namely Binding by Synchrony [17–20])

and Reinforcement Learning (RL; [21], [22]). In BBS, neurons are flexibly bound together by

synchronizing them via oscillations. This implements selective gating (e.g., [23]) in which syn-

chronization enhances the communication between neuronal groups (gates are opened) and

desynchronization disrupts the communication between neural groups (gates are closed). In

sum, BBS allows the model to flexibly alter communication efficiency on a fast time scale. By

using RL principles, the model can learn autonomously when neurons need to be (de)

synchronized.

In the modeling framework, BBS binds relevant neural groups, called (neural task) mod-

ules, and unbinds irrelevant modules. This causes both efficient processing and learning
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between synchronized modules; and inefficient processing and absence of learning between

desynchronized modules. The resulting model deals with the stability-plasticity dilemma by

flexibly switching between task-relevant modules and by retaining information in task-irrele-

vant modules. An RL unit [24] uses reward prediction errors to evaluate whether the model is

synchronizing the correct task modules.

In order to test the generalizability of our framework, we apply it to networks containing

modules that learn via three classic synaptic learning algorithms, namely Rescorla-Wagner

(RW; [15], [25]), backpropagation (BP; [26]) and Restricted Boltzmann machines (RBM;

[27]). The RW algorithm [25] is one of the most well-known and basic supervised-learning

algorithms in cognitive neuroscience. Here, on each trial, an error term is computed based on

the discrepancy between a model-generated output pattern and some target output pattern.

Learning consists of using this error term for finding a weight configuration that minimizes

the average error across trials. This algorithm is typically fast and efficient for learning simple

(i.e., linearly separable) input-output associations. Hence, it has no problems with plasticity.

However, while learning one set of input-output associations (set B), the algorithm may

unlearn another, currently irrelevant set of input-output associations (set A). Thus, when set A

becomes relevant again, it will have to relearn it. In sum, the RW algorithm does suffer from a

lack of stability, but due to its high plasticity it might have only minor problems with respect

to the stability-plasticity dilemma, especially when the learning rate is high. In this case, it

might relearn the forgotten information (set A) so fast that also the stability problem is negligi-

ble. Nevertheless, the RW algorithm suffers from some severe limitations on the complexity of

problems that it can solve. It is very efficient in dealing with linearly separable input-output

associations, but cannot deal with more complex, not linearly separable, problems.

This limitation of the RW algorithm is solved in BP [26]. Similar to RW, learning with BP

consists of using the error term for finding a weight configuration that minimizes the average

error across trials. Relative to RW, this algorithm is able to solve a much wider range of prob-

lems. In particular, it can also solve nonlinearly separable problems. It does this by adding hid-

den layers between input and output. For training the weights toward the hidden layers, BP

propagates the error term backwards from output toward the hidden (i.e., deeper) layers in the

network. Crucially, sequential learning of input-output associations poses severe computa-

tional problems on the BP algorithm. Because the number of (interdependent) weights that

should be adjusted to solve a problem is much higher, the algorithm learns much slower.

Hence, if the learning rate is low, new learning can be very slow, causing a lack of plasticity. If

the learning rate is very fast, on the other hand, this problem is mitigated but there is no stabil-

ity in the model. This is because, similar to RW, the learning algorithm will adapt all available

weights and therefore overwrite previous information.

An algorithm that can also learn with hidden layers (and thus solve more complex prob-

lems) is RBM. Despite the algorithmic differences, RBM suffers from the same stability-plastic-

ity dilemma as BP. To further illustrate the generality of our framework, S1 Text show that our

framework can also be applied to networks with modules that learn via RBM. For brevity, the

main text restricts attention to RW and BP.

The full model consists of three units (Fig 1A). The Processing unit contains a network con-

sisting of a number of task-specific modules; the two learning algorithms (RW or BP) are

implemented between modules of the Processing unit. In addition, RL and Control units

together form an hierarchically higher network modeled after basal ganglia/primate prefrontal

cortex [28]. The RL unit (modeling ventral striatum/ anterior medial frontal cortex (aMFC))

evaluates behavior. More specifically, it learns to assign a value to a specific task module (how

much reward it receives by using this module) and compares this value with the externally

received reward to compute prediction errors. Additionally, the RL unit has a Switch neuron
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(see Fig 2A). This Switch neuron computes a weighted sum of negative prediction errors

across trials. When this sum reaches a threshold of .5, it signals the need for a strategy switch

to the Control unit (see Methods for details). This Control unit drives neural synchronization

in the Processing unit. One part of the Control unit (modeling lateral frontal cortex (LFC))

contains task neurons that point to task modules in the Processing unit [29]; another part

(modeling posterior medial frontal cortex (pMFC)) synchronizes task modules based on those

task neurons [30]. Crucially, LFC and pMFC both use prediction error information, but on

different time scales. The pMFC uses prediction errors on a fast time scale to enhance control

over the synchronization process as soon as a negative prediction error occurs. In contrast, the

LFC uses prediction errors on a slow time scale to know when the task rule has changed and a

switch of modules is needed.

In order to drive neural synchronization between task modules in the Processing unit, we

rely on the idea of binding by random bursts [30–32]. Here, applying positively correlated

noise to two oscillating signals reduces their phase difference. In addition to implementing

binding by random bursts, the current work also implements unbinding by random bursts. In

particular, applying negatively correlated bursts increases the phase difference between oscil-

lating signals and thus unbinds (i.e., dephases) the two signals.

We test our model on a (cognitive control) reversal learning task. Here, each hierarchically

lower algorithm (RW or BP; in the Processing unit) sequentially learns different task rules.

The relevant task rule changes across task blocks (Fig 1B). The model must detect when task

rules have changed, and flexibly switch between different rules without forgetting what has

been learned before. We divide the task in six equally long task blocks. In the first three blocks,

the model should learn three different new task rules (rule A, B and C in blocks 1, 2 and 3

Fig 1. Model and task overview. A: General model overview. The model consists of 3 units. A Processing unit

contains a classic neural network that learns the (reversal learning) task. The Control and RL units constitute a

hierarchically higher network. Putative brain areas are shown in italic font. The Control unit drives synchronization of

oscillations in the Processing unit. The RL unit evaluates current behavior in order to signal to the Control unit what

should be synchronized in the Processing unit. B: Reversal learning task. The task alternates between 3 task rules (A, B,

C) across 6 task blocks with task sequence ABCABC. Plasticity is measured during the first 5 trial bins of the first task

block in which a task rule is presented (green bars). Stability is measured as the difference between the last 5 trial bins

of the first task block in which a task rule is presented, and the first 5 trial bins of the second task block in which a task

rule is presented.

https://doi.org/10.1371/journal.pcbi.1006604.g001
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respectively). In the second half, the model has to switch back to the previously learned rules

(rule A, B and C in blocks 4, 5 and 6 respectively; see also Fig 1B).

For the RW network, we use a one-dimensional task. Here, on each trial one out of three

stimulus features is activated. For every task rule we link a stimulus feature to a response

option. More specifically, in task rule A, feature 1 (F1) is associated to response 1 (R1), feature

2 (F2) to response 2 (R2) and feature 3 (F3) response 3 (R3). In task rule B, F1 is associated to

R2, F2 to R3 and F3 to R1. Task rule C associates F1 to R3, F2 to R1 and F3 to R2. For the BP

network, a multi-dimensional task is used. Here, on each trial multiple stimulus features are

activated. More specifically, the task utilizes four dimensions. Every dimension has three fea-

tures. One of the dimensions represents a cue that indicates which out of the other three (stim-

ulus) dimensions is relevant on the current trial. In line with the one-dimensional task, the 3

stimulus features of each dimension are within each task rule linked to one response option.

The one-dimensional task (for RW) consists of 360 trials; the multi-dimensional task (for

BP) consisted of 3600 trials. For comparison, we divided each task sequence in 120 trial bins

for analysis and plotting. Fig 2A illustrates the detailed model for both tasks. We compare our

combined (henceforth, full) models with models that use no synchronization (i.e., only contain

the Processing unit; called no-synchrony models). We evaluate plasticity as the ability to learn

Fig 2. Detailed overview of the model. A: The model. A detailed version of the model in Fig 1A is shown. The model

consists of 3 units. A Processing unit is localized in posterior processing areas and contains a classic neural network.

This network contains 3 layers (of nodes) for the BP model and 2 layers for the RW model. Layer 1 contains nodes that

are activated by external input. At layer 2, modularity is implemented. This layer is divided in 3 task modules, one for

each task the model has to execute. In the BP model, the nodes in these task modules represent hidden nodes; for the

RW model these nodes represent response options. Layer 3 only occurs in the BP model and contains three response

options. The Control unit consists of two parts. Here, the LFC contains 4 task neurons; 3 neurons point to a specific

task module in the Processing unit that should be synchronized or desynchronized. A fourth neuron points to layer 1

and 3, to indicate that task modules should be (de)synchronized with these layers. The pMFC of the Control unit

contains one single node that sends bursts in order to (de)synchronize modules in the Processing unit in line with the

pointers sent by the LFC. The RL unit contains four neurons. One neuron (V) learns to assign a value to the task

modules. Two other neurons (δ—, δ +) compare this value to external reward, in order to compute prediction errors.

Negative prediction errors are accumulated in the Switch neuron in order to make a stay/switch decision, which it

signals to the LFC. Additionally, the negative prediction error neuron signals to the pMFC (by giving bursts) that it

should increase control. B: Neuronal triplet. Every square node in A consists of a triplet of neurons. Each such node

consists of a phase-code pair (E, I) which, because of its excitatory (E)—inhibitory (I) coupling, oscillates at a certain

frequency. These oscillations modulate the excitability of their rate code neuron (x) in line with the BBS hypothesis.

https://doi.org/10.1371/journal.pcbi.1006604.g002
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a new task; and stability as the interference from learning a new task toward performance on

the old task (see Fig 1B and Methods).

Results

Model architecture

Overview. An overview of the model is given in Fig 2A. In line with Fig 1A, a Processing

unit, a Control unit and an RL unit are shown. The Processing unit contains a classic network

with 2 layers (RW) or 3 layers (BP). At the second layer, each module groups all nodes that are

relevant for one task rule.

The Control unit consists of the LFC and pMFC. The LFC holds pointers that indicate

which modules should be (de)synchronized. This synchronization process is then executed by

the binding by random burst principle [30–32]. In the model, a theta-frequency-paced signal

produced in the pMFC is responsible for sending these bursts.

The RL unit (adopted from an earlier RL model [24]) computes an expected reward (value,
V) for the currently used task module. This value is then compared to an external Reward sig-

nal in order to compute prediction errors (δ -, δ +). The negative prediction error signal is then

propagated to both the Switch neuron and to the pMFC. A single negative prediction error

increases the control signal in the pMFC (see Eq (8)). Instead, the Switch neuron evaluates the

prediction error signal on a slower time scale (see Eq (12)). When activation in the Switch neu-

ron reaches a threshold, it signals the need for a switch to the LFC in the Control unit, and

resets its own activation to zero. Correspondingly, the LFC will change the signal to the Pro-

cessing unit, and synchronize another task module (see Methods). We elaborate on this Switch

neuron in the Model dynamics and performance section.

Neuronal triplets. In the Processing unit and the pMFC part of the Control unit, all pro-

cessing happens in oscillatory nodes. As presented in Fig 2B, each oscillatory node contains

one neuronal triplet. Each triplet contains one classical rate code neuron (with activation xi)
which receives, processes and transmits information; and one pair of phase code neurons (Ei,
Ii) which organizes processing in the rate code neurons. In line with previous work [30], excit-

atory neurons are updated by

DEiðtÞ ¼ � C � IiðtÞ � Damp� Jðr > rminÞ�EiðtÞ þ BiðtÞ ð1Þ

where ΔE(t) = E(t + Δt)–E(t); and inhibitory neurons are updated by

DIiðtÞ ¼ þC � EiðtÞ � Damp� Jðr > rminÞ�IiðtÞ ð2Þ

The E and I neurons are thus coupled by a parameter C, causing them to oscillate. The strength

of the coupling (C) determines the frequency of the oscillations, C/(2π) [30], [33]. Task-rele-

vant modules in the Processing unit must be bound together. Previous research has proposed

that such binding is supported by oscillations in the gamma-frequency band (30–70 Hz; [19]).

We therefore chose a value for C corresponding to a frequency of ~40 Hz. In the pMFC, which

executes top-down control, the value of C is such that oscillations are at a 5Hz (theta-) fre-

quency, in line with suggestions of previous empirical work [34], [35]. The variable t refers to

time, and Δt refers to a time step of 2 msec. The radius (r2 = E2+I2) of the oscillations in the

Processing unit are attracted towards the value rmin = 1. This is implemented by the terms

Damp×J(r>rmin)×Ei(t) in Eq (1) and Damp×J(r>rmin)×Ii(t) in Eq (2). Here, J(.) is an indicator

function, returning 1 when the radius is higher than the value of rmin, and 0 otherwise. The

damping parameter, Damp = .3, determines the strength of attraction. Since a constant high

pMFC power is computationally suboptimal and empirically implausible [36], the radius of

the pMFC was attracted towards a smaller radius, rmin = .05. The damping parameter was set
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to Damp = .003, in order to let the amplitude of the pMFC oscillations decay slowly across tri-

als. We elaborate on these parameters in the Results and Discussion section.

Excitatory neurons additionally receive a burst Bi(t). For the nodes in the Processing unit,

these bursts were determined by a combination of the LFC and pMFC signal, multiplied with

standardized-Gaussian noise (U):

BiðtÞ ¼ LFCi � pMFCðtÞ � UðtÞ ð3Þ

As can be observed in Fig 3B, these bursts lead to synchronization between modules (and

hence nodes) that are relevant (which receive the same LFC signal); and desynchronization

between modules (and hence nodes) that are irrelevant (which receive opposite LFC signals).

Note that bursts also introduce noise, hence it is optimal to limit the number of bursts. This is

one of the reasons why the amplitude of the pMFC decays slowly over trials.

The rate code neurons in the Processing unit are updated by

DxiðtÞ ¼ � xiðtÞ þ f ðneti � biasÞ � GðEiðtÞÞ ð4Þ

The term -xi(t) will cause fast decay of activation in absence of input. According to this equa-

tion, the activation of the rate code neuron at every time step is a function of the net input

Fig 3. Neuronal triplets. A: The pMFC. In the pMFC, the phase code neurons oscillate at a 5 Hz frequency. The rate

code neuron of the pMFC gives bursts to the Processing unit. Every time the E-neuron reaches a high amplitude, the

probability of a burst becomes high. B: E-neurons of the Processing unit. In the Processing unit, the phase code

neurons oscillate at a faster gamma-frequency. It is illustrated how a burst leads to (de)synchronization of oscillations

that at first were not (de)synchronized. C: Rate code neurons in the Processing unit. Consequences of synchronization

between the phase code neurons can be observed in the rate code neurons. At first, only the neuron of layer 1 is

activated because it receives a constant external input signal. Importantly, this activation is modulated by G(Ei) in Eq

(4). As a consequence, as long as the E-neurons are not synchronized, communication between the corresponding rate

code neurons is very inefficient; but when the E-neurons are synchronized, communication between the

corresponding rate code neurons is efficient.

https://doi.org/10.1371/journal.pcbi.1006604.g003
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(neti) for that neuron, multiplied by a function of the excitatory phase code neuron [30],

G EiðtÞð Þ ¼
1

1þ eð� 5�ðEiðtÞ� :6ÞÞ
ð5Þ

How this function affects the rate code neurons (x) is illustrated in Fig 3C. In the BP network,

the rate code neurons have a sigmoid activation function f(neti-bias) = 1

1þe� ðneti � biasÞ
. Additionally,

these rate code neurons receive a bias = 5 to set activation to (approximately) zero in absence

of input. In the RW network, the rate code neurons have no bias and follow a linear activation

function; f(neti—bias) = neti.
As described in Eq (3), the synchronizing bursts that are sent to the Processing unit are a

combination of an LFC and a pMFC signal. Here, LFC represents a pointer that takes on a

value of 1 for the module that should be synchronized and -1 for modules that should be

desynchronized. The pMFC-part of the equation corresponds to the rate code neuron of the

pMFC triplet, which follows

pMFCðtÞ � BeðpÞ ð6Þ

This equation represents a Bernoulli process Be(p) which is 1 with probability p. The probabil-

ity

p ¼
1

1þ eð� 10�ðEpMFCðtÞ� 1ÞÞ
ð7Þ

is a sigmoid function which has its greatest value when the EpMFC is near its top and its ampli-

tude is sufficiently strong. Hence, every time the oscillation of the EpMFC-neuron reaches its

top, the probability of a burst becomes high. Thus, bursts are phase-locked to the theta oscilla-

tion (see [30] for more details). An illustration of the processes in the neuronal triplets of both

the pMFC and Processing unit is presented in Fig 3.

The pMFC not only sends burst but also receives bursts. Here, the burst signal received by

the pMFC is determined by the negative prediction error signal of the previous trial,

BpMFC n; tð Þ ¼ d
�

n� 1� � Be e
� ðt� 200Þ2

2�252

� �

ð8Þ

Here, the burst signal at one time point in one trial (n) is determined by the size of the negative

prediction error at the previous (n—1) trial, by a Bernoulli process Be(P(t)) which is 1 with

probability P(t) (and 0 otherwise). The probability P(t) is shaped like a Gaussian distribution

that peaks at 200 ms with a standard deviation of 25 ms, representing a communication delay

between the RL unit and the pMFC. This delay does not necessarily represent the time of a

direct information transfer between the pMFC and δ -, but is rather set to this value in order to

connect with empirical data showing feedback-related EEG-activity at approximately 200 ms

after feedback presentation [37–39]. Hence, when a trial elicited a negative prediction error,

bursts are sent to the excitatory neuron of the pMFC. Consequently, these bursts have the size

of the negative prediction error and are most likely to occur at 200 ms after feedback. This

burst signal will increase the amplitude of the pMFC phase code neurons when a negative pre-

diction occurs, after which it will decay towards rmin.

Model dynamics and performance

In Fig 4A, the accuracy evolution across all task blocks is plotted for both the full and no-syn-

chrony RW model with a slow learning rate, β = .2, for the simple (linearly separable) task. The

full model is marginally slower in learning new task rules. However, when the model needs to
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switch back to a previously learned rule (task blocks 4–6) we observe a minor advantage for

the full model in the first trials, since it does not have to relearn the task.

A very different picture emerges for the complex (nonlinearly separable) task. Fig 4D shows

the accuracy of the full and no-synchrony BP model. During the first task block, the no-syn-

chrony and full model perform similarly. When the task rule switches for the first time (i.e.,

after the first task block), the drop in accuracy is slightly larger for the no-synchrony model

than for the full model. This is caused by the fact that the no-synchrony model has to learn

task rule B with weights that were pushed in a direction opposite to those that are optimal for

task rule A. Instead, the full model switches to another task module and starts learning from a

random weight space. A similar phenomenon occurs after the second rule switch.

For the following task switches, the model has to switch back to rules it already learned

before; it is here that the full potential of the full model emerges. The full model can switch

back to a previous module, where all old information was retained. Instead, the no-synchrony

model has catastrophically forgotten the first task rule and must hence relearn it.

Synchronization of modules. Fig 4B represents the synchronization between the input

layer and different task modules for the RW model. Here, we see that the model performs

quite well in synchronizing task-relevant and in desynchronizing task-irrelevant modules.

Additionally, the model is able to flexibly switch between modules at the correct point in time.

As is illustrated by the broader confidence intervals, the model needs some time to switch back

to a previously used module. Nevertheless, in general it does succeed in finding the correct

Fig 4. Model data. Model dynamics are shown for simulations with a learning rate of .2. In column 1 (panels A and D) binned accuracy is shown

for the full (in blue) and no-synchrony (in orange) model. The horizontal dashed black line indicates accuracy at chance level. In column 2 (panels

B and E), brown lines represent synchronization values for the initially (randomly) chosen task module, magenta lines for the module that was

chosen secondly, and green lines for the third module. In column 3 (panels C and F), activity of the Switch neuron (see Fig 2A) is shown for one

selected simulation of the model (in black). Blue horizontal dashed lines indicate the threshold of the Switch neuron and the yellow arrows mark

data points above the threshold. In all panels, red vertical transparent lines indicate task switches and shades indicate 95% confidence intervals.

https://doi.org/10.1371/journal.pcbi.1006604.g004
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task module. A similar pattern is observed in Fig 4E, where the synchronization of the BP

model is shown.

The switch neuron. Fig 4C shows activation in the Switch neuron for the RW model. Here,

two crucial observations can be made. First, when the model has to learn a task for the first time

there is more activity in the Switch neuron. This reflects the learning process where many (nega-

tive prediction) errors occur. When the network has learned the task, activity in the Switch neu-

ron decays towards zero because less errors are made. Hence, the fact that there is almost no

activity in the Switch neuron when the model performs an already learned task, also demon-

strates the stability of the model. Second, the Switch threshold of .5 is only reached during the

first trials after a rule switch. This is because at this moment, many large prediction errors occur

and accumulate. Once the Switch threshold is reached, activity in the Switch neuron decays

towards zero. A similar process can be observed in Fig 4F where data for the BP model is shown.

Parameter exploration. Parameters in the current model were mainly set based on previ-

ous work [19], [30], [34–36]. We performed an additional simulation (see Methods for details)

in which we explored the importance of the frequencies in the Processing unit and pMFC, and

the decaying amplitude in pMFC. Results are shown in Fig 5. We observe that accuracy dra-

matically declines when the Controller frequency, determined by the C parameter in Eqs (1)

and (2) for the pMFC, is too fast. Additionally, the model performs best when the Damp
parameter is high and the rmin parameter is low (again, see Eqs (1) and (2)). Note that this does

not mean that pMFC amplitude is always low because it still receives bursts (Eq (8)) when it

makes errors. Nevertheless, performance is optimal when pMFC amplitude decays fast. The

reason for this is the fact that bursts introduce noise to the system (see also Fig 3C). Therefore,

the model performs better when the oscillation driving the bursts is slower and less strong, so

that fewer bursts are given. We elaborate on these results in the Discussion.

The stability-plasticity dilemma

Fig 6 shows the overall accuracy, stability and plasticity of our full model and of the no-syn-

chrony model for the two task structures discussed in the previous section (1- and 3-dimen-

sional tasks). In order to gain more insight in how the model performance is affected by task

complexity, we also show overall results for the BP model on a 2-dimensional task. Thus, we

show results for tasks of increasing complexity, namely for 1 dimension (RW model), 2 dimen-

sions (BP model) and 3 dimensions (BP model). Results of the RBM model are discussed in S1

Text.

RW. Fig 6A–6C shows similar overall accuracy for the full and no-synchrony RW models.

When synaptic learning rates are slow (β = .1-.3), the full model has a better stability than the

no-synchrony model. However, this advantage disappears for higher learning rates and the

no-synchrony model shows a higher plasticity than the full RW model. In sum, when the task

is very easy and the learning rate is very high, synchronization is not required.

BP. Fig 6D–6I show a clear advantage for the full relative to the no-synchrony BP model

in overall accuracy as well as plasticity and stability. This advantage was present across all

learning rates and for both tasks (i.e., with 2 and 3 dimensions). This advantage appears

because the synchronization supports modularity, thus protecting information from being

overwritten.

Connecting to empirical data

As a model of how the brain controls its own processing, we next aimed at describing the rela-

tion between our model and previous empirical data, and provide testable hypotheses for

future empirical work.
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Theta power. As described before, theta power in the pMFC gradually decayed during the

task. However, when a negative prediction error occurred, the pMFC network node received a

burst (from δ -; see Eq (8)), which increased pMFC amplitude again. In order to illustrate this

process, we performed time-frequency decomposition of the signal produced by the pMFC

node. More specifically, we were interested in theta power after feedback. We computed the

contrast of power in the inter-trial interval after error and after correct trials in the time-fre-

quency domain (see Methods for details). In accordance with previous empirical work (e.g.,

[35], [37], [39]), we observe increasing theta power, starting 200 ms after negative feedback,

both for the RW (Fig 7A) and BP (Fig 7C) model.

Phase-amplitude coupling. Fig 7B and 7D illustrate the coupling between the phase of

theta oscillations in the pMFC and gamma amplitude in the Processing unit. Again consistent

with empirical data [34], [40], these plots show a clear increase in phase-amplitude coupling

after a task rule switch. This is mainly caused by the fact that there are many negative predic-

tion errors in these trials. These prediction errors increase theta power in the pMFC, which in

turn increases the number of bursts received by the gamma oscillations in the Processing unit.

This combination of events results in an increase of theta-gamma phase-amplitude coupling

(PAC). Once performance of the model improves, less (negative prediction) errors occur.

Hence, theta power slowly decreases, which decreases bursts to the processing unit and thus

also PAC.

Discussion

We described a computationally efficient and empirically testable framework on how biologi-

cal and artificial agents may deal with the stability-plasticity dilemma. We combined two

Fig 5. Parameter exploration. The first row (A-B) shows results for the combination of the Controller frequency and

the Processing frequency. The second row (C-D) shows results for the combination of theDamp and rmin parameters.

In the first column we show results where the other two parameters where kept constant at the original values that we

used for other simulations (i.e., we slice parameter space in these two parameters). In the second row, results are shown

where we average over all values used for the remaining parameters. Colors indicate mean accuracy over the whole

task. The white dashed lines indicate the original parameter values.

https://doi.org/10.1371/journal.pcbi.1006604.g005
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neurocomputational frameworks, BBS [17–19] and RL [21]. BBS flexibly (un)binds (ir)relevant

neural modules; RL autonomously discovers when modules need to be (un)bound. Thus, the

model could flexibly switch between different tasks (plasticity) without catastrophically for-

getting older information (stability). We demonstrated that the model was consistent with sev-

eral behavioral and electrophysiological (e.g., MEG/EEG) data. In the remainder, we first

summarize the main model components, and point to plausible neural origins of each. Second,

we discuss specific empirical predictions that are made by the model. Third, we discuss limita-

tions and possible extensions. As a fourth and last point, we describe how the current work

relates to previous computational modelling work.

Plausible neural origins for all three model units are summarized in Fig 8. The Processing

unit contains a task-processing network, trained by a classical learning rule (RW, BP, or

RBM). Anatomically, its nodes can be localized in several posterior (neo-)cortical processing

areas, depending on the task at hand (e.g., fusiform face area in a face-processing task). Its

activity is strongly stimulus-dependent and synaptic strengths change slowly. The RL unit

learns to attach value to specific task modules, based on prediction errors. Previous work with

fMRI [24], [41] already used a probabilistic reversal learning paradigm to localize the brain

areas involved in such value learning. This work localized the RL unit in MFC, which (with

brainstem and striatum) is generally considered as an RL circuit [24], [42], [43]. Importantly,

computations in this unit are not used for driving task-related actions, but for driving hierar-

chically-higher actions, namely to (de)synchronize task modules. This is in line with recent

considerations of MFC as a meta-learner [44–47]. We tentatively call this unit aMFC, given

this region’s prominent anatomical connectivity to autonomous regions [48]. There was also a

Fig 6. Performance of models on reversal learning task. Overall accuracy (A, D, G), plasticity (B, E, H) and stability (C, F, I) is shown across all

learning rates for three tasks of increasing complexity (see Methods for details). Blue lines show means for the full model and orange lines represent

the mean values for the no-synchrony models. The shades indicate the corresponding 95% confidence intervals. The horizontal black dashed line in

A and D indicates chance level accuracy.

https://doi.org/10.1371/journal.pcbi.1006604.g006
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Switch neuron in our model. Previous work on stay/switch decisions has proposed they origi-

nate from frontopolar cortex [49]. Hence, processes in the RL unit might be best explained by

a neural circuit between brainstem, aMFC and frontopolar cortex.

The Control unit was adopted from [30]. Its first part contains units that point to specific

posterior processing areas, indicating which neurons should be (un)bound. Thus, this area

stores the task demands. We labeled this part LFC, given the prominent role of LFC in this

regard [50], [51]. The second part of the Control unit sends random bursts to posterior pro-

cessing areas to synchronize currently active areas. Given the prominent anatomical connec-

tivity of pMFC to motor control and several posterior processing areas [48], we tentatively

label this part pMFC. The efficiency of this controlling process is largely determined by pMFC

theta power: More power leads to more and longer bursts [30]. This is consistent with empiri-

cal work linking high MFC theta power to efficient cognitive control [34], [35]. Power in the

model pMFC is itself modulated by the occurrence of negative prediction errors. More specifi-

cally, when a negative prediction error occurs, the pMFC node will receive bursts, which will

increase pMFC theta power. In absence of negative prediction errors, this theta power will

slowly decrease across trials. This is consistent with the idea that a constant high MFC power

might be computationally suboptimal and empirically implausible. For instance, MFC projects

to locus coeruleus (LC;[52]); LC firing is thought to be cognitively costly, perhaps because it

leads to waste product in the cortex that needs to be disposed [36]. In sum, in the Control unit,

LFC and pMFC jointly align neural synchronization in modules of the Processing unit to meet

current task demands [53], [54]. The LFC indicates which modules should be (de)synchro-

nized, and the pMFC exerts control over the oscillations in the Processing unit by (de)synchro-

nizing them via random bursts.

Crucially, both parts of the Control unit use prediction errors, but at a different time scale.

More specifically, the pMFC uses an evaluation of the last prediction error to evaluate the

Fig 7. Connecting to empirical data. A, C: Contrast of error–correct trials is shown for post-feedback pMFC power in

time-frequency spectrum. B, D: phase-amplitude coupling between pMFC theta-phase and gamma-amplitude in the

Processing unit is shown. White vertical dashed lines indicate the moment of reward feedback. Red vertical

transparent lines indicate task switches. Shades illustrate 95% confidence intervals.

https://doi.org/10.1371/journal.pcbi.1006604.g007

Learning to synchronize

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006604 August 20, 2019 13 / 25

https://doi.org/10.1371/journal.pcbi.1006604.g007
https://doi.org/10.1371/journal.pcbi.1006604


amount of control that should be exerted (fast time scale). Hence, when an error occurs, the

model will initially exert more control on the currently used task module/strategy. The LFC on

the other hand, is guided by processes in the Switch neuron of the RL unit which evaluates pre-

diction errors on a slow time scale by integrating them over multiple trials, in order to decide

between staying with the current task module or switching to another. Therefore, if negative

prediction errors keep on occurring after the model increased control, it will switch modules/

strategies.

Experimental predictions

Importantly, our model makes several predictions for empirical data. First, it predicts signifi-

cant changes in the phase coupling between different posterior neo-cortical brain areas after a

task switch. Here, we suggest that desynchronization may be important to disengage from the

current task. Consistently, [55] found that strong desynchronization marked the period from

the moment of disambiguation of ambiguous stimuli to motor responses. Additionally, Par-

kinson disease patients, often characterized by extreme cognitive rigidity, show abnormally

synchronized oscillatory activity [56]. Thus, we suggest that neural synchronization between

task-relevant brain areas is crucial for implementing task rules. Additionally, desynchroniza-

tion is necessary for disengaging from a task.

Second, we explored midfrontal theta-activation in the time-frequency domain by wavelet

convolution. These analyses showed an increase of theta power after an error. This was caused

by bursts that were sent from the RL unit as described in Eq (8). Hence, the model predicts an

Fig 8. Suggestion of neural origins of three model units. The Processing unit (in blue) is situated at posterior cortical

sites. In the case of a task in which stimuli are visually presented, and responses are hand movements, the Processing

unit would consist of visual cortex and pre-motor (and intermediate) areas. The RL unit (in red) could be localized in

aMFC (in combination with brainstem and frontopolar cortex (not depicted). The Control unit (in grey) consists of

LFC and pMFC.

https://doi.org/10.1371/journal.pcbi.1006604.g008
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increase of theta amplitude in the MFC after negative prediction errors in tasks where these

prediction errors signal the need for increased cognitive control [34], [35], [37].

Third, we connected the model to research demonstrating theta/gamma interactions where

faster gamma frequencies, which implement bottom-up processes, are typically embedded in,

and modulated by, slower theta-oscillations, in order to implement top-down processes [40],

[57–59]. For this purpose, we considered coupling between pMFC theta phase and gamma

amplitude in the Processing unit. Our model predicts a strong PAC increase in the first trial(s)

after a task switch, which decays slowly after the switch. This reflects the binding by random

bursts control process which is increased after task switches, and decays once a task rule is suf-

ficiently implemented. Hence, the model predicts a strong coupling between frontal theta

phase and posterior gamma amplitude when new task rules need to be implemented.

Limitations and extensions

The model contained several limitations, and consequently also possibilities for future exten-

sions. First, the RL unit currently learns to assign a value to some task module. It can deter-

mine when a task switch occurred, and then make a binary switch assessment; to switch or not

to switch to another task module. Thus, when the model realizes that the current task module/

strategy is incompatible with the current task/environment, it has to change its behavior. It

will attempt random strategies until an appropriate one is found. Learning when to switch can

be considered as a type of meta-learning. However, the full model would benefit significantly

from more advanced meta-learning mechanisms. Future work will address this issue by adding

second level (contextual) features which allow the LFC to (learn to) infer which of multiple

task modules should be synchronized. One useful application of such second level features

would be task set clustering, which allows to generalize quickly over multiple contexts. Specifi-

cally, if a novel second-level feature becomes connected to an earlier learned task set (in LFC),

all the task-specific mappings of this task set would immediately generalize to the novel sec-

ond-level feature. This is consistent with immediate generalization seen in humans [60–62].

Second, several parameters of the model were fixed, but might more generally be controlla-

ble (learnable) as well. For example, the time scale of the Switch neuron is controllable by the σ
parameter in Eq (12). In a very stable environment, a low σ is adaptive, which slows down the

time scale, decreasing the weight of more recent prediction errors. Instead, if the environment

is unstable, a less conservative strategy is in order (high σ), in which case the model accumu-

lates evidence across less trials in order to make a switch decision. Earlier models already

described how switching between hypotheses could depend on environmental stability and

noise [63]; such manipulation (here, of parameter σ) might be usefully implemented in future

developments of the current model too.

Third, although using negative prediction errors to modulate the control amplitude of the

pMFC is efficient in the current context, this might not be ideal in more complex environ-

ments. Thus, another future challenge is broadening the control signal (i.e., beyond negative

prediction errors) that the model uses to optimally adapt to the environment’s reward and cost

structure [45].

Fourth, the node architecture of neuronal triplets is an oversimplification of how oscilla-

tions are produced in the human brain. Several neural models propose that interacting excit-

atory (E) cells and inhibitory (I) cells generate oscillations [33], [64]. These oscillatory neurons

are grouped with stimulus-driven neurons in cortical columns; oscillatory neurons modulate

the activation of the stimulus-driven neurons [65]. In the current model, these assumptions

are implemented in the simplest way, namely where each column consists of just three neurons

(E, I, and x), and the oscillatory activity modulates the stimulus-driven activity. Furthermore,
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our implementation of processing within a neuronal triplet is perhaps biologically implausible,

in the sense that the neuron that processes stimuli (x) is distinct from the neurons that gener-

ate the oscillations (E, I) which do not process any stimulus information. Future work will

determine whether the current approach can be scaled to more biologically plausible

architectures.

Fifth, the model ignored some aspects of oscillatory dynamics. For instance, our model

only implements neural synchronization between Processing unit neurons with the same

(gamma-band) frequencies. This scenario might be unrealistic in a typically noisy human

brain. However, the problem of noise can be efficiently solved by employing rhythmic bursts,

such as the theta-frequency we implemented here. Specifically, one-shot synchronizing bursts

would cause oscillations with (slightly) different (gamma-band) frequencies to gradually drift

apart after the burst. With rhythmically paced bursts, the gamma oscillations have no time to

drift apart since the next burst occurs before the drift becomes substantial. In line with this

idea, previous work has demonstrated how the model can deal with gamma frequency differ-

ences of at least around 2% [30]. Moreover, one might wonder if it would be optimal to send

bursts at a frequency much faster than theta, thus providing no opportunity for noisy oscilla-

tions to drift apart. However, the current work showed that accuracy of the model dramatically

declines if the pMFC sends bursts at a faster frequency than theta. The reason is that bursts

given by the pMFC to the Processing unit introduce noise to the system. This can be clearly

observed in Fig 3C, in which there are short periods of irrelevant neuronal activation during

the bursts. Hence, an optimal agent would want to limit the bursts as much as possible. Since

these bursts are phase locked to the pMFC oscillation and rely on its amplitude, the model per-

forms best with slower pMFC frequencies that are rapidly attracted (high Damp) towards a

small amplitude (low rmin). Again, the oscillations in the Processing unit of the current model

all have the exact same frequency. When Processing unit activations do not have the same fre-

quency, we thus conjecture that there is an optimal, intermediate (theta) bursting frequency,

depending on the Processing unit (gamma) frequency. Future work should explore such an

optimal balance between a Controller/ bursting (theta) frequency and a Processing (gamma)

frequency in more noisy systems. Another aspect of oscillatory dynamics we ignored is that

BBS may be more biologically plausible, and more efficient, with small inter-areal delays [66].

Future work will consider an additional (meta-) learning mechanism that learns to synchro-

nize nodes with an optimal phase delay between task modules.

Related work

The current work relies heavily on previous modeling work of cognitive control processes. For

instance, in the current model the LFC functions as a holder of task sets which bias lower-level

processing pathways [29], [67]. It does this in cooperation with the MFC. Here, the aMFC

determines when to switch between lower-level task modules. Additionally, also the amount of

control/ effort that is exerted in the model is determined by the RL processes in the aMFC[44–

46]. More specifically, negative prediction errors will determine the amount of control that is

needed by strongly increasing the pMFC signal [42]. This is consistent with earlier work pro-

posing a key role of MFC in effort allocation [44], [45], [68].

In the current model, the MFC, together with the LFC, functions as a hierarchically higher

network that uses RL to estimate its own task-solving proficiency. Based on its estimate of the

value of a module, and the reward that accumulates across trials, it evaluates whether the cur-

rent task strategy is suited for the current environment. Based on this evaluation, it will decide

to stay with the current strategy or switch to another. More specifically, the value learned by

the RL unit acts as measure of confidence that the model has in its own accuracy. The model
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uses this measure of confidence to adjust future behavior, a process that has been labeled as

meta-cognition [69], [70].This is in line with previous modeling work that described the pre-

frontal cortex as a reinforcement meta-learner [43], [46–48].

One problem we addressed in this work was the stability-plasticity dilemma. As we

described before, previous work on this dilemma can broadly be divided in two classes of solu-

tions. The first class is based on mixing old and new information [2–5]. The second class is

based on protection of old information. Our solution also exploited the principle of protection.

Future work must develop biologically plausible implementations of the mixing principle too,

and investigate to what extent mixing and protection scale up to larger problems.

Summary

We provided a computationally efficient and empirically testable framework on how the pri-

mate brain can address the tradeoff between being sufficiently adaptive to novel information,

while retaining valuable earlier regularities (stability-plasticity dilemma). We demonstrated

how this problem can be solved by adding fast BBS and RL on top of a classic slow synaptic

learning network. RL is used to synchronize task-relevant and desynchronize task-irrelevant

modules. This allows high plasticity in task-relevant modules while retaining stability in task-

irrelevant modules. Furthermore, we connected the model with empirical findings and pro-

vided predictions for future empirical work.

Methods

The models

As mentioned before and is shown in Fig 1A, our model consists of three units. First, the Pro-

cessing unit includes the task-related neural network, which is trained with a classical learning

rule (RW, BP or RBM). On top of this classical network, an extra hierarchical layer is added

consisting of two units [28]. The RL unit, adopted from the RVPM [24], evaluates whether the

Processing unit is synchronizing the correct task modules. This evaluation is used by the Con-

trol unit [30] to drive neural synchronization in the Processing unit. Thus, this hierarchically

higher network allows the models to implement BBS in an unsupervised manner.

The processing unit. An important feature of the current model is that all nodes in the

Processing unit consist of triplets of neurons (Fig 2B), as in [30]. The mechanisms of these

nodes are illustrated in the Results section and described by Eqs (1)–(8). Importantly, all

weights (W) in the Processing unit are subject to learning. Here, learning is done according to

one of the three classic learning rules; RW, BP or RBM [25–27]. A new learning step was exe-

cuted at the end of every trial. Because activation in the rate code neurons is modulated by G
(Ei) (see Eq (5)), the activation patterns xi also oscillate (see Fig 3C). For simplicity, we use

their maximum activation across one trial as input for the learning rules, Xi = max(xi). Impor-

tantly, the standard formulation of the Rescorla-Wagner rule does not combine well with the

full model because, in this combination also non-active units would be able learn. To remedy

this, a small adjustment was made to the learning rule [25] for the full model. Specifically, we

added one term to the classic rule in order to only make co-activated neurons eligible for

learning, resulting in

DWio ¼ b� ðTarget � XoÞ � Xi � Xo ð9Þ

in which β is the learning rate parameter. Importantly, this adjustment of the learning rule also

results in a plasticity cost. More specifically, plasticity decreases because the added term (XO)

represents the activation of the output unit, which is typically lower than 1 and hence slows
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down learning. Because the no-synchrony model obtains no advantage of this adjusted learn-

ing rule and we aimed to give the classic model the best chances for competing with the full

model, we only used the adjusted learning rule (Eq (9)) for the full model.

For the RW and BP networks, a trial ended after 500 time steps (1 sec). Here, the first 250

time steps (500 msec) were simulated as an inter-trial interval in which the Rate code neurons

(x) did not receive input. In the next 250 time steps, input was presented to the networks. The

RBM network also started a trial with 250 time steps without stimulation of the Rate code neu-

rons. After this inter-trial interval the network employs iterations of bidirectional information

flow to estimate the necessary synaptic change [27]. We used 5 iterations. Every iteration step

(2 in one iteration; one step for each direction of information flow) lasted for 250 time steps.

The RBM algorithm also employs stochastic binarization of activation levels at each iteration

step. Also here, we used the maximum activation over all time steps (Xi) to extract a binary

input for that neuron in the next iteration step.

As mentioned in the main text, we compare our new (full) models to models that only use

synaptic learning and hence do not use synchronization (no-synchrony models). Thus, those

no-synchrony models only have a Processing unit. Here, all used equations and parameters are

the same as described above, except for the no-synchrony RW model where we use the classic

learning rule instead of the one described in Eq (9). The only difference is that they do not

have phase code neurons and by consequence, G(Ei(t)) = 1 in Eq (5).

The RL unit. As RL unit, we implemented the Reward Value Prediction Model (RVPM;

9). Here, there is one expected reward neuron, V, which holds an estimation of the reward the

model will receive given the task module it used. This estimation is made by

V ¼ ZT � ðLFC þ 1Þ=2 ð10Þ

In this equation, Z is a (column) vector representing the synaptic connections from LFC neu-

rons to the V neuron as presented in Fig 2A. This vector holds information about the value of

specific task modules. Superscript T indicates that we transposed the Z vector. The LFC-term

is a vector of LFC values representing which task module drove network behavior on the cur-

rent trial. These values are normalized, controlling for the fact that LFC neurons can take on

negative values. Hence, V will represent the expected value of the task module that is synchro-

nized by the LFC represented in the Z vector. These weights are updated by the RVPM learn-

ing rule [24],

DQi ¼ a� Vn � ðLFCi þ 1Þ=2� ðd
þ
� d

�
Þ ð11Þ

which is a reinforcement-modulated Hebbian learning rule from the broader class of RL algo-

rithms. Here, n represents the current trial. The learning rate, α, is set to .01 for the BP and

RBM models and to .1 for the RW model. All neurons in the RL unit, are rate code neurons

which have no time index because they only take one value per trial.

Two prediction error neurons in the RL unit compare the estimated reward (V) with the

actual received reward. This leads to a negative prediction error δ—> 0 if the reward is smaller

than predicted, δ + > 0 if the reward is larger than predicted, and δ—= δ + = 0 if the prediction

matches the actual reward (see [24] for more details). In the current model, the Switch neuron

will accumulate this prediction error signal in order to evaluate whether the task rule has

changed or not. For this purpose, it follows,

Snþ1 ¼ s� Sn þ ð1 � sÞ � d
�

n ð12Þ

Here, the value of σ is set to .8 for the multi-layer models and .5 for the RW model. When acti-

vation in this neuron reaches a threshold of .5, it signals the need for a switch to the LFC in the
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Control unit and resets its own activation to zero. In the equation, n refers to the trial number.

Hence, a sequence of big negative prediction errors will cause activation in the Switch neuron

to reach the threshold.

The control unit. As in previous work [30], the Control unit consists of two parts, corre-

sponding to posterior medial (pMFC) and lateral (LFC) parts of the primate prefrontal cortex.

The modelled pMFC represents one node (Fig 2) consisting of one phase code pair (EpMFC,

IpMFC) and a rate code neuron (pMFC). The specifics of this pMFC node are described in the

Results section and illustrated in Fig 3A.

In general, the model implements a “win stay, lose shift” strategy, shifting attention in LFC

when reward appears less than expected. As shown in Fig 2A, the LFC consists of four rate

code neurons that each have a pointer to one (or two) of the different modules in the Process-

ing unit. Three of these LFC neurons are each connected to one of the three task modules in

layer 2. For these LFC neurons, at trial n = 1 a random choice is made where one neuron is set

to 1 and the others to -1. These activations remain until activation in the Switch neuron, S,

reaches the threshold. At this point, a new choice is made where one LFC neuron is set to 1

and all others are set to -1. This choice is based on a softmax decision rule,

Selection probabilityi ¼
eðQiþInhiÞ
P

je
ðQjþInhjÞ

ð13Þ

Here, Qi is the value associated with that LFC neuron/ task module and Inhi is an inhibition

signal. At the moment the switch threshold is reached, Inhi is set to -2 for the currently syn-

chronized module. This value decays by 10% on every trial afterwards. This inhibition is

implemented to avoid that the model would constantly switch between two modules. Because

non-chosen LFC neurons are set to -1, the network always synchronizes one task module with

layer 1 for the RW model and with layers 1 and 3 for the BP and RBM models, and desynchro-

nizes the other task modules. When it realizes that the task rule has switched, it will select a

new task module. For this selection it will prioritize task modules that have a high value

assigned to it (encoded in Qi), except when this task module was presented recently; in that

case, the task module is inhibited (Inhi). The remaining LFC neuron is connected (constant

value of 1) to the other layers (1 and 3) of the network that must be synchronized.

The task

We test our model on a reversal learning task [71], [72]. We divide the task in six equally long

task blocks. In the first three blocks, the model should learn three different new task rules (rule

A, B and C in blocks 1, 2 and 3 respectively). In the second half, the model has to switch back

to the previously learned rules (rule A, B and C in blocks 4, 5 and 6 respectively).

For the RW network, we use a one-dimensional task. This task consisted of 360 trials. Here,

on each trial one out of three stimulus features is activated. For every task rule we link a stimu-

lus-feature to a response option. More specifically, in task rule A, feature 1 (F1) is associated to

response (R1), feature 2 (F2) to response 2 (R2) and feature 3 (F3) response 3 (R3). In task rule

B, F1 is associated to R2, F2 to R3 and F3 to R1. Task rule C associates F1 to R3, F2 to R1 and

F3 to R2. All stimuli are presented equally often in random order.

For the BP and RBM networks, a multi-dimensional task is used consisting of 3600 trials.

In order to gain insight in how the complexity of the task affects our model, we implemented a

task with two stimulus dimensions (two-dimensional task) and one with three stimulus

dimensions (three-dimensional task). For the RBM model, we only implemented the three-

dimensional task. Every stimulus dimension has three features. In total, a task consists of N + 1

dimensions, in which N is the number of stimulus dimensions and the extra dimension is a
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cue dimension (with N features), indicating which of the N stimulus dimensions is relevant on

the current trial. On each trial one feature of every dimension is activated. In line with the

one-dimensional task, the N = 3 task features of the stimulus dimensions are, within each task

rule, linked to one response option. Again, in each block, each possible stimulus is presented

equally often, in a random order.

Simulations

To test the generality of our findings, we varied the synaptic learning rate. This parameter was

varied from 0 to 1 in 11 steps of .1. For each value, we performed 10 replications of the simula-

tion. In every simulation, the strength of synaptic connections at trial 1 was a random number

drawn from the uniform distribution, multiplied by half the bias value (and 1 for the RW

based model).

The effects of other model parameters were already demonstrated in previous work [24],

[30], but we again validated that the model shows qualitatively similar patterns when we varied

some of the parameters. A table of all parameter values used in both the original simulations

and parameter explorations is provided in the S1 Text. Specifically, we explored different fre-

quencies (C in Eqs (1) and (2)) in the Processing unit and the pMFC. Additionally, we also

explored the Damp and rmin parameters in the pMFC (again Eqs (1) and (2)). For this simula-

tion we used the RW model with β = .2. We fully crossed all parameter values for C, Damp and

rmin. and performed 5 replications. In a separate set of explorations, we varied σ and α in the

RL unit (see Eqs (11) and (12)) for both the RW and BP algorithm, for both a slow and a fast-

synaptic learning rate (β). Again, we performed 5 replications for each parameter combination.

Results of the latter parameter exploration are described in the S1 Text.

Statistical analyses

For the purpose of comparison, we divided the trials of the task for every model into 120 bins.

For the RW model, bin size equals 3 trials; for the BP and RBM models, bin size equals 30 tri-

als. We evaluate the performance of our model on several levels. First, we evaluate overall task

accuracy. Second, we evaluate plasticity. For this purpose, we explore the performance of the

model during the first 5 bins of the first 3 blocks. Hence, we test how quickly a model can

learn a new task rule. Third, we evaluate stability. In particular, we explore the interference of

learning other task rules in between two periods of performing the same task rule. For this pur-

pose, we compare the accuracy during the first 5 trial bins of block 4, 5 and 6 with the last 5

trial bins of block 1, 2 and 3. If the model saved what was learned, this difference should be

zero. If the model displays catastrophic forgetting, it would have a negative stability score.

Importantly, we also connect with empirical data and describe testable hypotheses for

future empirical work. As a measure of phase synchronization between excitatory neurons in

the Processing unit, we compute the correlation at phase lag zero. A correlation of 1 indicates

complete synchronization and -1 indicates complete desynchronization. Phase-amplitude cou-

pling (PAC) is computed as the debiased phase-amplitude coupling measure (dPAC; [73]) in

each trial. Here,

dPAC ¼ j
1

h
Ph

t¼1
at�ðe

iφt � Φ� Þj ð14Þ

in which

Φ� ¼
1

h
Ph

t¼1
eiφt ð15Þ
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In these equations, t represents one time step in a trial, h is the number of time steps in a trial,

a is the amplitude, φ is the phase of a signal, and i2 = -1. In the current paper, we are interested

in the coupling between the phase of the theta oscillation in the pMFC node of the Control

unit and the gamma amplitude in the Processing unit. Phase was extracted by taking the ana-

lytical phase after a Hilbert transform. The gamma amplitude was derived as the mean of the

excitatory phase code activation of all nodes in the Processing unit by

at ¼
1

I
PI

i¼1
jEitj ð16Þ

with I being the number of nodes in the Processing unit, t referring to time and Ei being the

respective excitatory phase code neuron.

For all measures, we represent the mean value over Nrep = 10 replications and error bars or

shades show the confidence interval computed by mean± 2×(SD/
p
Nrep).

Additionally, we evaluated the pMFC theta activation. More specifically, time–frequency

signal decomposition was performed by convolving the signal of EpMFC by complex Morlet

wavelets, ei2pfte� t2=ð2s2Þ, where i2 = -1, t is time, f is frequency, ranging from 1 to 10 in 10 linearly

spaced steps, and σ = 4/(2πf) is the “width” of the wavelet. Power at time step t was then com-

puted as the squared magnitude of the complex signal at time t and frequency f. We averaged

this power over all simulations and all replications of our simulations. This power was evalu-

ated by taking the contrast between the inter-trial intervals following correct (1) and error (0)

reward feedback.

Data and software availability

Matlab codes that were used for both the model simulations and data analysis are available on

GitHub (https://github.com/CogComNeuroSci/PieterV_public).

Supporting information

S1 Text. Supplementary materials. We present results for the RBM model simulation and

exploration of the parameters in the RL unit. Additionally, we provide tables of all parameter

values that were used for our simulations.

(DOCX)

S1 Fig. The RBM model. The first row (A-C) gives a deeper insight into the model dynamics.

In A, orange lines represent the synaptic model and blue lines the full model. In E, brown lines

represent the first chosen task module, magenta lines the secondly chosen module and green

lines the remaining task module. In F, the horizontal blue line indicates the Switch threshold

and the yellow arrows mark the moment the activation reached the threshold. The second row

(D-F), shows the mean accuracy, plasticity and stability for the RBM model across learning

rates. Again, orange represents the synaptic model and blue the full model Overall, red vertical

dashed lines indicate task switches, black horizontal dashed lines indicate chance level of accu-

racy, and shades represent 95% confidence intervals.

(TIF)

S2 Fig. RL unit parameter exploration. Mean accuracy is shown for all simulations with a

certain parameter value. The first row (A-D) shows results for the RW model and the second

row (E-H) for the BP model. The first two columns (A, B, E, F) show data for simulations with

a small synaptic learning rate (β = .2) for different values of α and σ respectively. The last two

columns (C, D, G, H) show the same data for a faster synaptic learning rate (β = .8). Black ver-

tical dashed lines indicate the parameter values that were used for the original simulations
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described in the main text.

(TIF)
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