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Abstract: To support a vast number of devices with less energy consumption, we propose a new user
association and power control scheme for machine to machine enabled heterogeneous networks
with non-orthogonal multiple access (NOMA), where a mobile user (MU) acting as a machine-
type communication gateway can decode and forward both the information of machine-type
communication devices and its own data to the base station (BS) directly. MU association and power
control are jointly considered in the formulated as optimization problem for energy efficiency (EE)
maximization under the constraints of minimum data rate requirements of MUs. A many-to-one MU
association matching algorithm is firstly proposed based on the theory of matching game. By taking
swap matching operations among MUs, BSs, and sub-channels, the original problem can be solved
by dealing with the EE maximization for each sub-channel. Then, two power control algorithms are
proposed, where the tools of sequential optimization, fractional programming, and exhaustive search
have been employed. Simulation results are provided to demonstrate the optimality properties of our
algorithms under different parameter settings.

Keywords: M2M; heterogeneous networks; non-orthogonal multiple access; energy efficiency;
MU association; power control

1. Introduction

The increase of smartphones, laptops, and other mobile devices as well as data-hungry applications,
need huge demands for ubiquitous coverage and very high data rates in cellular networks. However,
homogeneous networks cannot satisfy these requirements [1]. Then, two-fold efforts have been spent
to meet the stringent requirements. On one hand, researchers have proposed heterogeneous networks
(HetNets) where different types of base stations (BSs), e.g., macro BSs (MBSs) and small BSs (SBSs) are
deployed in a multi-tier hierarchical structure. In this structure, all BSs have seamless coverage and reuse
frequencies to achieve higher data rate [2,3]. On the other hand, the so-called non-orthogonal multiple
access (NOMA) has been investigated as a potential technique to further improve the throughput of
network [4–7]. Different from conventional orthogonal multiple access (OMA), NOMA serves multiple
users at the same time/frequency/codes resource by allocating different powers for them, and the
superposition coded signal can be decoded at receivers by successive interference cancellation (SIC).
Therefore, the combination of HetNets and NOMA will exhibit great potential to satisfy the 1000-times
increase of mobile broadband data for the upcoming fifth generation (5G) communication systems and
beyond [3].

However, the severe inter-tier and intra-tier interference make the NOMA-enabled HetNets
challenging to achieve. Resource management plays an important role to alleviate these interference [8].
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For downlink communication, specifically, some work focuses on the sum rate maximization and
shows higher spectral efficiency (SE) can be achieved by NOMA when considering the intercell
interference [9–12]. Besides SE, energy efficiency (EE) is also a key performance metric investigated for
resource allocation in NOMA-enabled HetNets [8,13,14]. Moreover, EE is more important in uplink
than in downlink NOMA-enabled HetNets since the devices in uplink communications are often
battery-limited. It is a fact that the battery capacity has been improved at a very slow pace over the
past decades [15], and hence this increase cannot scale with the high energy consumption caused by
the increasing traffic demands. Meanwhile, EE has emerged as a new prominent performance metric
for wireless communication networks designs due to the economic, operational, and environmental
concerns [16,17]. Therefore, it is a stringent work to improve EE for uplink transmission.

Machine-to-machine (M2M) communications, also known as machine-type communications
(MTC), enable pervasive connections to support IoT. M2M communications are one of the potential
applications of NOMA-enabled HetNets [18], since NOMA-enabled HetNets provide a practical
infrastructure to offer massive access opportunities for such a huge number of devices, especially
for the cases in which each device only needs to send a small amount of data periodically in uplink.
One of the challenges for HetNets with M2M communications is the access control, which can manage
the engagement of massive MTC devices (MTCDs) to the core network. Among the existing access
solutions, deploying MTC gateways (MTCGs) is an effective approach to connect M2M communication
and cellular communication [19–21]. When mobile user (MU) has more power and storage space than
MTCDs (e.g., smart sensors), the MU can be configured as the MTCG, as proposed in [22].

Since 5G will be HetNets including various network models (e.g., cellular networks, wireless
networks (WSNs), and low power wireless area networks) to support high data rate and massive
devices [3], our work combing M2M communication and cellular network has a large significance for
this heterogeneous scenario. The short distance communication in our system model can be realized
with WSNs, which provide a new way to help the sink nodes in WSNs communicate to the core
network. For example, the MTCDs can be the sensors in an environmental monitoring WSN, and they
can transmit the collected data to the core network through a mobile device in cellular networks with
NOMA. Therefore, our work also has a practical significance for sensors work.

Recently, there have been some studies addressing the aforementioned challenges of applying
NOMA in HetNets for EE maximization. In [23], a distributed user association algorithm based on
inter-cell interference plus noise ratios of BS and a centralized user association based on the popular
size of BS were both proposed. After user association was determined, a power control algorithm
was proposed based on Lagrangian dual method, then a one-dimensional search algorithm was
used to search Lagrangian multiplier, which added algorithm complexity. Two specific examples
were provided to demonstrate the effectiveness of unified NOMA-enabled heterogeneous ultra-dense
networks with user association and power control in [18]. An alternated energy efficient resource
allocation algorithm based on fixed power allocation was first proposed in [13]. Then, two iterative
energy-efficient resource allocation algorithms were proposed to update for better EE based on
Lagrangian dual method. Joint base station association and power control optimization algorithms
were proposed based on coalition formation games and interior-point method in [24], but sub-channel
allocation and fractional equation for EE maximization had not been considered. Moreover, the user
association algorithms in the aforementioned work were all considered with fixed power allocation
firstly, whereafter iterative algorithms were used to obtain the final optimal value.

There are also some studies on the usage of M2M communications in NOMA systems.
For example, energy-efficient resource allocation with hybrid division multiple-access NOMA for
cellular-enabled M2M communications was researched in [25,26]. With MTCDs cluster formation
known beforehand, standard convex optimization and Lagrange duality methods were employed
respectively for power control in [25,26]. User clustering in NOMA-aided cellular M2M communication
systems was researched in [27,28] with millimeter-wave and narrow-band IoT separately. A joint
power and sub-channel allocation for secrecy capacity algorithm was proposed in [29] to obtain the
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suboptimal solution of the optimization problem. However, the aforementioned work deploys M2M
user in single-cell networks. The trend of more and more intensive network deployment motivates us
to deploy M2M-enabled NOMA in the scenarios with multi-tier HetNets and new resource allocation
needs to be considered with the non-convexity caused by inter-cell interference in HetNets.

In this paper, we focus on the uplink EE maximization via user association and power control
for M2M-enabled HetNets using NOMA. In this scenario, one macro base station (MBS) is located
in the cell center. Each small cell has one small base station (SBS) located in the cell center. MUs
are distributed randomly in the cell. An MU acting as an MTCG can decode and forward both
the information of MTCDs and its own data to the BS. The EE (bits/Joule) maximization problem
is formulated and solved to obtain the optimal MU association and power allocation. The main
contributions of this paper are summarized as follows:

• We propose a new framework of M2M-enabled HetNets with NOMA. In this framework, control
data separation architecture, i.e., control information and data message are separated, which can
reduce the signal overhead [30]. NOMA is adopted by the MTCDs to transmit the information to
MUs which is regarded as the relay. MUs decode the overlaid information and simultaneously
transmit received data to the BSs based on the NOMA principle.

• In order to solve the EE maximization optimization problem, a BS and a sub-channel are included
in a couple, since a MU can only associate one BS at one sub-channel. Then, a many-to-one MU
association algorithm is proposed based on matching game [31]. Through swap operation among
each couple, the EE maximization problem can be tackled by solving the power control problem
at each sub-channel. Compared with the previous studies on the algorithms (user association and
power allocation) [13,18,23,24], our algorithms are jointly optimized and fixed power allocation
is not required for initialization.

• Two power control algorithms are proposed based on sequential optimization [32,33].
The fractional programming [34] and sequential optimization are combined to develop a novel
sequential fractional power control algorithm (SFPCA), from which the original problem is
transformed to be convex and requires less computational complexity. The other algorithm
combines the exhaustive search method with sequential optimization, which can verify the
correctness of SFPCA.

The rest of this paper is organized as follows. The system model and problem formulation are
focused in Section 2. The MU association matching algorithm is proposed in Section 3. The power
control problem is solved in Section 4. Numerical results are provided in Section 5, and concluding
remarks are given in Section 6.

Notations: Lowercase and uppercase boldface letters denote vectors and matrices, respectively.
We use uppercase decorated letters to denote sets. For an arbitrary set M, we always have the
corresponding uppercase M to the denote the cardinality of M, i.e., |M| = M, [·]T denotes the
transpose operator.

2. System Model and Problem Formation

2.1. System Model

As shown in Figure 1, we consider uplink HetNets with M2M communications, where all MUs
are anchored to the control base station (CBS). The CBS performs the MU association algorithm to
select the best serving BS for MUs and establishes a high BS–MU connection through backhaul links.
Each MTCD selects the nearest MU as an MTCG. Since NOMA is adopted between MTCDs that select
the same MU as their MTCGs, SIC is performed at the MU to gather the interference and channel gain
will be obtained by channel estimation at the MU. The HetNets consist of a set F = {0, · · · , F} of BSs
and a set K = {1, · · · , K} of MUs. Each MU is regarded as an MTCG, which can acts as a relay for
some MTCDs. Denote Uk as the specific set of MTCDs served by MU k (MUk). The index 0 denotes the
MBS and other indexes stand for the SBSs in set F . Without special explanation, we always have f ∈ F ,
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F = |F |. The system bandwidth shared by all BSs is divided into N orthogonal sub-channels, and each
one is assigned with bandwidth B. For convenience, hereinafter we always have n ∈ N = {1, 2, · · ·N}
to denote the sub-channel. MUs are served by BSs according to the BSs’ coverage.

MBSMBS

SBSSBS

MU1MU1
MU3MU3

MUk-1MUk-1

MUk+1MUk+1

MUKMUK

MUK-1MUK-1

MU2MU2
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Communication at sub-channel

Short distance transmission

Control information

 MU2 signal  
dectection

 MU1 signal  
dectection

 MU3 signal  
dectection

Figure 1. System Model.

2.2. NOMA Strategy

Multiple MTCDs can simultaneously transmit signals to the MU using NOMA. Since MUs and
MTCDs use different transmission modes, we ignore the interference between MUs and MTCDs.
The interference between MTCDs in different BSs is also not considered. According to the NOMA
principle, the received signal of MUk is

Yk = ∑
j∈Uk

hjkk
√

qjk sjk + nk, (1)

where hjk is the channel between MTCD jk and MUk; qjk and sjk denote the transmit power and message
of MTCD jk; and nk represents the additive zero-mean Gaussian noise with variance σ2. Uk represents
the set of MTCDs which are served by MUk. Without loss of generality, the channels are sorted by∣∣h1kk

∣∣2/σ2
k >

∣∣h2kk
∣∣2/σ2

k > · · ·
∣∣hUkk

∣∣2/σ2
k > 0. Applying SIC in NOMA [33], the achievable data

throughput for MTCD jk at MUk is given by

Rjk = log2

(
1 +

Hjkkqjk
1 + Ijk

)
, (2)

where Hjkk =
∣∣∣hjkk

∣∣∣2/σ2
k , Ijk = ∑

i∈
{

Uk

∣∣∣Hikk <Hjkk

} qikk Hikk, and we define Ijk = 0 for jk = Uk. After MUs

successfully decode the messages from MTCDs, all MUs simultaneously transmit data to the BS based
on the NOMA principle. Denote hk f n = gk f n

√
d−α

k f as the channel gain between MUk and BS f at

sub-channel n (SCn). gk f n denotes the corresponding Rayleigh fading channel gain; α is the path loss
factor; and dk f is the distance between MUk and BS f . In order to split the superimposed signals on
SCn in BS f , SIC is carried out at BS f . Based on the uplink NOMA protocol [35], the signal of MU with
the highest channel gain will be first decoded at BS f and experiences interference from other MUs
having relatively weaker channel gains on SCn. Therefore, the channel gains of MUs over SCn in BS f
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are sorted as
∣∣∣h1 f n

∣∣∣2/σ2
f n >

∣∣∣h2 f n

∣∣∣2/σ2
f n > · · ·

∣∣∣hk f n

∣∣∣2/σ2
f n > · · ·

∣∣∣hS f n f n

∣∣∣2/σ2
f n, where S f n =

∣∣∣S f n

∣∣∣.
Then the transmit data rate of MUk associated with BS f over SCn can be expressed as

Rk f n = Blog2

(
1 +

pk f nHk f n

1 + Ik f n + φk f n

)
, (3)

where Hk f n =
∣∣∣hk f n

∣∣∣2/σ2
f n. Ik f n is the interference that MUk receives from other MUs whose channel

gains are smaller than that on SCn of BS f , which can be given by

Ik f n = ∑
i∈{S f n|Hi f n <Hk f n}

pi f n Hi f n. (4)

φk f n = ∑
f ′∈{F\ f }

∑
i∈S f ′n

pi f ′n Hi f n is the interference from MUs associated to other BSs on SCn. Then the

data rate of MUs at SCn is

Rn = B ∑
f∈F

∑
k∈S f n

log2

(
1 +

pk f nHk f n

1 + Ik f n + φk f n

)
. (5)

2.3. Problem Formation

In this paper, we focus on the EE maximization problem for all MUs considering the minimum
data rate requirements of them. The MU association contains two parts: BS selection and sub-channel
allocation. For a given MU association, the out-of-cell interference only come from the MUs associated
with different BSs at the same sub-channel due to the orthogonality among the sub-channels. Then,
each MU may not concern the whole EE, but the sub-channel EE it chooses. Therefore, the optimization
problem is converted into solving the EE maximization of each sub-channel by appropriate MU
association including BS selection and sub-channel allocation and power control.

From a physical standpoint, the efficiency with which a system uses a given resource is the
ratio between the benefit obtained by using the resource and the corresponding incurred cost [17].
Applying this general definition to the uplink communication at SCn, then EE of SCn can be written as

EEn =
Rn

∑
f∈F

∑
k∈S f n

pk f n + Pc
, (6)

where Pc is the additional circuit power consumption over each sub-channel. Then the considered EE
optimization problem can be formulated as

max
P

∑
n∈N

EEn (7a)

s.t. Rk f n ≥ ∑
j∈Ujk

Rjk + Rreq, ∀k ∈ K, n ∈ N , (7b)

pk f n > 0, pk f n ≤ Pmax, ∀k ∈ K, f ∈ F , n ∈ N , (7c)

where P is the transmit power vector with elements pk f n; Pmax is the maximum transmit power of each
MU; and Rreq is the minimum data rate requirement of a MU. Since each MU is regarded as an MTCG
for MTCDs, they should ensure the data rate that MTCDs can be uploaded to the SBS, therefore we
have constraint (7b) as the data rate requirement of MUk associated to BS f at SCn [22]. Constraint (7c)
is used to guarantee the feasible value ranges of P.
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3. MU Association

The MTCDs associated to the corresponding MU are known beforehand. Since solving the
optimization problem is equal to obtain the optimal EE of each sub-channel, the MU association
will become the matching problem among BSs, sub-channels and MUs to achieve sub-channel EE
maximization. Thus, we propose a MU association algorithm using matching game [30] in the
following parts.

3.1. Matching Problem Formulation

To develop a low-complexity MU association algorithm, we first regard a sub-channel and a BS as
a couple, denoted as (n, f ). Then, the optimization problem is transformed to match the MUs to the
couples and allocate power appropriately, such that the EE can be maximized. Finally, the matching
problem is a many-to-one problem between MUs and couples based on matching game, which is
described as follows.

Definition 1. Given two disjoint sets, K = {1, · · · , K} denotes the set for MUs, and M =

{(1, 1) (1, 2) · · · , (2, 1) · · · , (n, f ), · · · (N, F)} represents the couples. A many-to-one matching Ψ is
a mapping from the set K ∪M into the set of all subsets of K ∪M for f ∈ F , k ∈ K, n ∈ N satisfying

i) Ψ(k) ∈ M;
ii) Ψ(n, f ) ⊂ K;
iii) |Ψ(k)| = 1 |, Ψ(SCn, f )| = S f n;
iv) (n, f ) = Ψ(k)⇔ k ∈ Ψ(n, f ).

Condition i indicates that each MU matches with a sub-channel-BS couple. On the other hand,
each couple matches a subset of MUs, which is illustrated in condition ii. Condition iii states a MU can
only associate one BS and choose one sub-channel while each couple matches S f n MUs.

The aim of each couple is to maximize its own EE. To this end, we exploit the swap operation
into our matching algorithm. A swap operation means two MUs matching with different couples
exchange their matchings based on different cases, while other MUs remain their matchings. The EE
of the exchanged couples will be recomputed by the power control algorithm. Note that how to
allocate power to obtain the optimal EE for a given sub-channel will be presented in the next section,
and we assume it is known in advance. A swap operation will be approved and the matching will
be exchanged only when all EE of the sub-channels belonging to the exchanged couples increase if
the swap is performed. The swap operation will be continued until no swap is further preferred.
More details are described in Algorithm 1.

3.2. Matching Algorithm

Algorithm 1 contains a initialization phase and a swap matching phase. Considering the user
fairness, the number of MUs accommodated by one sub-channel in a given BS is at most

⌈
K

FN

⌉
. In the

initialization step, the basic idea is to associate the MU to the couple providing the largest channel
gain. This will lead to either a higher data rate for the MU, or a lower transmit power. Since the value
of sub-channel gain between MU and the uncovered BSs is invalid and the maximized sub-channel
gain is always chosen, there is no need to know whether the MUs are in the coverage of the exchanged
BSs. However, in the swap matching phase, this judgment should be considered at first to avoid the
invalid swap. Then, exchange will happen in the three cases. Iterations will continue until no swap
operation can be approved in a new round.
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Algorithm 1 The MU association matching algorithm.

Initialization phase: L =
⌈

K
NF

⌉
, K̂ = K

1: for l = 1 : L do

2: M̂ =M, Count = 1
3: while (Count ≤ M) do

4: Hk∗ f ∗n∗=argmax
{

Hk f n

}
∀k∈K̂,( f ,n)∈M̂

. Assign k∗ to the couple ( f ∗, n∗), K̂ = K̂\k∗, M̂ =

M̂\( f ∗, n∗), and set Count = Count + 1
5: end while
6: end for

Swap matching phase: Indicator = 1
7: while (Indicator) do

8: for u = 1 : K do

9: for k = 1 : K do

10: if Ψ(k) = Ψ(u) then

11: continue;
12: else if MUk and MUu are both in the coverage of the BSs of each other then

13: switch (Ψ(k), Ψ(u) )
14: case MUk and MUu belonging to the same BS and different sub-channels:

15: Calculate and compare the EE of the two sub-channels before and after the swap using

the power control algorithm. If the EE of the two-subchannels both improve, exchange

the sub-channel, form the new couple, and set Indicator = 1.
16: case MUk and MUu belonging to the different BSs and different sub-channels:

17: Calculate and compare the EE of the two sub-channels before and after the swap using

the power control algorithm. If the EE of the two sub-channels both improve, exchange

the couple, form the new couple, and set Indicator = 1.
18: case MUk and MUu belonging to the different BSs and same sub-channels:

19: Calculate the EE of the sub-channel before and after the swap using the power control

algorithm. If the EE of the sub-channel has been improved, exchange the BS, form the

new couple, and set Indicator = 1.
20: end switch
21: end if
22: end for
23: end for
24: end while

3.3. Convergence and Complexity

Theorem 1. The proposed MU association and power control algorithm converges after a finite number of
swap operations.

Proof of Theorem 1. For each swap operation, the matching changes from Ψex to Ψnow. We have
EEn,ex and EEn,now to denote the corresponding EE of of Ψex and Ψnow on SCn . Based on the aim of
swap operation, we have EEn,now > EEn,ex, that is, the EE of each sub-channel increases after each
swap matching. Since each sub-channel is orthogonal to each other, the system EE will increase owing
to the improved EE of each sub-channels. Moreover, the system EE has an upper bound due to the
limited transmit power of each MU. Therefore, the MU association algorithm and power allocation
converge after a finite number of swaps.
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4. Power Control

In this section, we will investigate the optimal power control design appearing in Algorithm 1 to
obtain the maximum EE of SCn. Before we present the optimization problem for EEn maximization,
we first deal with Rn, which can be rewritten as

Rn(p f n) = B ∑
f∈F

log2

1 +

∑
k∈S f n

pk f nHk f n

1 + φk f n

, (8)

and we can also obtain

Rtot,k = ∑
j∈Uk

Rjk = log2

(
1 + ∑

j∈Uk

Hjkkqjk

)
. (9)

Due to the multi-interference in the sum-rate function in (8), EEn in (6) is non-convex and cannot
be directly solved by the generalized fractional programming approach. Then, we first transform
the numerator into the difference of two non-negative functions and the EEn maximization can be
rewritten as

max
p f n

η̃n =
F+(p f n)− F−(p f n)

∑
f∈F

∑
k∈S f n

pk f n + Pc
(10a)

s.t. (7c), (11), (10b)

with
C+

k f n
(p f n)− C−

k f n
(p f n) ≥ 0, ∀k ∈ K, ∀ f ∈ F , ∀n ∈ N , (11)

where p f n = [p1 f n, p2 f n, · · · , pk f n, · · · , pS f n Fn
]T denotes the transmit power vector for MUs on SCn.

Moreover, we have

F+(p f n) = B ∑
f∈F

log2

1 + ∑
k∈S f n

pk f n Hk f n + φk f n

 ,

F−(p f n) = B ∑
f∈F

log2

(
1 + φk f n

)
,

C+
k f n

(p f n) = Blog2

(
1 + pk f nHk f n + Ik f n + φk f n

)
− Rtot,k − Rreq,

C−
k f n

(p f n) = Blog2

(
1 + Ik f n + φk f n

)
.

(12)

Note that F+, F−, C+, and C− are concave functions regarding to p f n, then the numerator of (10a)
and the constraint functions in (10b) are expressed as the difference of concave functions, which are not
concave in general. Motivated by [31,32], where sequential optimization is used to solve the similar
problem as (10), we adopt this method and combine it with fractional programming and exhaustive
search to propose two power control algorithms. Before introducing the two algorithms, we first
present the details of the sequential optimization theory in the next sub-section.
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4.1. Sequential Optimization Theory

Sequential optimization is a powerful tool that can tackle a difficult optimization problem by
solving a sequence of approximate problems in simple forms with affordable complexity. Specifically,
we give a formal maximization problem F̄ with a compact feasible set as [31,32], shown as

max
x

f0(x) (13a)

s.t. fi(x) ≥ 0, ∀i ∈ {1, · · · , I}, (13b)

where f0(x) is the differentiable objective with constraints fi(x) ≥ 0. Let G(v) be the problem solved in
the v-th iteration by the sequential method to tackle problem F̄, which can be written as

max
x

g(v)0 (x) (14a)

s.t. g(v)i (x) ≥ 0, ∀i ∈ {1, · · · , I}, (14b)

where g(v)0 (x) is the differentiable objective with the constraints g(v)i (x). Then, if g(v)0 (x) and g(v)i (x)
are suitable continuous functions and constraints, they must satisfy the following two properties:

1) g(v)0 (x) ≤ f0(x), g(v)i (x) ≤ fi(x) ∀x;

2) g(v)0 ((x∗)(v−1)) = f0((x∗)(v−1)), g(v)i ((x∗)(v−1))

≤ fi((x∗)(v−1)).

(x∗)(v−1) is the optimal solution of the problem solved at iteration (v−1)-th. This means the
solution sequence {(x∗)}(v) of (14) monotonically increases the value of (13), i.e., f0((x∗)(v)) ≥
f0((x∗)(v−1)) for all v, which guarantees the convergence of the sequential method. Next, if the
following third property is also satisfied:

3) ∇g(v)0 ((x∗)(v−1)) = f0((x∗)(v−1)), ∇g(v)i ((x∗)(v−1)) =

∇ fi((x∗)(v−1)).

then every limit point of {x}(v) of (14) fulfills the Karush–Kuhn–Tucker (KKT) conditions of problem F̄
in (13).

Therefore, if a maximization problem finds suitable approximate problems which can fulfill the
above three properties, its optimal value can be approximated by solving the monotonically increased
sequential problems. The critical issue is that the suitable approximate problems are solved easier than
the original problem. In the rest of this section, we will first find the sequential approximate problems
to the numerator in problem (10).

4.2. Sequential Fractional Power Control Algorithm

Based on sequential optimization, we should find a sequence problem to approximate
optimization problem (10). To circumvent this issue, we obtain the following main result with the
first-order Taylor expansion at p f n

(v) of F−(p f n).

Proposition 1. For any given p f n
(v), the sequence approximation problem of (10), denoted by G(v) can be

written as

max ηn =
F+(p f n)− F̃(p f n)

∑
f∈F

∑
k∈S f n

pk f n + Pc
(15a)

s.t. C+
k f n

(p f n)− C̃(p f n) ≥ 0, (15b)

(7c) , (15c)
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with optimal solution p∗f n
(v), where

F̃(p f n) = F−
(

p f n
(v)
)

−
(
∇F−

(
p f n

(v)
))T (

p f n − p f n
(v)
) (16)

C̃(p f n) = C−
k f n

(
p f n

(v)
)

−
(
∇C−

(
p f n

(v)
))T

(p f n − p f n
(v))

(17)

If p(v)
f n = p∗f n

(v−1), ∀v ≥ 1 , then
{

ηnp∗f n
(v)
}(v)

is monotonically increasing and converges to a value η̃n.

Furthermore, any limit point of sequence
{

ηnp∗f n
(v)
}(v)

that achieves η̃n fulfills the KKT optimality conditions
of (10a).

Proof of Proposition 1. As we know, any concave function is the upper-bounded of its first-order
Taylor expansion at any point. Since F−(p f n) and C−(p f n) are concave functions, for any power vector

p(v)
f n we have

F+(p f n)− F−(p f n)

≥ F+(p f n)− F̃(p f n)

= F+(p f n)− F−
(

p f n
(v)
)

−
(
∇F−

(
p f n

(v)
))T (

p f n − p f n
(v)
)

,

(18)

C+(p f n)− C−(p f n)

≥ C+(p f n)− C̃(p f n)

= C+(p f n)− C−
k f n

(
p f n

(v)
)

−
(
∇C−

(
p f n

(v)
))T

(p f n − p f n
(v)).

(19)

Hence, (15a) and (15b) are lower bounds of (10a) and (11), respectively. Since the lower bounds
in (16) are tight when evaluated by p(v)

f n , it follows that (15a) and (15b) are equal to (10a) and (11),

respectively, for p f n = p(v)
f n . Similarly, the gradients of (15a) and (15b) are equal to those of (10a) and

(11), for p f n = p(v)
f n . Thus, (15) fulfills all the properties described in the above sub-section, which

completes the proof of this proposition.

For any p(v)
f n , problem (15) has a concave numerator and an affine denominator, while the

constraint functions in (15b) and (15c) are both concave and affine. Therefore, (15) is a single-ratio
problem, which can be solved by the generalized fractional programming. We adopt the widely used
Dinkelbach’s algorithm to solve it. According to Dinkelbach’s method [33], we first introduce the
following auxiliary function

T(p f n, ηn) = fn(p f n)− ηngn(p f n), (20)

with fn(p f n) = F+(p f n)− F̃(p f n), and gn(p f n) = ∑
f∈F

∑
k∈S f n

pk f n + Pc.
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Theorem 2. Let η∗n , p∗f n and p∗k f n denote the optimal value, optimal solution and its elements of problem (15),
respectively. Then, we have

η∗n =
F+(p∗f n)−F̃(p∗f n)

∑
f∈F

∑
k∈S f n

p∗k f n+Pc
= max

F+(p f n)−F̃(p f n)

∑
f∈F

∑
k∈S f n

pk f n+Pc
, (21)

if and only if
max { T(p f n, η∗n) = fn(p f n)− η∗ngn(p f n) }

= fn(p∗f n)− η∗ngn(p∗f n) = 0.
(22)

Proof of Theorem 2. Theorem 2 was proved in [33,36], and we omit it due to the limited space.

The optimal η∗n can be obtained by Dinkelbach’s method, which is summarized in Algorithm 2.
As shown in the algorithm, we need to solve the problem (23) for a given parameter ηn

(c) in each
iteration. In Algorithm 2, ηn has been updated as ηn

(c) in each iteration until convergence. or reaching
the maximum number of iterations. p f n

(c) denotes the optimal power of the following problem in the
c-th iteration, which can be obtained in Algorithm 3, as given by

max
p f n

T(p f n, ηn
(c)) = fn(p f n)− ηn

(c)gn(p f n)

s.t. C+
k f n

(p f n)− C̃(p f n) ≥ 0,

(7c) ,

(23)

Algorithm 2 The Dinkelbach’s algorithm.

Initialization phase:

Set iteration c = 1, ηn
(c) > 0, the maximum number of iterations Cmax, and error tolerance τ > 0.

1: repeat
2: Solve the equivalent problem (23) for a given ηn

(c) to obtain the solution p f n
(c).

3: ηn
(c) =

F+(p f n
(c))−F̃(p f n

(c))

∑
f∈F

∑
k∈S f n

pk f n
(c)+Pc

,

4: c = c + 1.
5: until

∣∣∣T(ηn
(c−1), p f n

(c−1))
∣∣∣ ≤ τ or c > Cmax

6: η∗n = ηn
(c−1), p∗f n = p f n

(c−1).

Algorithm 3 The algorithm for solving problem (23).

Initialization phase:

Set p(0)
f n , iteration index v= 0, the maximum iterations Vmax and error tolerance µ. Calculate

fn(p f n
(0))−ηn

(c)gn(p f n
(0)).

1: repeat
2: Solve the problem (23) to obtain the optimal solution p∗f n for given p(v)

f n and ηn
(c).

3: v = v + 1.
4: Set p(v)

f n =p∗f n and cacluate fn(p f n
(v))−ηn

(c)gn(p f n
(v)).

5: until
∣∣∣ fn(p f n

(v))− ηn
(c)gn(p f n

(v)) − ( fn(p f n
(v−1))− ηn

(c)gn(p f n
(v−1)))

∣∣∣ ≤ µ

6: p∗f n= p(v)
f n .

4.3. Computational Complexity Analysis

In above sub-section, we have proposed the SFPCA including two steps, i.e., Algorithms 2
and 3. The computational complexity of them are separately discussed. First, we use C to denote
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the number of iterations for Algorithm 2, where C is bounded by Cmax. From Section V, we can see
that Algorithm 2 will converge after a few number of iterations. Then we discuss the computational
complexity of Algorithm 3, the complexity of this algorithm is mainly caused by (23), and denoted
by X. The computational complexity of (23) is O(Sn

3) [37], where Sn is the number of MUs at SCn.
The complexity of Algorithm 3 is X = VO(Sn

3), where V is the the number of iterations bounded by
Vmax. In summary, the computational complexity of the power control algorithm is O(CX).

4.4. Sequential Exhaustive Algorithm

To evaluate the performance of the SFPCA, a sequential exhaustive algorithm (SEA) combined
with sequential optimization and exhaustive search is proposed in this section. The detailed procedures
of the compared algorithm is illustrated as follows. To solve the problem in an easier manner, we
introduce the auxiliary variable yn, as given by

yn = B ∑
f∈F

log2

1 +
∑

k∈S f n

pk f n Hk f n

1+φk f n

. (24)

if we fix yn , the objective function (15a) can be recast as

max
p f n

yn

∑
f∈F

∑
k∈S f n

pk f n

s.t. ∑
f∈F

log2

1 +

∑
k∈S f n

pk f nHk f n

1 + φk f n

 ≥ yn.

(25)

Due to the multi-user interference, we cannot solve problem (25) by standard convex optimization
tools. Similar to SFPCA, sequential optimization is applied and the approximate problem can be
shown as

max
p f n

F+(p f n)− F̃(p f n)

∑
f∈F

∑
k∈S f n

pk f n + Pc
(26a)

s.t. F+(p f n)− F̃(p f n) ≥ yn, ∀n ∈ N , (26b)

(7c), (11). (26c)

It can be observed that since yn is fixed, (26) is equivalent to minimize the linear function
∑

f∈F
∑

k∈S f n

pk f n + Pc in the denominator, subject to convex constraints. Then, problem (26) can be solved

by plain convex programming. To implement an efficient line search for yn, the bound of yn is given by

^yn = FS f nRreq

≤ ∑
f∈F

log2

1 +

∑
k∈S f n

pk f nHk f n

1 + φk f n


< ∑

f∈F
log2

1 + ∑
k∈S f n

PmaxHk f n


=

_yn.

(27)

Then, the optimial p f n can be obtained by searching an appropriate value of yn with stepsize ε.
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5. Numerical Results and Discussions

In this section, the effectiveness of our proposed MU association and power control algorithms
in M2M-enabled HetNets with NOMA was demonstrated by Monte Carlo simulations. The HetNets
included one MBS and two SBSs, and the radius of the cells for them were 200 m and 80 m, respectively.
MUs were randomly and uniformly distributed. The values of the simulation parameters are summarized
in Table 1.

We considered the EE performance obtained from EE maximization and sum-rate maximization
with different Pmax in Figure 2. The latter could be obtained in the first iteration of Algorithm 2 due to
q(1) = 0. In order to reflect the influence of qmax, we gave four schemes of different qmax. From the
figure, we can see that all of the four schemes had a “green point”, where EE and sum rate could
both achieve their optimal values. Different from sum rate, EE became gradually flat while sum rate
decreased after “green point” as Pmax grew. The reason is when the maximum EE is achieved, no more
transmit power is needed. For sum rate maximization, larger sum rate requires more transmit power,
and its ratio (EE) may decrease, since the numerator (sum rate) and denominator (sum transmit power)
both grow. We can also see that the EE decreased as qmax increased, because the increase of qmax means
the data rate requirement of MUs increases. It is worth noting that even though MTCDs have lower
data rate and transmit power, they can also have a strong influence on the overall uplink EE with
their massive number. Furthermore, Algorithm 1 with higher EE had similar tendency as Algorithm 4,
which proves the correctness of our algorithms.

Figure 3 shows the EE performance with respect to different data rate requirements of MUs with
the different transmit power of MTCDs. The four curves all decreased as Rreq increased. This is due to
the fact that higher data rate will narrow the feasible value regions of the transmit power. Note that
the four curves decreased slightly first, when Rreq = 150 bps, the EE of the four schemes all declined
distinctly, since higher data rate requirement may require more transmit power, destroying the balance
of sum transmit power and sum rate. As explained above, the increase of qmax leads to the increase of
data rate requirement, and the variation of EE is in line with the reason as the figure shown.

Table 1. simulation parameters.

Parameters Meanings Values

F Number of BSs 3
B The frequency bandwidth of each sub-channel 15 kHz
K Number of MUs 40

Uk Number of MTCDs of each MU 2
σ2

f n Noise variance 2 dBm
µ, τ Error tolerance 10−3

Pmax The maximum of transmit power of MU 0.2 W
qmax The maximum of transmit power of MTCD 0.08 W

α Path loss factor 3
Pc The circuit power at each sub-channel 0.1 W

Rreq The data rate requirement of each MU 100 bps

Algorithm 4 Sequential exhaustive algorithm.

Initialization phase:

ε > 0, ω =
_y n−

^y n
ε

1: for y f n ∈
[
^y f n : ω : _y f n

)
do

2: p∗f n = argmin ∑
f∈F

∑
k∈S f n

pk f n + Pc

3: end for
4: Obtain the optimal solution of p f n.
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Figures 4 and 5 shows the convergence property of Algorithms 2 and 3. For simplicity, the numerical
results in two figures are from a random chosen sub-channel, where ηn

(c) = 1. In Figure 4, we can see that
the number of iterations are limited within four times. To show the influence of p(0)

f n , we give the different

values of p(0)
f n in Figure 5, where

∣∣∣ fn(p f n
(v))− ηn

(c)gn(p f n
(v)) − ( fn(p f n

(v−1))− ηn
(c)gn(p f n

(v−1)))
∣∣∣ =

W(p f n
(v)). It is shown that the initial values have an effect on the number of iterations. Specifically,

when p f n
(0) = 0× Pmax, less than 11 times is needed to reach the convergence. Although the initial

values affect the number of iterations, it does not affect the final results.
To show the relationship between the different numbers of MUs and MTCDs and the EE, we have

Figure 6. It is not surprise to see that the EE performance of all these schemes increases as Pmax grows.
From the four schemes, we can find out that the EE of K = 40 is much larger than that of K = 15, since
the NOMA scheme can obtain much higher EE by supporting multiple MUs, and they can choose the
suitable couples by swap operations for better EE. From the Algorithm 1, we know that power control
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algorithm needs to be executed after each swap operation, that is, the number of iterations increases
with the increase of K and more process time are required. From the Figure 6, we can also see that the
EE of Uk = 2 is larger than that of Uk = 3 under the same K, i.e., K has much greater impact on EE
than Uk, since the NOMA scheme can obtain much higher EE by supporting multiple MUs and the
increasing Uk represents the increase data rate requirement of MUs.

Figure 7 presents the cumulative distribution function (CDF) of the number of swap operations
of different scenarios when the matching algorithms reached convergence. From the figure we can
see that more swap operations were needed for a larger number of MUs and sub-channels, such as,
K = 40, N = 3 needed more swap operations than that K = 40, N = 2 and K = 15, N = 3. Especially,
less than 70 swap operations were needed for K = 40 and N = 3.
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6. Conclusions

This work investigated the uplink EE maximization problem in M2M-enabled HetNets with
NOMA, where a MU acting as an MTCG can decode and forward both the information of MTCDs
and its own data to the BS directly. Due to the limited spectrum resource, each BS shared the same
sub-channels and NOMA was adopted between MUs in the same BS and sub-channel. The EE
maximization problem was formulated, where MU association and power control were combined with
each other. To solve it, a MU association matching algorithm was proposed based on the matching game.
Under a given MU association, the uplink EE maximization was transformed into the EE maximization
of each sub-channel. Two power control algorithms were provided to obtain the suboptimal power
solutions based on sequential optimization. Simulation results showed that our proposed algorithms
performed better than EE performance. It is known that cellular network is a key way to connect the
M2M communications to the core network; our proposed scheme provided a new strategy for MTCDs
to connect the cellular network with regard to MUs as their MTCGs based NOMA, and the power
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control of MTCDs was also considered as the constraints for the EE optimization problem. In fact, large
scale devices are a more realistic scenario for 5G and next generation network, and since the number
of MTCDs is considered on a small scale in this paper, the extension of our algorithms for large scale
devices is one of the future works. Furthermore, the research of high computation complexity of the
proposed algorithms for large scale devices is also a significant problem.
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