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1 | INTRODUCTION

In modern psychopharmacology, the gold standard for measure-

ment of depressive symptoms, as with most psychiatric outcomes,
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Abstract

Background: Passive measures collected using smartphones have been suggested
to represent efficient proxies for depression severity, but the performance of such
measures across diagnoses has not been studied.

Methods: We enrolled a cohort of 45 individuals (11 with major depressive disorder,
11 with bipolar disorder, 11 with schizophrenia or schizoaffective disorder, and 12
individuals with no axis | psychiatric disorder). During the 8-week study period, par-
ticipants were evaluated with a rater-administered Montgomery-Asberg Depression
Rating Scale (MADRS) biweekly, completed self-report PHQ-8 measures weekly on
their smartphone, and consented to collection of smartphone-based GPS and ac-
celerometer data in order to learn about their behaviors. We utilized linear mixed
models to predict depression severity on the basis of phone-based PHQ-8 and pas-
sive measures.

Results: Among the 45 individuals, 38 (84%) completed the 8-week study. The aver-
age root-mean-squared error (RMSE) in predicting the MADRS score (scale 0-60)
was 4.72 using passive data alone, 4.27 using self-report measures alone, and 4.30
using both.

Conclusions: While passive measures did not improve MADRS score prediction in
our cross-disorder study, they may capture behavioral phenotypes that cannot be

measured objectively, granularly, or over long-term via self-report.
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has been clinician-rated scales. However, reliance on such mea-
sures introduces substantial limitations: the need for trained clini-
cian raters increases the cost of assessment (despite enthusiasm

for measurement-based care and recognition of the importance
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of quantifying treatment outcomes); the time required for clinical
evaluation has precluded widespread use in practice; and clinician
ratings contain sources of variance that are unrelated to underly-
ing clinical affect. These scales themselves have been criticized for
measuring a narrow range of symptoms that may be overly weighted
toward specific illness features, neglecting the multidimensional na-
ture of psychopathology (Insel et al., 2010).

The ubiquity of smartphones presents an opportunity to mea-
sure different social, cognitive, and behavioral markers in naturalistic
settings. As of February 2018, 95% of Americans own a cellphone
of some kind, with 77% owning a smartphone, up from just 35% in
2011 (Mobile Fact Sheet, 2018). With 6.3 billion smartphone sub-
scriptions expected globally by 2021 (Cerwall, 2016), this technol-
ogy offers an unprecedented opportunity to objectively measure
human behavior in naturalistic settings outside of research labora-
tories and clinics.

We have previously defined the concept of digital phenotyping
as the “moment-by-moment quantification of the individual-level
human phenotype in situ using data from personal digital de-
vices, in particular smartphones” (Onnela & Rauch, 2016; Torous
et al., 2015). Others have defined similar concepts (Glenn &
Monteith, 2014; Jain et al., 2015; Monteith et al., 2015), and there
is a small but growing number of studies in mental health using
smartphone data (Alvarez-Lozano et al., 2014; Benson et al., 2011,
Faurholt-Jepsen et al., 2015; Gruenerbl et al., 2014; Miskelly, 2005;
Saeb et al.,, 2015; Torous et al., 2015; Wang et al., 2016) and
other electronic devices (De Choudhury et al., 2013; Dickerson
et al., 2011; Gulbahce et al., 2012; Jashinsky et al., 2014; Kane
et al., 2013; Kappeler-Setz et al., 2013; Katikalapudi et al., 2012;
Matic et al., 2012; Mclntyre et al., 2009; Minassian et al., 2010;
Roh et al., 2012). Smartphones are well-suited as an instrument
for digital phenotyping given their widespread adoption, the ex-
tent to which users engage with the devices, and the richness of
their data. Being able to accomplish this without the expense and
burden associated with additional specialized equipment makes
the approach attractive to researchers (Onnela & Rauch, 2016).
Smartphone-based digital phenotyping encompasses the collec-
tion of a range of different social and behavioral data, including
but not limited to spatial trajectories (via GPS), physical mobility
patterns (via accelerometer), social networks and communication
dynamics (via call and text logs), and voice samples (via micro-
phone) (Onnela & Rauch, 2016; Torous et al., 2015).

The performance of digital phenotyping has rarely been di-
rectly compared to clinical rating scales in trial-like settings, nor
has it been examined in a transdiagnostic cohort. To address these
gaps, we conducted an 8-week study among psychiatric outpa-
tients with mood and psychotic disorders, as well as healthy con-
trols. Our aim was to assess whether digital phenotyping may
be used as a complement for in-person psychiatric assessments
of depressive symptoms, using the MADRS, in a clinical popula-
tion. We sought to assess to what extent it might be possible to
predict a future clinician-rated score on the Montgomery-Asberg

Depression Rating Scale (MADRS) from baseline assessments of

MADRS, surveys administered on the phone (here, Patient Health
Questionnaire), passively collected smartphone data (here, GPS
and accelerometer), or a combination of these measures. More
generally, we sought to quantify data completeness, a critical but
commonly overlooked question in digital phenotyping, examining
GPS, accelerometer, and phone survey data over the course of the
8-week study.

2 | MATERIALS AND METHODS
2.1 | Study design and cohort description

This study used a prospective cohort design and aimed to recruit
equal-sized groups of outpatients with major depressive disorder
(n = 11), bipolar | or Il disorder (n = 11), schizophrenia or schizoaf-
fective disorder (n = 11), and screened healthy controls with no axis
| psychiatric disorder (n = 12). Each participant's primary diagno-
sis was confirmed by the Structured Clinical Interview for DSM-IV
(SCID) Modules A-D (Diagnostic & statistical manual of mental disor-
ders: DSM-1V, 2000). Demographic features of the study cohort are
shown in Table 1.

Participants were recruited from outpatient clinics of the
Massachusetts General Hospital (Boston, MA) and via advertise-
ments seeking healthy control participants between 2015 and 2018.
All participants signed written informed consent prior to participa-
tion. The study protocol was reviewed and approved by the Partners
HealthCare Institutional Review Board (protocol #: 2015P000666).
Participants were compensated $50 after the initial baseline visit
and an additional $100 upon completion of the study. If a participant
withdrew from the study before completing the full 8 weeks, they
were compensated $25 in addition to the initial $50. Participants
received reimbursement for reasonable parking and travel expenses
for each in-person study visit.

All participants were 18 years or older and owned a smartphone
running an iOS or Android operating system and were judged likely
able to comply with study procedures by the site investigator's esti-
mation. Participants installed the Beiwe application at the baseline
visit and provided demographic information. Participants then re-
turned for four follow-up visits over the course of the 8 weeks (for
a total of five in-person visits, scheduled approximately every two

weeks).

2.2 | Longitudinal assessments

At baseline and each follow-up visit, trained raters (AMP and KLH)
certified and supervised by psychiatric clinical trialists (HEB and
RHP) administered the MADRS. The overall MADRS score ranged
from O to 60, and the following cutoff points were usually applied:
0 to 6 (not depressed), 7 to 19 (mild depression), 20 to 34 (moderate
depression), and above 34 (severe depression). Participants also re-

sponded daily to a 4-question in-app Likert scale survey on overall
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TABLE 1 Description of cohort (n = 41)

Baseline Covariate

Sex
Male 37% (15/41)
Female 63% (26/41)
Age (years)
Mean (SD) 43(12)
Min, Q1, Q2, Q3, Max 21, 33,45,52, 68
Diagnosis
Healthy control 27% (11/41)
Major depressive disorder 24% (10/41)
Bipolar disorder 24% (10/41)
Schizophrenia/schizoaffective 24% (10/41)
Race
White 71% (29/41)
African-American 20% (8/41)
Asian 7% (3/41)
Other 2% (1/41)
Baseline MADRS Score (mean (SD))
Healthy control 0.7 (1.2)
Major depressive disorder 20.0(12.7)
Bipolar disorder 9.7 (10.6)
Schizophrenia/schizoaffective 6.2 (5.4)

Abbreviations: MADRS, Montgomery-Asberg Depression Rating Scale;
Q1, Q2, and Q3 represent the first, second, and third quartiles; sd,
standard deviation.

mood, social interest, sleep quality, and activity level (Table S1).
They were also prompted once a week on Saturdays to take an
in-app Patient Health Questionnaire (PHQ-8) survey (Kroenke
et al., 2009). The question assessing suicidality included in PHQ-9
was omitted because the Partners HealthCare IRB has previously
determined that its inclusion would require real-time evaluation of
patient data, deemed by the investigators to be infeasible in the
present design. To remain enrolled in the study, participants were

required to respond to the surveys at least five times a week.

2.3 | Beiwe research platform

In this study, we used the Beiwe application for data collection,
which is the front-end component of the Beiwe research platform.
We have previously described an earlier version of the Beiwe
research platform for high-throughput smartphone-based digi-
tal phenotyping in biomedical research use (Torous et al., 2016).
The front end of Beiwe consists of smartphone apps for iOS (by
Apple) and Android (by Google) devices. The back-end system,
which enables data collection and data analysis and supports
study management, makes use of Amazon Web Services (AWS)-

based cloud computing infrastructure. While data collection is
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arguably becoming easier with developing technology, analysis
of the collected data is increasingly identified as the main bottle-
neck in research settings (Iniesta et al., 2016; Kubota et al., 2016;
Kuehn, 2016). For this reason, Beiwe consists of a growing suite
of data analysis and modeling tools triggered by the Beiwe data
analysis pipeline.

Reproducibility remains a challenge in the biomedical sciences,
as fewer than 10% of studies have been found fully reproducible
(Prinz et al., 2011). To enhance reproducibility, all Beiwe data collec-
tion settings for both active (smartphone surveys and audio samples)
and passive (smartphone sensors and logs) data are captured in a
single JSON-formatted configuration file, which can be imported to
future studies to enable them to use identical data collection. The
configuration for this present study is also available.

2.4 | Data collection, storage, and security

Each study participant was assigned a randomly generated
8-character Beiwe User ID and a temporary password, and study
staff assisted participants with app installation and activation at the
time of enrollment. Data collected by the Beiwe application were im-
mediately encrypted and stored on the smartphone until the phone
was connected to Wi-Fi, at which point the data were uploaded to
the study server and expunged from the phone. The reason for con-
figuring Beiwe to use Wi-Fi rather than cellular data in this study was
to avoid charges associated with uploading large volumes of data,
roughly 1GB per subject-month, to the cloud. Any potentially identi-
fying data were hashed on the mobile device, and all data were en-
crypted while stored on the phone awaiting upload, while in transit,

and while on the server.

2.5 | Processing of passive data: Phone gps and
accelerometer data

During the time period between the baseline visit and the last follow-
up visit, accelerometer and GPS data from participants’ smartphones
were collected using Beiwe. The GPS measured the phone's latitude/
longitude coordinates, while the accelerometer measured its accel-
eration along three orthogonal axes. To preserve the battery life of
the phone (mainly due to GPS) and to reduce data volume (mainly due
to accelerometer), each sensor alternated between an on-cycle and
off-cycle according to a predefined schedule (10 s on, 10 s off for the
accelerometer; 2 min on, 10 min off for GPS). We selected a longer
on-period for the GPS as it required time to locate the satellites re-
quired for positioning its location, and we correspondingly selected a
longer off-period to reduce battery drain. In Supplemental Material,
we describe our procedure for generating covariates for MADRS pre-
diction from raw GPS and accelerometer data. Roughly speaking, the
data were first summarized at a daily level and then the daily sum-
maries were aggregated by type of day (weekend versus weekday).

For Android users, in addition to accelerometer and GPS data, we
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collected anonymized communication logs, which we used to derive
two summary statistics: the number of outgoing calls and the number
of unique phone numbers dialed. Plots and summary statistics of the

Android communication log data are presented in Results section.

2.6 | Statistical analysis

We used linear mixed models for MADRS prediction. Linear mixed
models are an extension of standard linear regression to clustered data,
where the clusters here are multiple MADRS assessments over time
for each subject. Importantly, linear mixed models can handle clusters
of varying size due to missing data. We considered four main model
specifications. Each of them included the baseline MADRS score and
the demographic variables as predictors (Table 2). We included the
baseline MADRS score as a predictor based on the following ration-
ale. One would ideally like to predict MADRS scores from passive data
only, but this would require a large sample size and may not even be
possible. The next best approach is to predict future MADRS scores
from passive data and some baseline MADRS data. We assumed this
latter approach because this approach, if successful, could reduce the
number of times the MADRS score needs to be evaluated, which would
help economize healthcare resources. The models differed by which
smartphone-based covariates were included as additional predictors:
Model A used phone-based PHQ-8 surveys, Model B used weekly sum-
maries of passive smartphone data, Model C used both PHQ-8 surveys
and weekly summaries of passive smartphone data, and Model D used
neither. In Models A and C, when including the phone-based PHQ-8
survey score as a predictor, we used the survey that was closest in time

preceding the MADRS assessment in question. We chose to include the

TABLE 2 Predictors used in the study

Baseline predictors Predictors based on phone surveys

e Score on the PHQ-8 survey closest in
time preceding the MADRS assessment

e Age

e Sex

e Diagnostic category
e MADRS score

PHQ-8 survey score as a predictor because of the ease of completion
on a mobile phone by patients, and because of its widespread use as a
screen in primary care settings. For Models B and C, we sought to pre-
dict MADRS score based on passive smartphone data collected in the
seven days preceding the MADRS assessment. We computed summary
statistics using raw GPS and accelerometer data. Our previous work has
shown that one needs to impute missing GPS data when constructing
summary statistics from GPS data. To generate summary statistics from
GPS data, we first imputed missing GPS trajectories using a resampling
method that has previously been demonstrated to result in a 10-fold
reduction in the error averaged across all mobility features compared
to simple linear interpolation of data by Barnett and Onnela (2018).
After imputing missing data, we then computed several GPS summa-
ries proposed by Canzian and Musolesi (2015), Saeb et al. (2015), and
Barnett and Onnela (2020). There were 32 candidate summary statis-
tics computed from smartphone passive data (GPS and accelerometer)
(see Table 2 and Table S2). As many of these statistics were correlated,
rather than including all 32 statistics as predictors in the models that
used passive data, we performed a principal component analysis (PCA)
on the 32 summary statistics and used the first principal component
as a predictor. For each model, we performed leave-one-subject-out
cross-validation to evaluate its prediction accuracy. This entailed hold-
ing out the data from each participant in turn, fitting the model with the
data from the other participants, and using the fixed effects portion of
the fitted model to predict the MADRS scores of the held-out partici-
pant. At the model-fitting step, we excluded data points with missing
values for one or more of the predictors. As our accuracy metric, we
computed the root-mean-squared error (RMSE) for each participant
and then took the average across all participants. To compute the RMSE

for each participant, we took the squared error between the predicted

Predictors based on passive smartphone data®

GPS-based”

Number of significant locations visited
Time spent at home

Distance traveled

Maximum diameter

Maximum home distance

Radius of gyration

Average flight length

Standard deviation of flight length
Average flight duration

Standard deviation of flight duration
Probability of pause

Significant location entropy
Circadian routine
Weekend-weekday routine

Number of minutes with missing data

Accelerometer-based”

Activity level
Number of minutes with missing data

Abbreviations: MADRS, Montgomery-Asberg Depression Rating Scale; PHQ-8, Patient Health Questionnaire-8.

*These predictors are defined in Methods S1.

PExcept for number of minutes with missing data, all other GPS-based or accelerometer-based predictors were computed separately for weekdays

versus weekends.
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and actual MADRS score for each visit, averaged the squared errors
across all visits for the given participant, and finally took the square root
of this quantity. A lower RMSE indicates more accurate predictions. Of
note, as a preliminary investigation, we elect to present model fit rather

than statistical comparisons of models.

3 | RESULTS

3.1 | Participant baseline covariates and MADRS
scores

Of the 45 consented participants, we excluded four participants
who elected to cease study participation at or before the first

Open Access,

follow-up visit (Figure 1). All other participants (n = 41) were in-
cluded in the analysis, of whom three participants dropped out
after the first follow-up visit and 38 fully completed the 8-week
study. Table 1 shows the baseline features of these 41 study par-
ticipants, including age, sex, diagnostic category, race, and baseline
MADRS score. There were no missing data for these features. For
the participants who completed the study, MADRS scores were
available at baseline and at each of the four follow-up visits. Among
the three participants who dropped out after the first follow-up
visit, MADRS scores were assessed for two participants at the first
follow-up visit. For descriptive purposes, Figure S1a, b shows the
participants’ MADRS trajectories over time, and a scatterplot of the
average of the MADRS scores versus the standard deviation of the
MADRS scores for each subject.

Assessed for eligibility and signed informed consent (n=45)

Completed baseline visit (n=45)

Terminated before first follow-up visit (n=4)
- Unable to download mobile application (n=1)

.

- Unable to use the mobile application (n=1)
- Declined to continue participation (n=2)

Included in analysis (n=41)

Terminated after first follow-up visit (n=3)
- Inconsistent access to mobile phone (n=1)

A

v

\4

- Declined to continue participation (n=1)
- Duplicate / already completed study (n=1)

Completed study (n=38)

\4 A4

A\ 4 A 4

Major Depressive
Disorder (n=9)

Bipolar
Disorder (n=9)

Schizophrenia/
Schizoaffective (n=9)

Healthy
Control (n=11)

FIGURE 1 CONSORT flow diagram
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3.2 | Assessing completeness of phone data

The completeness of the accelerometer and GPS data was assessed
at the participant level. For the accelerometer, we divided the num-
ber of minutes of data actually collected by the number of minutes of
data expected to be collected. We examined the time period ranging
from the day after the baseline visit to the day before the last follow-
up visit, i.e., the time period including all full days in the study. Since
accelerometer data were scheduled to be collected every minute,
the expected number of minutes with data was the number of min-
utes in the time period. The completeness of GPS data was assessed
analogously, except the expected number of minutes of data was
1/6 of the number of minutes in the time period (the 2-min on-cycle
is 1/6 of the total cycle). The proportions for accelerometer and
GPS are shown in Figure S2a. The proportions are variable, ranging
from O to 0.99 for accelerometer and from O to 0.87 for GPS. For
the accelerometer, 23 out of 41 (56%) participants had proportions
of 0.5 or higher. For GPS, 16 out of 41 (39%) participants had pro-
portions of 0.5 or higher. The proportions tended to be greater for
accelerometer data than for GPS data. Despite the missingness, a
large amount of data was captured over the course of the study, in-
cluding 674,969,086 accelerometer measurements and 14,733,731
GPS measurements. The quantity of collected data for iOS phones
tended to be greater on average than for Android phones.

Figure S2b shows the completion rate for each PHQ-8 survey, in-
dicated by the solid black line. Given a specific survey, its completion
rate was defined as the proportion of participants who completed
the survey. If a participant completed Survey t after Survey t + 1 had
been sent, they were counted as not having completed Survey t but
were counted as having completed Survey t + 1. The completion rate
was 95% for the first survey and 80% for the last survey, which took
place approximately two months after the baseline visit. Figure S3
shows a histogram of the number of weeks that the participant com-
pleted one or more PHQ-8 surveys. If a participant completed more
than one survey during some week (i.e., the participant was late on
the previous week's survey), the multiple surveys only contributed
1 to the participant's tally. Overall, 78% of participants completed
PHQ-8 surveys on 8 or more weeks.

As an example of passive data, Figure 2a-d plots the average
activity level hour-by-hour (from 12:00 a.m. to 11:59 p.m.) for four
randomly chosen participants in the schizophrenia/schizoaffective
group on weekdays and weekends. For each participant, the curves
were computed using accelerometer data collected throughout their
follow-up as described in detail in Supplemental Material. For any
given 1-hr window, the average activity level estimates the propor-
tion of time that the participant was active (e.g., walking, using stairs)
compared to stationary (e.g., sitting, standing, lying down) during
this hour of the day. On weekdays, the participant in Panel A had low
activity levels overnight, which began rising around 7 a.m., and hit
their highest levels between 9 a.m. and 1 p.m., followed by a decline
over the course of the evening. On weekends, their activity level was
lower in the morning than on weekdays and was highest at 1 p.m. In

interpreting these plots, a caveat is that the participant's activity was

missed if the phone was not carried (e.g., it was left on a table). Thus,
differences between the participants could be due to differences in
their activity patterns, as well as differences in their phone use hab-
its (e.g., how often each participant carried their phone).

Data completeness for each passive modality, and for self-report,
is summarized in Supplemental Results. In addition, we collected
smartphone communication logs from Android devices (no iOS de-
vices were included in this part of the analysis). Figure 3 shows the
cumulative distribution functions for the number of outgoing phone
calls and the number of unique phone numbers dialed over Weeks
2-7, stratified by status (healthy control versus schizophrenia/schi-
zoaffective, bipolar, or major depressive disorder). All individuals
included here had communication log data collected throughout
Weeks 2-7. Among this subset of participants (n = 19), the median
age was 33 years (IQR: 29 - 41) for healthy controls (n = 7) and
52 years (IQR: 43-55) for others (n = 12). The proportions of female
participants were 43% and 83%, respectively. The median number
of outgoing calls was 56 (IQR: 24-79) for the healthy controls com-
pared to 121 (IQR: 42-195) for those with a psychiatric diagnosis.
The median number of unique phone numbers was also lower for the
healthy controls at 18 (IQR: 12-24) versus 28 (IQR: 21-41) for those

with a psychiatric diagnosis.

3.3 | MADRS prediction

Figure 4a-d shows the predicted MADRS scores compared to the
clinician-rated MADRS scores. Panels A-D correspond to Models A-D:
Panel/Model A (baseline MADRS & demographics & PHQ-8); Panel/
Model B (baseline MADRS & demographics & passive data); Panel/
Model C (baseline MADRS & demographics & PHQ-8 & passive data);
and Panel/Model D (baseline MADRS & demographics). For the models
that included passive data, we performed a principal component analy-
sis and used the first principal component as a predictor. When prin-
cipal component analysis was applied without excluding any subjects,
the first principal component explained 46% of the variance in the data
and the highest weights came from GPS-based features. In Table S3,
we provide the weighting for each sensor-based feature in the first
principal component. The predicted MADRS scores were computed
using leave-one-subject-out cross-validation, as described above. The
average RMSE was 4.27 for Model A, 4.72 for Model B, 4.30 for Model
C, and 4.66 for Model D. That is, incorporation of passive variables in
Model B did not meaningfully improve the average RMSE compared to
using only the baseline MADRS score and demographics in Model D.
Models A-D each included both baseline MADRS and demograph-
ics as predictors. Although basic demographic variables can be easily
collected and incorporated in the model, baseline MADRS scores might
not be commonly available. To assess prediction accuracy in this mod-
ified setting, we next omitted the baseline MADRS from each model
and otherwise proceeded as above. The average RMSE was 5.46 for
Model A’ (demographics & PHQ-8), 6.99 for Model B’ (demographics
& passive data), 5.46 for Model C' (demographics & PHQ-8 & passive
data), and 6.91 for Model D’ (demographics). The inclusion of baseline
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Subject B

—_

- — weekday
---- weekend

Average activity level
0.00 0.05 010 0.15 020 025 030<%

T
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Hour of day

(d) Subject D
- —— weekday
---- weekend

Average activity level
0.00 0.05 0.10 0.15 0.20 0.25 0.30

T T
0 5 10 15 20
Hour of day

(a-d). Average activity level from 12:00 a.m. to 11:59 p.m. on weekdays and weekends for four randomly selected participants

in the schizophrenia/schizoaffective diagnostic group. The solid line corresponds to the weekday, and the dotted line to the weekend. The
x-axis origin of hour = 0 corresponds to 12:00 a.m. See Methods S1 for details on how these curves were computed

MADRS scores improves the average RMSE by approximately 1 point
if PHQ-8 is included and 2 points if PHQ-8 is not included. Finally, as
a sensitivity analysis, if demographics are also omitted, we obtain the
following RMSE values: 5.69 for Model A” (PHQ-8), 7.94 for Model
B” (passive data), 5.72 for Model C” (PHQ-8 & passive data), 7.95 for
Model D” (no predictors, only an intercept). Results for different mod-
els are summarized in Table 3.

As an exploratory analysis, we evaluated the effect of including
the second principal component (PC) as a predictor, which we call

Model E. The results are shown in Table 3 in the row entitled Model E.

Comparing the average RMSE'’s after adding the second PC (Model E)
relative to having the first PC only (Model B), the average RMSE slightly
improves when there are no other variables in the model or when the
other variables are demographics, but slightly worsens when baseline
MADRS and demographics are included. We conducted a separate
exploratory analysis in which we identified the variables that had the
highest loadings in the first PC: distance traveled maximum diameter,
maximum home distance, and radius of gyration on the weekend. Since
itis the most interpretable of the four, we used distance traveled on the

weekend as the single passive predictor in a new model called Model F,
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FIGURE 3 Cumulative distribution functions for the number of outgoing calls (a) and the number of dialed phone numbers (b) among
Android participants, stratified by healthy control status. HC, healthy control; non-HC, individuals with a psychiatric diagnosis

which had no PC’s included. This led to similar average RMSE's as using
the first PC (Model B) and using the first and second PC (Model E).

4 | DISCUSSION

In this cross-disorder investigation, we found that including passive
data as a predictor did not improve the prediction of clinician-rated
MADRS scores. While the participant payment employed in this
study precludes strong conclusions about acceptability, the high re-
tention rate suggests that, with compensation, participants are will-
ing to adopt this technology as part of a standard clinical assessment
model. A similar approach has successfully been used in other set-
tings, such as to study patients with schizophrenia, where the sub-
jects were not paid for app use, not given additional support for app
use, and not provided with check-in calls or study staff reminders to
use the app (Barnett et al., 2018).

Both academic researchers and pharmaceutical leaders have
suggested that passive measures may replace clinical evaluation
in clinical trials as a means of improving signal detection (Harvey
et al., 2018). Setting aside the need for clinician involvement to
ensure participant safety, our results suggest that more work
will be required to replace clinical raters for assessment of
MADRS.

Although passive data did not perform as well as phone-based
PHQ-8 in terms of average RMSE, it is important to stress that the
passive approach requires only a one-time installation of the appli-
cation which, even if less precise, may be valuable in settings where
individuals are unlikely to adhere to a survey protocol, especially
for extended time periods and in the absence of financial or other

incentives.

One possible explanation for why incorporating passive variables
in Model B did not improve the average RMSE compared to using
only the baseline MADRS score and demographics in Model D is
the varying data quality among participants. For example, Figure S4
shows the availability of accelerometer data for three participants.
For each hour over the course of the follow-up, we plot the pro-
portion of minutes with accelerometer data collected. A shading of
white corresponds to O (no data collected during that hour), black to
1 (data collected at every minute), and different shadings of gray to
in-between values. The x-axis shows the week of the follow-up, and
the y-axis shows the day of the week with the tick marks occurring
at 12:00 a.m. The participant in the top panel had high data quality
throughout their follow-up. The participant in the middle panel had
high data quality during most of the study with some long gaps with
no data. The participant in the bottom panel had some medium data
quality periods interspersed with periods with no data. Using incom-
plete passive data to predict the MADRS score can be challenging
since the timing of the missing gaps may not be random (Figure S4).
When deriving our predictors from passive data, we avoided the
naive approach of taking averages across the available data, which
would overweight time intervals during which data tended to be col-
lected. Instead, we utilized a more robust method for handling miss-
ingness, which is described in Methods S1. However, the predictors
may be inaccurate when the proportions of data collected are low
(Figure S2a).

In a meta-analysis of seven smartphone-based digital pheno-
typing studies, there was no significant difference found in levels of
missing data by sex, age, educational background, and phone operat-
ing system for either accelerometer or GPS data (Kiang et al., 2019).
Another study found that levels of missing GPS and accelerometer

data were predictive of future clinical survey scores in a cohort of
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FIGURE 4 Montgomery-Asberg Depression Rating Scale (MADRS) score predictions using four models. All models included age, sex,
diagnostic category, and baseline MADRS score as predictors. They differed by which phone-based variables were used as predictors:
Patient Health Questionnaire-8 survey scores only (a), passive data only (b), both (c), and neither (d). BP I, bipolar disorder; HC, healthy
control; MDD, major depressive disorder; SCH, schizophrenia/schizoaffective disorder

patients with schizophrenia (Torous et al., 2018), which presents a
potential future extension of the analyses presented here.

We note multiple important limitations in considering our results.
First, the study design precludes conclusions about application of smart-
phone apps in longer-term studies or those using 'lighter touch' designs
without in-person visits. Second, we cannot exclude the possibility
that additional passive measures, or alternate means of analyzing such
measures, will yield better prediction of clinician ratings. Indeed, our
work should encourage other investigators to apply our open-source
platform and further develop our analytic methodologies. Our analy-

ses mix between-person and within-person variation in MADRS scores.

Since these are distinct types of variation, a potential area of future
research is to separately assess within-person changes from between-
person differences. Third, because of the IRB-mandated omission of the
PHQ suicide item, we likely underestimate the ability of this measure to
capture more severe depression. Fourth, as a pilot study, sample size is
modest and thus the result that passive measures do not significantly
contribute to predicting MADRS must be viewed as preliminary. In fu-
ture studies, strategies to reduce missing data (for example, by mon-
itoring data missingness for each participant during the course of the
study and intervening where required) merit consideration. Higher data

quality may help improve the utility of passive measures.
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TABLE 3 The average root-mean-squared error (RMSE) in predicting the MADRS score (scale 0-60) using three different variants of

Models A-D
Model A 5.69
(PHQ-8)
Model B 7.94
(passive data)
Model C 5.72
(PHQ-8 & passive)
Model D 7.95
(no phone-based predictors) (intercept only)
Model E 7.86
(first and second principal component)
Model F 7.96

(distance traveled on weekend)

+ baseline MADRS

+ demographics + demographics

5.46 4.27
6.99 4.72
5.46 4.30
6.91 4.66
6.97 4.75
6.97 4.72

Abbreviations: MADRS, Montgomery-Asberg Depression Rating Scale; PHQ-8, Patient Health Questionnaire-8.

We also emphasize strengths of using passively collected
smartphone data in psychiatric settings. Passive data likely capture
depressive features that are not well-measured by clinical raters,
such as physical activity levels, spatial isolation (as measured via
GPS-based home time), and social isolation (as measured via com-
munication logs). Investigation of this hypothesis represents an im-
portant priority for clinical investigators seeking to develop a next
generation of pragmatic trials. In other words, rather than simply
replacing clinical raters, passive measures may themselves repre-
sent useful biomarkers, but only if they can be validated for this
role.

We elected to conduct a cross-disorder study to recognize
that categorical diagnosis fails to capture the dimensional na-
ture of psychopathology, consistent with the NIMH’s Research
Domain Criteria framework (Insel et al., 2010). That is, it may be
useful to capture negative valence symptoms such as depression
across a range of disorders, not just in major depressive disor-
der. While such symptoms may be attributed to different under-
lying processes (e.g., negative symptoms in schizophrenia), our
results suggest the ability of a single platform to measure across
disorders.

5 | CONCLUSION

While passively collected smartphone data did not improve the
prediction of MADRS scores in our cross-disorder study, we dem-
onstrate its application to capture features of patients’ daily
functioning—such as physical activity, social isolation, and spatial
isolation—that are otherwise difficult to capture with surveys. These
various behavioral phenotypes, which are listed in Table 2 and de-
fined in the Supplement, can describe participants' physical activity
(e.g., from the accelerometer data), spatial isolation (e.g., time spent
at home, computed from GPS data), and social isolation (e.g., number

of outgoing calls from Android call log data).
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