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1  | INTRODUC TION

In modern psychopharmacology, the gold standard for measure-
ment of depressive symptoms, as with most psychiatric outcomes, 

has been clinician- rated scales. However, reliance on such mea-
sures introduces substantial limitations: the need for trained clini-
cian raters increases the cost of assessment (despite enthusiasm 
for measurement- based care and recognition of the importance 
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Abstract
Background: Passive measures collected using smartphones have been suggested 
to represent efficient proxies for depression severity, but the performance of such 
measures across diagnoses has not been studied.
Methods: We	enrolled	a	cohort	of	45	individuals	(11	with	major	depressive	disorder,	
11 with bipolar disorder, 11 with schizophrenia or schizoaffective disorder, and 12 
individuals with no axis I psychiatric disorder). During the 8- week study period, par-
ticipants	were	evaluated	with	a	rater-	administered	Montgomery–	Åsberg	Depression	
Rating	Scale	(MADRS)	biweekly,	completed	self-	report	PHQ-	8	measures	weekly	on	
their	 smartphone,	 and	 consented	 to	 collection	 of	 smartphone-	based	GPS	 and	 ac-
celerometer data in order to learn about their behaviors. We utilized linear mixed 
models to predict depression severity on the basis of phone- based PHQ- 8 and pas-
sive measures.
Results: Among	the	45	individuals,	38	(84%)	completed	the	8-	week	study.	The	aver-
age	 root-	mean-	squared	error	 (RMSE)	 in	predicting	 the	MADRS	 score	 (scale	0–	60)	
was 4.72 using passive data alone, 4.27 using self- report measures alone, and 4.30 
using both.
Conclusions: While	passive	measures	did	not	 improve	MADRS	score	prediction	 in	
our cross- disorder study, they may capture behavioral phenotypes that cannot be 
measured objectively, granularly, or over long- term via self- report.
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of quantifying treatment outcomes); the time required for clinical 
evaluation has precluded widespread use in practice; and clinician 
ratings contain sources of variance that are unrelated to underly-
ing clinical affect. These scales themselves have been criticized for 
measuring a narrow range of symptoms that may be overly weighted 
toward specific illness features, neglecting the multidimensional na-
ture of psychopathology (Insel et al., 2010).

The ubiquity of smartphones presents an opportunity to mea-
sure different social, cognitive, and behavioral markers in naturalistic 
settings.	As	of	February	2018,	95%	of	Americans	own	a	cellphone	
of	some	kind,	with	77%	owning	a	smartphone,	up	from	just	35%	in	
2011	 (Mobile	Fact	Sheet,	2018).	With	6.3	billion	smartphone	sub-
scriptions	expected	globally	by	2021	 (Cerwall,	2016),	 this	 technol-
ogy offers an unprecedented opportunity to objectively measure 
human behavior in naturalistic settings outside of research labora-
tories and clinics.

We have previously defined the concept of digital phenotyping 
as the “moment- by- moment quantification of the individual- level 
human phenotype in situ using data from personal digital de-
vices,	 in	particular	smartphones”	 (Onnela	&	Rauch,	2016;	Torous	
et	 al.,	 2015).	 Others	 have	 defined	 similar	 concepts	 (Glenn	 &	
Monteith,	2014;	Jain	et	al.,	2015;	Monteith	et	al.,	2015),	and	there	
is a small but growing number of studies in mental health using 
smartphone	data	(Alvarez-	Lozano	et	al.,	2014;	Benson	et	al.,	2011;	
Faurholt-	Jepsen	et	al.,	2015;	Gruenerbl	et	al.,	2014;	Miskelly,	2005;	
Saeb	 et	 al.,	 2015;	 Torous	 et	 al.,	 2015;	 Wang	 et	 al.,	 2016)	 and	
other electronic devices (De Choudhury et al., 2013; Dickerson 
et	 al.,	 2011;	 Gulbahce	 et	 al.,	 2012;	 Jashinsky	 et	 al.,	 2014;	 Kane	
et	al.,	2013;	Kappeler-	Setz	et	al.,	2013;	Katikalapudi	et	al.,	2012;	
Matic	et	al.,	2012;	McIntyre	et	al.,	2009;	Minassian	et	al.,	2010;	
Roh	 et	 al.,	 2012).	 Smartphones	 are	well-	suited	 as	 an	 instrument	
for digital phenotyping given their widespread adoption, the ex-
tent to which users engage with the devices, and the richness of 
their	data.	Being	able	to	accomplish	this	without	the	expense	and	
burden associated with additional specialized equipment makes 
the	 approach	 attractive	 to	 researchers	 (Onnela	&	 Rauch,	 2016).	
Smartphone-	based	 digital	 phenotyping	 encompasses	 the	 collec-
tion of a range of different social and behavioral data, including 
but	not	 limited	to	spatial	 trajectories	 (via	GPS),	physical	mobility	
patterns (via accelerometer), social networks and communication 
dynamics (via call and text logs), and voice samples (via micro-
phone)	(Onnela	&	Rauch,	2016;	Torous	et	al.,	2015).

The performance of digital phenotyping has rarely been di-
rectly compared to clinical rating scales in trial- like settings, nor 
has it been examined in a transdiagnostic cohort. To address these 
gaps, we conducted an 8- week study among psychiatric outpa-
tients with mood and psychotic disorders, as well as healthy con-
trols. Our aim was to assess whether digital phenotyping may 
be used as a complement for in- person psychiatric assessments 
of	depressive	 symptoms,	 using	 the	MADRS,	 in	 a	 clinical	 popula-
tion. We sought to assess to what extent it might be possible to 
predict	a	future	clinician-	rated	score	on	the	Montgomery–	Åsberg	
Depression	Rating	 Scale	 (MADRS)	 from	baseline	 assessments	 of	

MADRS,	surveys	administered	on	the	phone	(here,	Patient	Health	
Questionnaire),	 passively	 collected	 smartphone	 data	 (here,	 GPS	
and	 accelerometer),	 or	 a	 combination	 of	 these	 measures.	 More	
generally, we sought to quantify data completeness, a critical but 
commonly overlooked question in digital phenotyping, examining 
GPS,	accelerometer,	and	phone	survey	data	over	the	course	of	the	
8- week study.

2  | MATERIAL S AND METHODS

2.1 | Study design and cohort description

This study used a prospective cohort design and aimed to recruit 
equal- sized groups of outpatients with major depressive disorder 
(n = 11), bipolar I or II disorder (n = 11), schizophrenia or schizoaf-
fective disorder (n = 11), and screened healthy controls with no axis 
I psychiatric disorder (n =	 12).	 Each	 participant's	 primary	 diagno-
sis	was	confirmed	by	the	Structured	Clinical	Interview	for	DSM-	IV	
(SCID)	Modules	A-	D	(Diagnostic & statistical manual of mental disor-
ders: DSM- IV, 2000). Demographic features of the study cohort are 
shown in Table 1.

Participants were recruited from outpatient clinics of the 
Massachusetts	 General	 Hospital	 (Boston,	 MA)	 and	 via	 advertise-
ments	seeking	healthy	control	participants	between	2015	and	2018.	
All	participants	signed	written	informed	consent	prior	to	participa-
tion. The study protocol was reviewed and approved by the Partners 
HealthCare	Institutional	Review	Board	(protocol	#:	2015P000666).	
Participants	were	 compensated	 $50	 after	 the	 initial	 baseline	 visit	
and an additional $100 upon completion of the study. If a participant 
withdrew from the study before completing the full 8 weeks, they 
were	 compensated	 $25	 in	 addition	 to	 the	 initial	 $50.	 Participants	
received reimbursement for reasonable parking and travel expenses 
for each in- person study visit.

All	participants	were	18	years	or	older	and	owned	a	smartphone	
running	an	iOS	or	Android	operating	system	and	were	judged	likely	
able	to	comply	with	study	procedures	by	the	site	investigator's	esti-
mation.	Participants	installed	the	Beiwe	application	at	the	baseline	
visit and provided demographic information. Participants then re-
turned for four follow- up visits over the course of the 8 weeks (for 
a total of five in- person visits, scheduled approximately every two 
weeks).

2.2 | Longitudinal assessments

At	baseline	and	each	follow-	up	visit,	trained	raters	(AMP	and	KLH)	
certified	 and	 supervised	 by	 psychiatric	 clinical	 trialists	 (HEB	 and	
RHP)	administered	the	MADRS.	The	overall	MADRS	score	ranged	
from	0	to	60,	and	the	following	cutoff	points	were	usually	applied:	
0	to	6	(not	depressed),	7	to	19	(mild	depression),	20	to	34	(moderate	
depression), and above 34 (severe depression). Participants also re-
sponded	daily	to	a	4-	question	in-	app	Likert	scale	survey	on	overall	
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mood,	 social	 interest,	 sleep	 quality,	 and	 activity	 level	 (Table	 S1).	
They	 were	 also	 prompted	 once	 a	 week	 on	 Saturdays	 to	 take	 an	
in-	app	 Patient	 Health	 Questionnaire	 (PHQ-	8)	 survey	 (Kroenke	
et	al.,	2009).	The	question	assessing	suicidality	included	in	PHQ-	9	
was	omitted	because	the	Partners	HealthCare	 IRB	has	previously	
determined that its inclusion would require real- time evaluation of 
patient data, deemed by the investigators to be infeasible in the 
present design. To remain enrolled in the study, participants were 
required to respond to the surveys at least five times a week.

2.3 | Beiwe research platform

In	 this	 study,	we	used	 the	Beiwe	application	 for	data	 collection,	
which	is	the	front-	end	component	of	the	Beiwe	research	platform.	
We	 have	 previously	 described	 an	 earlier	 version	 of	 the	 Beiwe	
research platform for high- throughput smartphone- based digi-
tal	phenotyping	 in	biomedical	 research	use	 (Torous	et	al.,	2016).	
The	front	end	of	Beiwe	consists	of	smartphone	apps	for	 iOS	 (by	
Apple)	 and	 Android	 (by	 Google)	 devices.	 The	 back-	end	 system,	
which enables data collection and data analysis and supports 
study	management,	makes	use	of	Amazon	Web	Services	 (AWS)-	
based cloud computing infrastructure. While data collection is 

arguably becoming easier with developing technology, analysis 
of the collected data is increasingly identified as the main bottle-
neck	in	research	settings	(Iniesta	et	al.,	2016;	Kubota	et	al.,	2016;	
Kuehn,	2016).	For	 this	 reason,	Beiwe	consists	of	a	growing	suite	
of	data	analysis	 and	modeling	 tools	 triggered	by	 the	Beiwe	data	
analysis pipeline.

Reproducibility remains a challenge in the biomedical sciences, 
as	 fewer	 than	 10%	of	 studies	 have	 been	 found	 fully	 reproducible	
(Prinz	et	al.,	2011).	To	enhance	reproducibility,	all	Beiwe	data	collec-
tion settings for both active (smartphone surveys and audio samples) 
and passive (smartphone sensors and logs) data are captured in a 
single	JSON-	formatted	configuration	file,	which	can	be	imported	to	
future studies to enable them to use identical data collection. The 
configuration for this present study is also available.

2.4 | Data collection, storage, and security

Each	 study	 participant	 was	 assigned	 a	 randomly	 generated	
8-	character	 Beiwe	User	 ID	 and	 a	 temporary	 password,	 and	 study	
staff assisted participants with app installation and activation at the 
time	of	enrollment.	Data	collected	by	the	Beiwe	application	were	im-
mediately encrypted and stored on the smartphone until the phone 
was	connected	to	Wi-	Fi,	at	which	point	the	data	were	uploaded	to	
the study server and expunged from the phone. The reason for con-
figuring	Beiwe	to	use	Wi-	Fi	rather	than	cellular	data	in	this	study	was	
to avoid charges associated with uploading large volumes of data, 
roughly	1GB	per	subject-	month,	to	the	cloud.	Any	potentially	identi-
fying data were hashed on the mobile device, and all data were en-
crypted while stored on the phone awaiting upload, while in transit, 
and while on the server.

2.5 | Processing of passive data: Phone gps and 
accelerometer data

During the time period between the baseline visit and the last follow-
	up	visit,	accelerometer	and	GPS	data	from	participants’	smartphones	
were	collected	using	Beiwe.	The	GPS	measured	the	phone's	latitude/
longitude coordinates, while the accelerometer measured its accel-
eration along three orthogonal axes. To preserve the battery life of 
the	phone	(mainly	due	to	GPS)	and	to	reduce	data	volume	(mainly	due	
to accelerometer), each sensor alternated between an on- cycle and 
off- cycle according to a predefined schedule (10 s on, 10 s off for the 
accelerometer;	2	min	on,	10	min	off	for	GPS).	We	selected	a	longer	
on-	period	for	the	GPS	as	it	required	time	to	locate	the	satellites	re-
quired for positioning its location, and we correspondingly selected a 
longer	off-	period	to	reduce	battery	drain.	In	Supplemental	Material,	
we	describe	our	procedure	for	generating	covariates	for	MADRS	pre-
diction	from	raw	GPS	and	accelerometer	data.	Roughly	speaking,	the	
data were first summarized at a daily level and then the daily sum-
maries were aggregated by type of day (weekend versus weekday). 
For	Android	 users,	 in	 addition	 to	 accelerometer	 and	GPS	data,	we	

TA B L E  1   Description of cohort (n = 41)

Baseline Covariate

Sex

Male 37%	(15/41)

Female 63%	(26/41)

Age	(years)

Mean	(SD) 43 (12)

Min,	Q1,	Q2,	Q3,	Max 21,	33,	45,	52,	68

Diagnosis

Healthy control 27%	(11/41)

Major	depressive	disorder 24%	(10/41)

Bipolar	disorder 24%	(10/41)

Schizophrenia/schizoaffective 24%	(10/41)

Race

White 71%	(29/41)

African-	American 20%	(8/41)

Asian 7%	(3/41)

Other 2%	(1/41)

Baseline	MADRS	Score	(mean	(SD))

Healthy control 0.7 (1.2)

Major	depressive	disorder 20.0 (12.7)

Bipolar	disorder 9.7	(10.6)

Schizophrenia/schizoaffective 6.2	(5.4)

Abbreviations:	MADRS,	Montgomery–	Åsberg	Depression	Rating	Scale;	
Q1, Q2, and Q3 represent the first, second, and third quartiles; sd, 
standard deviation.
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collected anonymized communication logs, which we used to derive 
two summary statistics: the number of outgoing calls and the number 
of unique phone numbers dialed. Plots and summary statistics of the 
Android	communication	log	data	are	presented	in	Results	section.

2.6 | Statistical analysis

We	 used	 linear	 mixed	 models	 for	 MADRS	 prediction.	 Linear	 mixed	
models are an extension of standard linear regression to clustered data, 
where	 the	clusters	here	are	multiple	MADRS	assessments	over	 time	
for each subject. Importantly, linear mixed models can handle clusters 
of varying size due to missing data. We considered four main model 
specifications.	Each	of	them	included	the	baseline	MADRS	score	and	
the demographic variables as predictors (Table 2). We included the 
baseline	MADRS	score	as	a	predictor	based	on	 the	 following	 ration-
ale.	One	would	ideally	like	to	predict	MADRS	scores	from	passive	data	
only, but this would require a large sample size and may not even be 
possible.	The	next	best	approach	 is	 to	predict	 future	MADRS	scores	
from	passive	data	and	some	baseline	MADRS	data.	We	assumed	this	
latter approach because this approach, if successful, could reduce the 
number	of	times	the	MADRS	score	needs	to	be	evaluated,	which	would	
help economize healthcare resources. The models differed by which 
smartphone- based covariates were included as additional predictors: 
Model	A	used	phone-	based	PHQ-	8	surveys,	Model	B	used	weekly	sum-
maries	of	passive	smartphone	data,	Model	C	used	both	PHQ-	8	surveys	
and	weekly	summaries	of	passive	smartphone	data,	and	Model	D	used	
neither.	 In	Models	A	and	C,	when	 including	the	phone-	based	PHQ-	8	
survey score as a predictor, we used the survey that was closest in time 
preceding	the	MADRS	assessment	in	question.	We	chose	to	include	the	

PHQ- 8 survey score as a predictor because of the ease of completion 
on a mobile phone by patients, and because of its widespread use as a 
screen	in	primary	care	settings.	For	Models	B	and	C,	we	sought	to	pre-
dict	MADRS	score	based	on	passive	smartphone	data	collected	in	the	
seven	days	preceding	the	MADRS	assessment.	We	computed	summary	
statistics	using	raw	GPS	and	accelerometer	data.	Our	previous	work	has	
shown	that	one	needs	to	impute	missing	GPS	data	when	constructing	
summary	statistics	from	GPS	data.	To	generate	summary	statistics	from	
GPS	data,	we	first	imputed	missing	GPS	trajectories	using	a	resampling	
method that has previously been demonstrated to result in a 10- fold 
reduction in the error averaged across all mobility features compared 
to	 simple	 linear	 interpolation	 of	 data	 by	Barnett	 and	Onnela	 (2018).	
After	 imputing	missing	data,	we	then	computed	several	GPS	summa-
ries	proposed	by	Canzian	and	Musolesi	(2015),	Saeb	et	al.	(2015),	and	
Barnett	and	Onnela	(2020).	There	were	32	candidate	summary	statis-
tics	computed	from	smartphone	passive	data	(GPS	and	accelerometer)	
(see	Table	2	and	Table	S2).	As	many	of	these	statistics	were	correlated,	
rather than including all 32 statistics as predictors in the models that 
used	passive	data,	we	performed	a	principal	component	analysis	(PCA)	
on the 32 summary statistics and used the first principal component 
as	 a	predictor.	 For	 each	model,	we	performed	 leave-	one-	subject-	out	
cross- validation to evaluate its prediction accuracy. This entailed hold-
ing out the data from each participant in turn, fitting the model with the 
data from the other participants, and using the fixed effects portion of 
the	fitted	model	to	predict	the	MADRS	scores	of	the	held-	out	partici-
pant.	At	the	model-	fitting	step,	we	excluded	data	points	with	missing	
values	for	one	or	more	of	the	predictors.	As	our	accuracy	metric,	we	
computed	 the	 root-	mean-	squared	 error	 (RMSE)	 for	 each	 participant	
and	then	took	the	average	across	all	participants.	To	compute	the	RMSE	
for each participant, we took the squared error between the predicted 

TA B L E  2   Predictors used in the study

Baseline predictors Predictors based on phone surveys Predictors based on passive smartphone dataa 

•	 Age
•	 Sex
• Diagnostic category
•	 MADRS	score

•	 Score	on	the	PHQ-	8	survey	closest	in	
time	preceding	the	MADRS	assessment

GPS-	basedb 
• Number of significant locations visited
• Time spent at home
• Distance traveled
•	 Maximum	diameter
•	 Maximum	home	distance
• Radius of gyration
•	 Average	flight	length
•	 Standard	deviation	of	flight	length
•	 Average	flight	duration
•	 Standard	deviation	of	flight	duration
• Probability of pause
•	 Significant	location	entropy
• Circadian routine
•	 Weekend–	weekday	routine
• Number of minutes with missing data
Accelerometer-	basedb 
•	 Activity	level
• Number of minutes with missing data

Abbreviations:	MADRS,	Montgomery–	Åsberg	Depression	Rating	Scale;	PHQ-	8,	Patient	Health	Questionnaire-	8.
aThese	predictors	are	defined	in	Methods	S1.	
bExcept	for	number	of	minutes	with	missing	data,	all	other	GPS-	based	or	accelerometer-	based	predictors	were	computed	separately	for	weekdays	
versus weekends. 
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and	actual	MADRS	score	 for	each	visit,	 averaged	 the	 squared	errors	
across all visits for the given participant, and finally took the square root 
of	this	quantity.	A	lower	RMSE	indicates	more	accurate	predictions.	Of	
note, as a preliminary investigation, we elect to present model fit rather 
than statistical comparisons of models.

3  | RESULTS

3.1 | Participant baseline covariates and MADRS 
scores

Of	 the	 45	 consented	 participants,	 we	 excluded	 four	 participants	
who elected to cease study participation at or before the first 

follow-	up	 visit	 (Figure	 1).	 All	 other	 participants	 (n = 41) were in-
cluded in the analysis, of whom three participants dropped out 
after the first follow- up visit and 38 fully completed the 8- week 
study. Table 1 shows the baseline features of these 41 study par-
ticipants, including age, sex, diagnostic category, race, and baseline 
MADRS	score.	There	were	no	missing	data	for	these	features.	For	
the	 participants	 who	 completed	 the	 study,	 MADRS	 scores	 were	
available	at	baseline	and	at	each	of	the	four	follow-	up	visits.	Among	
the three participants who dropped out after the first follow- up 
visit,	MADRS	scores	were	assessed	for	two	participants	at	the	first	
follow-	up	visit.	For	descriptive	purposes,	Figure	S1a,	b	shows	the	
participants’	MADRS	trajectories	over	time,	and	a	scatterplot	of	the	
average	of	the	MADRS	scores	versus	the	standard	deviation	of	the	
MADRS	scores	for	each	subject.

F I G U R E  1  CONSORT	flow	diagram

Assessed for eligibility and signed informed consent (n=45)

Terminated before first follow-up visit (n=4)
- Unable to download mobile application (n=1)
- Unable to use the mobile application (n=1)
- Declined to continue participation (n=2)

Completed baseline visit (n=45)

Terminated after first follow-up visit (n=3)
- Inconsistent access to mobile phone (n=1)
- Declined to continue participation (n=1)
- Duplicate / already completed study (n=1)

Included in analysis (n=41)

Completed study (n=38)

Major Depressive 
Disorder (n=9)

Bipolar 
Disorder (n=9)

Schizophrenia/ 
Schizoaffective (n=9)

Healthy
Control (n=11)
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3.2 | Assessing completeness of phone data

The	completeness	of	the	accelerometer	and	GPS	data	was	assessed	
at	the	participant	level.	For	the	accelerometer,	we	divided	the	num-
ber of minutes of data actually collected by the number of minutes of 
data expected to be collected. We examined the time period ranging 
from the day after the baseline visit to the day before the last follow-
	up	visit,	i.e.,	the	time	period	including	all	full	days	in	the	study.	Since	
accelerometer data were scheduled to be collected every minute, 
the expected number of minutes with data was the number of min-
utes	in	the	time	period.	The	completeness	of	GPS	data	was	assessed	
analogously, except the expected number of minutes of data was 
1/6	of	the	number	of	minutes	in	the	time	period	(the	2-	min	on-	cycle	
is	 1/6	 of	 the	 total	 cycle).	 The	 proportions	 for	 accelerometer	 and	
GPS	are	shown	in	Figure	S2a.	The	proportions	are	variable,	ranging	
from	0	to	0.99	for	accelerometer	and	from	0	to	0.87	for	GPS.	For	
the	accelerometer,	23	out	of	41	(56%)	participants	had	proportions	
of	0.5	or	higher.	For	GPS,	16	out	of	41	(39%)	participants	had	pro-
portions	of	0.5	or	higher.	The	proportions	tended	to	be	greater	for	
accelerometer	data	 than	 for	GPS	data.	Despite	 the	missingness,	 a	
large amount of data was captured over the course of the study, in-
cluding	674,969,086	accelerometer	measurements	and	14,733,731	
GPS	measurements.	The	quantity	of	collected	data	for	iOS	phones	
tended	to	be	greater	on	average	than	for	Android	phones.

Figure	S2b	shows	the	completion	rate	for	each	PHQ-	8	survey,	in-
dicated	by	the	solid	black	line.	Given	a	specific	survey,	its	completion	
rate was defined as the proportion of participants who completed 
the	survey.	If	a	participant	completed	Survey	t	after	Survey	t + 1 had 
been	sent,	they	were	counted	as	not	having	completed	Survey	t but 
were	counted	as	having	completed	Survey	t + 1. The completion rate 
was	95%	for	the	first	survey	and	80%	for	the	last	survey,	which	took	
place	approximately	two	months	after	the	baseline	visit.	Figure	S3	
shows a histogram of the number of weeks that the participant com-
pleted one or more PHQ- 8 surveys. If a participant completed more 
than one survey during some week (i.e., the participant was late on 
the	previous	week's	survey),	the	multiple	surveys	only	contributed	
1	to	the	participant's	 tally.	Overall,	78%	of	participants	completed	
PHQ- 8 surveys on 8 or more weeks.

As	 an	 example	 of	 passive	 data,	 Figure	 2a-	d	 plots	 the	 average	
activity	level	hour-	by-	hour	(from	12:00	a.m.	to	11:59	p.m.)	for	four	
randomly chosen participants in the schizophrenia/schizoaffective 
group	on	weekdays	and	weekends.	For	each	participant,	the	curves	
were computed using accelerometer data collected throughout their 
follow-	up	as	described	 in	detail	 in	Supplemental	Material.	For	any	
given 1- hr window, the average activity level estimates the propor-
tion of time that the participant was active (e.g., walking, using stairs) 
compared to stationary (e.g., sitting, standing, lying down) during 
this	hour	of	the	day.	On	weekdays,	the	participant	in	Panel	A	had	low	
activity levels overnight, which began rising around 7 a.m., and hit 
their	highest	levels	between	9	a.m.	and	1	p.m.,	followed	by	a	decline	
over the course of the evening. On weekends, their activity level was 
lower in the morning than on weekdays and was highest at 1 p.m. In 
interpreting	these	plots,	a	caveat	is	that	the	participant's	activity	was	

missed if the phone was not carried (e.g., it was left on a table). Thus, 
differences between the participants could be due to differences in 
their activity patterns, as well as differences in their phone use hab-
its (e.g., how often each participant carried their phone).

Data completeness for each passive modality, and for self- report, 
is	 summarized	 in	 Supplemental	 Results.	 In	 addition,	 we	 collected	
smartphone	communication	logs	from	Android	devices	(no	iOS	de-
vices	were	included	in	this	part	of	the	analysis).	Figure	3	shows	the	
cumulative distribution functions for the number of outgoing phone 
calls and the number of unique phone numbers dialed over Weeks 
2–	7,	stratified	by	status	(healthy	control	versus	schizophrenia/schi-
zoaffective,	 bipolar,	 or	 major	 depressive	 disorder).	 All	 individuals	
included here had communication log data collected throughout 
Weeks	2–	7.	Among	this	subset	of	participants	(n =	19),	the	median	
age	was	 33	 years	 (IQR:	 29	 –		 41)	 for	 healthy	 controls	 (n = 7) and 
52	years	(IQR:	43–	55)	for	others	(n = 12). The proportions of female 
participants	were	43%	and	83%,	respectively.	The	median	number	
of	outgoing	calls	was	56	(IQR:	24–	79)	for	the	healthy	controls	com-
pared	 to	121	 (IQR:	42–	195)	 for	 those	with	a	psychiatric	diagnosis.	
The median number of unique phone numbers was also lower for the 
healthy	controls	at	18	(IQR:	12–	24)	versus	28	(IQR:	21–	41)	for	those	
with a psychiatric diagnosis.

3.3 | MADRS prediction

Figure	 4a–	d	 shows	 the	 predicted	 MADRS	 scores	 compared	 to	 the	
clinician-	rated	MADRS	scores.	Panels	A–	D	correspond	to	Models	A–	D:	
Panel/Model	A	(baseline	MADRS	&	demographics	&	PHQ-	8);	Panel/
Model	 B	 (baseline	MADRS	&	 demographics	&	 passive	 data);	 Panel/
Model	C	(baseline	MADRS	&	demographics	&	PHQ-	8	&	passive	data);	
and	Panel/Model	D	(baseline	MADRS	&	demographics).	For	the	models	
that included passive data, we performed a principal component analy-
sis and used the first principal component as a predictor. When prin-
cipal component analysis was applied without excluding any subjects, 
the	first	principal	component	explained	46%	of	the	variance	in	the	data	
and	the	highest	weights	came	from	GPS-	based	features.	In	Table	S3,	
we provide the weighting for each sensor- based feature in the first 
principal	 component.	The	predicted	MADRS	 scores	were	 computed	
using leave- one- subject- out cross- validation, as described above. The 
average	RMSE	was	4.27	for	Model	A,	4.72	for	Model	B,	4.30	for	Model	
C,	and	4.66	for	Model	D.	That	is,	incorporation	of	passive	variables	in	
Model	B	did	not	meaningfully	improve	the	average	RMSE	compared	to	
using	only	the	baseline	MADRS	score	and	demographics	in	Model	D.

Models	A–	D	each	included	both	baseline	MADRS	and	demograph-
ics	as	predictors.	Although	basic	demographic	variables	can	be	easily	
collected	and	incorporated	in	the	model,	baseline	MADRS	scores	might	
not be commonly available. To assess prediction accuracy in this mod-
ified	setting,	we	next	omitted	the	baseline	MADRS	from	each	model	
and	otherwise	proceeded	as	above.	The	average	RMSE	was	5.46	for	
Model	A’	(demographics	&	PHQ-	8),	6.99	for	Model	B’	(demographics	
&	passive	data),	5.46	for	Model	C’	(demographics	&	PHQ-	8	&	passive	
data),	and	6.91	for	Model	D’	(demographics).	The	inclusion	of	baseline	
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MADRS	scores	improves	the	average	RMSE	by	approximately	1	point	
if	PHQ-	8	is	included	and	2	points	if	PHQ-	8	is	not	included.	Finally,	as	
a sensitivity analysis, if demographics are also omitted, we obtain the 
following	RMSE	values:	 5.69	 for	Model	A’’	 (PHQ-	8),	 7.94	 for	Model	
B’’	(passive	data),	5.72	for	Model	C’’	(PHQ-	8	&	passive	data),	7.95	for	
Model	D’’	(no	predictors,	only	an	intercept).	Results	for	different	mod-
els are summarized in Table 3.

As	 an	exploratory	 analysis,	we	evaluated	 the	 effect	 of	 including	
the second principal component (PC) as a predictor, which we call 
Model	E.	The	results	are	shown	in	Table	3	in	the	row	entitled	Model	E.	

Comparing	the	average	RMSE’s	after	adding	the	second	PC	(Model	E)	
relative	to	having	the	first	PC	only	(Model	B),	the	average	RMSE	slightly	
improves when there are no other variables in the model or when the 
other variables are demographics, but slightly worsens when baseline 
MADRS	 and	 demographics	 are	 included.	We	 conducted	 a	 separate	
exploratory analysis in which we identified the variables that had the 
highest loadings in the first PC: distance traveled maximum diameter, 
maximum	home	distance,	and	radius	of	gyration	on	the	weekend.	Since	
it is the most interpretable of the four, we used distance traveled on the 
weekend	as	the	single	passive	predictor	in	a	new	model	called	Model	F,	

F I G U R E  2   (a-	d).	Average	activity	level	from	12:00	a.m.	to	11:59	p.m.	on	weekdays	and	weekends	for	four	randomly	selected	participants	
in the schizophrenia/schizoaffective diagnostic group. The solid line corresponds to the weekday, and the dotted line to the weekend. The 
x- axis origin of hour =	0	corresponds	to	12:00	a.m.	See	Methods	S1	for	details	on	how	these	curves	were	computed

(a) (b)

(c)
(d)
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which	had	no	PC’s	included.	This	led	to	similar	average	RMSE’s	as	using	
the	first	PC	(Model	B)	and	using	the	first	and	second	PC	(Model	E).

4  | DISCUSSION

In this cross- disorder investigation, we found that including passive 
data as a predictor did not improve the prediction of clinician- rated 
MADRS	 scores.	 While	 the	 participant	 payment	 employed	 in	 this	
study precludes strong conclusions about acceptability, the high re-
tention rate suggests that, with compensation, participants are will-
ing to adopt this technology as part of a standard clinical assessment 
model.	A	similar	approach	has	successfully	been	used	in	other	set-
tings, such as to study patients with schizophrenia, where the sub-
jects were not paid for app use, not given additional support for app 
use, and not provided with check- in calls or study staff reminders to 
use	the	app	(Barnett	et	al.,	2018).

Both	academic	researchers	and	pharmaceutical	leaders	have	
suggested that passive measures may replace clinical evaluation 
in clinical trials as a means of improving signal detection (Harvey 
et	al.,	2018).	Setting	aside	the	need	for	clinician	involvement	to	
ensure participant safety, our results suggest that more work 
will be required to replace clinical raters for assessment of 
MADRS.

Although	 passive	 data	 did	 not	 perform	 as	well	 as	 phone-	based	
PHQ-	8	 in	terms	of	average	RMSE,	 it	 is	 important	to	stress	that	the	
passive approach requires only a one- time installation of the appli-
cation which, even if less precise, may be valuable in settings where 
individuals are unlikely to adhere to a survey protocol, especially 
for extended time periods and in the absence of financial or other 
incentives.

One possible explanation for why incorporating passive variables 
in	Model	B	did	not	 improve	the	average	RMSE	compared	to	using	
only	 the	 baseline	MADRS	 score	 and	 demographics	 in	Model	D	 is	
the	varying	data	quality	among	participants.	For	example,	Figure	S4	
shows the availability of accelerometer data for three participants. 
For	 each	 hour	 over	 the	 course	 of	 the	 follow-	up,	we	 plot	 the	 pro-
portion	of	minutes	with	accelerometer	data	collected.	A	shading	of	
white corresponds to 0 (no data collected during that hour), black to 
1 (data collected at every minute), and different shadings of gray to 
in- between values. The x- axis shows the week of the follow- up, and 
the y- axis shows the day of the week with the tick marks occurring 
at 12:00 a.m. The participant in the top panel had high data quality 
throughout their follow- up. The participant in the middle panel had 
high data quality during most of the study with some long gaps with 
no data. The participant in the bottom panel had some medium data 
quality	periods	interspersed	with	periods	with	no	data.	Using	incom-
plete	passive	data	to	predict	the	MADRS	score	can	be	challenging	
since	the	timing	of	the	missing	gaps	may	not	be	random	(Figure	S4).	
When deriving our predictors from passive data, we avoided the 
naïve approach of taking averages across the available data, which 
would overweight time intervals during which data tended to be col-
lected. Instead, we utilized a more robust method for handling miss-
ingness,	which	is	described	in	Methods	S1.	However,	the	predictors	
may be inaccurate when the proportions of data collected are low 
(Figure	S2a).

In a meta- analysis of seven smartphone- based digital pheno-
typing studies, there was no significant difference found in levels of 
missing data by sex, age, educational background, and phone operat-
ing	system	for	either	accelerometer	or	GPS	data	(Kiang	et	al.,	2019).	
Another	study	found	that	levels	of	missing	GPS	and	accelerometer	
data were predictive of future clinical survey scores in a cohort of 

F I G U R E  3   Cumulative distribution functions for the number of outgoing calls (a) and the number of dialed phone numbers (b) among 
Android	participants,	stratified	by	healthy	control	status.	HC,	healthy	control;	non-	HC,	individuals	with	a	psychiatric	diagnosis

(a) (b)
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patients with schizophrenia (Torous et al., 2018), which presents a 
potential future extension of the analyses presented here.

We note multiple important limitations in considering our results. 
First,	the	study	design	precludes	conclusions	about	application	of	smart-
phone	apps	in	longer-	term	studies	or	those	using	'lighter	touch'	designs	
without	 in-	person	 visits.	 Second,	 we	 cannot	 exclude	 the	 possibility	
that additional passive measures, or alternate means of analyzing such 
measures, will yield better prediction of clinician ratings. Indeed, our 
work should encourage other investigators to apply our open- source 
platform and further develop our analytic methodologies. Our analy-
ses	mix	between-	person	and	within-	person	variation	in	MADRS	scores.	

Since	 these	are	distinct	 types	of	 variation,	 a	potential	 area	of	 future	
research is to separately assess within- person changes from between- 
person	differences.	Third,	because	of	the	IRB-	mandated	omission	of	the	
PHQ suicide item, we likely underestimate the ability of this measure to 
capture	more	severe	depression.	Fourth,	as	a	pilot	study,	sample	size	is	
modest and thus the result that passive measures do not significantly 
contribute	to	predicting	MADRS	must	be	viewed	as	preliminary.	In	fu-
ture studies, strategies to reduce missing data (for example, by mon-
itoring data missingness for each participant during the course of the 
study and intervening where required) merit consideration. Higher data 
quality may help improve the utility of passive measures.

F I G U R E  4  Montgomery–	Åsberg	Depression	Rating	Scale	(MADRS)	score	predictions	using	four	models.	All	models	included	age,	sex,	
diagnostic	category,	and	baseline	MADRS	score	as	predictors.	They	differed	by	which	phone-	based	variables	were	used	as	predictors:	
Patient	Health	Questionnaire-	8	survey	scores	only	(a),	passive	data	only	(b),	both	(c),	and	neither	(d).	BP	I,	bipolar	disorder;	HC,	healthy	
control;	MDD,	major	depressive	disorder;	SCH,	schizophrenia/schizoaffective	disorder
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We also emphasize strengths of using passively collected 
smartphone data in psychiatric settings. Passive data likely capture 
depressive features that are not well- measured by clinical raters, 
such as physical activity levels, spatial isolation (as measured via 
GPS-	based	home	time),	and	social	isolation	(as	measured	via	com-
munication logs). Investigation of this hypothesis represents an im-
portant priority for clinical investigators seeking to develop a next 
generation of pragmatic trials. In other words, rather than simply 
replacing clinical raters, passive measures may themselves repre-
sent useful biomarkers, but only if they can be validated for this 
role.

We elected to conduct a cross- disorder study to recognize 
that categorical diagnosis fails to capture the dimensional na-
ture	 of	 psychopathology,	 consistent	with	 the	NIMH’s	 Research	
Domain Criteria framework (Insel et al., 2010). That is, it may be 
useful to capture negative valence symptoms such as depression 
across a range of disorders, not just in major depressive disor-
der. While such symptoms may be attributed to different under-
lying processes (e.g., negative symptoms in schizophrenia), our 
results suggest the ability of a single platform to measure across 
disorders.

5  | CONCLUSION

While passively collected smartphone data did not improve the 
prediction	of	MADRS	scores	 in	our	cross-	disorder	study,	we	dem-
onstrate	 its	 application	 to	 capture	 features	 of	 patients’	 daily	
functioning— such as physical activity, social isolation, and spatial 
isolation— that are otherwise difficult to capture with surveys. These 
various behavioral phenotypes, which are listed in Table 2 and de-
fined	in	the	Supplement,	can	describe	participants'	physical	activity	
(e.g., from the accelerometer data), spatial isolation (e.g., time spent 
at	home,	computed	from	GPS	data),	and	social	isolation	(e.g.,	number	
of	outgoing	calls	from	Android	call	log	data).
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TA B L E  3  The	average	root-	mean-	squared	error	(RMSE)	in	predicting	the	MADRS	score	(scale	0–	60)	using	three	different	variants	of	
Models	A–	D

+ demographics
+ baseline MADRS
+ demographics

Model	A
(PHQ−8)

5.69 5.46 4.27

Model	B
(passive data)

7.94 6.99 4.72

Model	C
(PHQ−8	&	passive)

5.72 5.46 4.30

Model	D
(no phone- based predictors)

7.95
(intercept only)

6.91 4.66

Model	E
(first and second principal component)

7.86 6.97 4.75

Model	F
(distance traveled on weekend)

7.96 6.97 4.72

Abbreviations:	MADRS,	Montgomery–	Åsberg	Depression	Rating	Scale;	PHQ-	8,	Patient	Health	Questionnaire-	8.

https://publons.com/publon/10.1002/brb3.2077
https://publons.com/publon/10.1002/brb3.2077
https://orcid.org/0000-0001-9312-7673
https://orcid.org/0000-0001-9312-7673
https://orcid.org/0000-0002-5862-6757
https://orcid.org/0000-0002-5862-6757


     |  11 of 12PELLEGRINI Et aL.

R E FE R E N C E S
Alvarez-	Lozano,	 J.,	 Osmani,	 V.,	 Mayora,	 O.,	 Frost,	 M.,	 Bardram,	 J.,	

Faurholt-	Jepsen,	M.,	&	Kessing,	L.	V.	 (2014).	Tell me your apps and I 
will tell you your mood: Correlation of apps usage with bipolar disorder 
state.	Proceedings	of	the	7th	International	Conference	on	PErvasive	
Technologies	Related	to	Assistive	Environments	(PETRA	’14),	Article	
No.	19.	Rhodes,	Greece.

Barnett,	I.,	&	Onnela,	J.-	P.	(2020).	Inferring	mobility	measures	from	GPS	
traces with missing data. Biostatistics, 21(2),	 e98–	e112.	https://doi.
org/10.1093/biost	atist	ics/kxy059

Barnett,	I.,	Torous,	J.,	Staples,	P.,	Sandoval,	L.,	Keshavan,	M.,	&	Onnela,	J.-	
P. (2018). Relapse prediction in schizophrenia through digital pheno-
typing:	A	pilot	study.	Neuropsychopharmacology, 43(8),	1660–	1666.	
https://doi.org/10.1038/s4138	6-	018-	0030-	z

Benson,	 E.,	 Haghighi,	 A.,	 &	 Barzilay,	 R.	 (2011).	 Event discovery in so-
cial media feeds.	 Proceedings	 of	 the	 49th	 Annual	 Meeting	 of	 the	
Association	for	Computational	Linguistics,	389–	398.	Association	for	
Computational	Linguistics.

Canzian,	L.,	&	Musolesi,	M.	(2015).	Trajectories of depression: Unobtrusive 
monitoring of depressive states by means of smartphone mobility 
traces analysis.	 Proceedings	 of	 the	 2015	 ACM	 International	 Joint	
Conference	on	Pervasive	and	Ubiquitous	Computing	(UbiComp	’15),	
1293–	1304.	https://doi.org/10.1145/27508	58.2805845

Cerwall,	P.	(2016).	Ericsson mobility report, mobile world congress edition. 
Ericsson.

De	 Choudhury,	 M.,	 Gamon,	 M.,	 Counts,	 S.,	 &	 Horvitz,	 E.	 (2013).	
Predicting depression via social media.	 Proceedings	 of	 the	 Seventh	
International	AAAI	Conference	on	Weblogs	and	Social	Media,	128–	
137.	Association	for	the	Advancement	of	Artificial	Intelligence.

Diagnostic and statistical manual of mental disorders: DSM- IV- TR. , 4th. ed. 
(2000)	American	Psychiatric	Association.

Dickerson,	 R.	 F.,	 Gorlin,	 E.	 I.,	 &	 Stankovic,	 J.	 A.	 (2011,	 October	 10).	
Empath: A continuous remote emotional health monitoring system for de-
pressive illness. Presented at the Proceedings of the 2nd Conference 
on	Wireless	Health,	San	Diego,	California.

Faurholt-	Jepsen,	 M.,	 Frost,	 M.,	 Ritz,	 C.,	 Christensen,	 E.	 M.,	 Jacoby,	
A.	 S.,	Mikkelsen,	 R.	 L.,	 Knorr,	 U.,	 Bardram,	 J.	 E.,	 Vinberg,	M.,	 &	
Kessing,	 L.	 V.	 (2015).	 Daily	 electronic	 self-	monitoring	 in	 bipolar	
disorder	using	smartphones	–		the	MONARCA	I	trial:	A	randomized,	
placebo- controlled, single- blind, parallel group trial. Psychological 
Medicine, 45(13),	 2691–	2704.	 https://doi.org/10.1017/S0033	
29171	5000410

Glenn,	 T.,	 &	 Monteith,	 S.	 (2014).	 New	 measures	 of	 mental	 state	 and	
behavior based on data collected from sensors, smartphones, and 
the Internet. Current Psychiatry Reports, 16(12),	 523.	 https://doi.
org/10.1007/s1192	0-	014-	0523-	3

Gruenerbl,	 A.,	 Osmani,	 V.,	 Bahle,	 G.,	 Carrasco,	 J.	 C.,	 Oehler,	 S.,	 &	
Mayora,	O.,	&	Lukowicz,	P.	(2014).	Using smart phone mobility traces 
for the diagnosis of depressive and manic episodes in bipolar patients. 
Proceedings	of	the	5th	Augmented	Human	International	Conference	
(AH	’14),	1–	8.	https://doi.org/10.1145/25820	51.2582089

Gulbahce,	N.,	Yan,	H.,	Dricot,	A.,	Padi,	M.,	Byrdsong,	D.,	Franchi,	R.,	Lee,	
D.-	S.,	Rozenblatt-	Rosen,	O.,	Mar,	J.	C.,	Calderwood,	M.	A.,	Baldwin,	A.,	
Zhao,	B.	O.,	Santhanam,	B.,	Braun,	P.,	Simonis,	N.,	Huh,	K.-	W.,	Hellner,	
K.,	Grace,	M.,	Chen,	A.,	…	Barabási,	A.-	L.	 (2012).	Viral	perturbations	
of host networks reflect disease etiology. PLoS Computational Biology, 
8(6),	e1002531.	https://doi.org/10.1371/journ	al.pcbi.1002531

Harvey,	 P.,	 Farchione,	 T.,	 Keefe,	 R.,	 &	Davis,	M.	 (2018).	 2018	Autumn	
Abstract:	 Innovative	Uses	of	Technology	 for	Measuring	Outcomes	
in Clinical Trials -  (Parts 1 and 2). Retrieved from The International 
Society	 for	 CNS	 Clinical	 Trials	 and	Methodology	website:	 https://
isctm.org/abstr act- innov ative - uses- of- techn ology - for- measu ring- 
outco me- in- clini cal- trial s- parts - 1- and- 2/

Iniesta,	 R.,	 Stahl,	 D.,	 &	 McGuffin,	 P.	 (2016).	 Machine	 learning,	 statis-
tical learning and the future of biological research in psychiatry. 

Psychological Medicine, 46(12),	2455–	2465.	https://doi.org/10.1017/
S0033	29171	6001367

Insel,	T.,	Cuthbert,	B.,	Garvey,	M.,	Heinssen,	R.,	Pine,	D.	S.,	Quinn,	K.,	
Sanislow,	 C.,	 &	Wang,	 P.	 (2010).	 Research	 domain	 criteria	 (RDoC):	
Toward a new classification framework for research on mental dis-
orders. American Journal of Psychiatry, 167(7),	748–	751.	https://doi.
org/10.1176/appi.ajp.2010.09091379

Jain,	S.	H.,	Powers,	B.	W.,	Hawkins,	J.	B.,	&	Brownstein,	J.	S.	(2015).	The	
digital phenotype. Nature Biotechnology, 33(5),	462–	463.	https://doi.
org/10.1038/nbt.3223

Jashinsky,	 J.,	 Burton,	 S.	 H.,	 Hanson,	 C.	 L.,	 West,	 J.,	 Giraud-	Carrier,	
C.,	 Barnes,	 M.	 D.,	 &	 Argyle,	 T.	 (2014).	 Tracking	 suicide	 risk	 fac-
tors	 through	 Twitter	 in	 the	 US.	 Crisis, 35(1),	 51–	59.	 https://doi.
org/10.1027/0227-	5910/a000234

Kane,	 J.	 M.,	 Perlis,	 R.	 H.,	 DiCarlo,	 L.	 A.,	 Au-	Yeung,	 K.,	 Duong,	 J.,	 &	
Petrides,	G.	(2013).	First	experience	with	a	wireless	system	incorpo-
rating physiologic assessments and direct confirmation of digital tab-
let ingestions in ambulatory patients with schizophrenia or bipolar 
disorder. The Journal of Clinical Psychiatry, 74(6),	e533–	540.	https://
doi.org/10.4088/JCP.12m08222

Kappeler-	Setz,	C.,	Gravenhorst,	F.,	Schumm,	J.,	Arnrich,	B.,	&	Tröster,	G.	
(2013). Towards long term monitoring of electrodermal activity in 
daily life. Personal and Ubiquitous Computing, 17(2),	261–	271.	https://
doi.org/10.1007/s0077	9-	011-	0463-	4

Katikalapudi,	R.,	Chellappan,	S.,	Montgomery,	F.,	Wunsch,	D.,	&	Lutzen,	
K.	 (2012).	 Associating	 Internet	 usage	 with	 depressive	 behavior	
among college students. IEEE Technology and Society Magazine, 31(4), 
73–	80.	https://doi.org/10.1109/MTS.2012.2225462

Kiang,	 M.	 V.,	 Chen,	 J.	 T.,	 Krieger,	 N.,	 Buckee,	 C.	 O.,	 &	 Onnela,	 J.-	P.	
(2019).	Human	Factors,	Demographics,	and	Missing	Data	 in	Digital	
Phenotyping:	Boston,	Massachusetts	2015-	2018.

Kroenke,	K.,	Strine,	T.	W.,	Spitzer,	R.	L.,	Williams,	J.	B.	W.,	Berry,	J.	T.,	&	
Mokdad,	A.	H.	(2009).	The	PHQ-	8	as	a	measure	of	current	depres-
sion in the general population. Journal of Affective Disorders, 114(1–	3),	
163–	173.	https://doi.org/10.1016/j.jad.2008.06.026

Kubota,	K.	 J.,	 Chen,	 J.	A.,	&	 Little,	M.	A.	 (2016).	Machine	 learning	 for	
large-	scale	wearable	 sensor	data	 in	Parkinson’s	 disease:	Concepts,	
promises, pitfalls, and futures. Movement Disorders, 31(9),	 1314–	
1326.	https://doi.org/10.1002/mds.26693

Kuehn,	 B.	 M.	 (2016).	 FDA’s	 foray	 into	 big	 data	 still	 maturing.	 JAMA, 
315(18),	1934–	1936.	https://doi.org/10.1001/jama.2016.2752

Matic,	A.,	Mehta,	P.,	Rehg,	J.	M.,	Osmani,	V.,	&	Mayora,	O.	(2012).	Monitoring	
dressing	activity	failures	through	RFID	and	video.	Methods of Information 
in Medicine, 51(1),	45–	54.	https://doi.org/10.3414/ME10-	02-	0026

McCoy,	T.	H.,	&	Hughes,	M.	C.	(2018).	Preserving	patient	confidentiality	
as data grow: Implications of the ability to reidentify physical activity 
data. JAMA Network Open, 1(8),	 e186029.	https://doi.org/10.1001/
jaman	etwor	kopen.2018.6029

McIntyre,	G.,	Gocke,	R.,	Hyett,	M.,	Green,	M.,	&	Breakspear,	M.	(2009).	
An approach for automatically measuring facial activity in depressed 
subjects.	2009	3rd	International	Conference	on	Affective	Computing	
and	 Intelligent	 Interaction	 and	 Workshops,	 1–	8.	 https://doi.
org/10.1109/ACII.2009.5349593

Minassian,	A.,	Henry,	B.	L.,	Geyer,	M.	A.,	Paulus,	M.	P.,	Young,	J.	W.,	&	
Perry, W. (2010). The quantitative assessment of motor activity in 
mania and schizophrenia. Journal of Affective Disorders, 120(1–	3),	
200–	206.	https://doi.org/10.1016/j.jad.2009.04.018

Miskelly,	 F.	 (2005).	 Electronic	 tracking	 of	 patients	 with	 dementia	 and	
wandering using mobile phone technology. Age and Ageing, 34(5),	
497–	499.	https://doi.org/10.1093/agein	g/afi145

Mobile	 Fact	 Sheet.	 (2018,	 February	 5).	 Retrieved	 from	 Pew	 Research	
Center website: http://www.pewin ternet.org/fact- sheet/ mobil e/

Monteith,	S.,	Glenn,	T.,	Geddes,	J.,	&	Bauer,	M.	(2015).	Big	data	are	coming	
to	psychiatry:	A	general	introduction.	International Journal of Bipolar 
Disorders, 3(1),	21.	https://doi.org/10.1186/s4034	5-	015-	0038-	9

https://doi.org/10.1093/biostatistics/kxy059
https://doi.org/10.1093/biostatistics/kxy059
https://doi.org/10.1038/s41386-018-0030-z
https://doi.org/10.1145/2750858.2805845
https://doi.org/10.1017/S0033291715000410
https://doi.org/10.1017/S0033291715000410
https://doi.org/10.1007/s11920-014-0523-3
https://doi.org/10.1007/s11920-014-0523-3
https://doi.org/10.1145/2582051.2582089
https://doi.org/10.1371/journal.pcbi.1002531
https://isctm.org/abstract-innovative-uses-of-technology-for-measuring-outcome-in-clinical-trials-parts-1-and-2/
https://isctm.org/abstract-innovative-uses-of-technology-for-measuring-outcome-in-clinical-trials-parts-1-and-2/
https://isctm.org/abstract-innovative-uses-of-technology-for-measuring-outcome-in-clinical-trials-parts-1-and-2/
https://doi.org/10.1017/S0033291716001367
https://doi.org/10.1017/S0033291716001367
https://doi.org/10.1176/appi.ajp.2010.09091379
https://doi.org/10.1176/appi.ajp.2010.09091379
https://doi.org/10.1038/nbt.3223
https://doi.org/10.1038/nbt.3223
https://doi.org/10.1027/0227-5910/a000234
https://doi.org/10.1027/0227-5910/a000234
https://doi.org/10.4088/JCP.12m08222
https://doi.org/10.4088/JCP.12m08222
https://doi.org/10.1007/s00779-011-0463-4
https://doi.org/10.1007/s00779-011-0463-4
https://doi.org/10.1109/MTS.2012.2225462
https://doi.org/10.1016/j.jad.2008.06.026
https://doi.org/10.1002/mds.26693
https://doi.org/10.1001/jama.2016.2752
https://doi.org/10.3414/ME10-02-0026
https://doi.org/10.1001/jamanetworkopen.2018.6029
https://doi.org/10.1001/jamanetworkopen.2018.6029
https://doi.org/10.1109/ACII.2009.5349593
https://doi.org/10.1109/ACII.2009.5349593
https://doi.org/10.1016/j.jad.2009.04.018
https://doi.org/10.1093/ageing/afi145
http://www.pewinternet.org/fact-sheet/mobile/
https://doi.org/10.1186/s40345-015-0038-9


12 of 12  |     PELLEGRINI Et aL.

Onnela,	 J.-	P.,	 &	 Rauch,	 S.	 L.	 (2016).	 Harnessing	 Smartphone-	Based	
Digital	 Phenotyping	 to	 Enhance	 Behavioral	 and	 Mental	 Health.	
Neuropsychopharmacology, 41(7),	 1691–	1696.	 https://doi.
org/10.1038/npp.2016.7

Prinz,	F.,	Schlange,	T.,	&	Asadullah,	K.	(2011).	Believe	it	or	not:	How	much	
can we rely on published data on potential drug targets? Nature 
Reviews Drug Discovery, 10(9),	 712.	 https://doi.org/10.1038/nrd34	
39-	c1

Roh,	 T.,	 Bong,	 K.,	 Hong,	 S.,	 Cho,	 H.,	 &	 Yoo,	 H.-	J.	 (2012).	 Wearable 
mental- health monitoring platform with independent component anal-
ysis and nonlinear chaotic analysis.	 2012	 34th	 Annual	 International	
Conference	of	the	IEEE	Engineering	in	Medicine	and	Biology	Society	
(EMBC),	4541–	4544.	https://doi.org/10.1109/EMBC.2012.6346977

Saeb,	S.,	Zhang,	M.,	Karr,	C.	J.,	Schueller,	S.	M.,	Corden,	M.	E.,	Kording,	
K.	 P.,	 &	 Mohr,	 D.	 C.	 (2015).	 Mobile	 Phone	 Sensor	 Correlates	 of	
Depressive	Symptom	Severity	in	Daily-	Life	Behavior:	An	Exploratory	
Study.	 Journal of Medical Internet Research, 17(7),	 e175.	https://doi.
org/10.2196/jmir.4273

Torous,	J.,	Kiang,	M.	V.,	Lorme,	J.,	&	Onnela,	J.-	P.	(2016).	New	Tools	for	
New	Research	in	Psychiatry:	A	Scalable	and	Customizable	Platform	
to	Empower	Data	Driven	Smartphone	Research.	Journal of Medical 
Internet Research: Mental Health, 3(2),	e16.	https://doi.org/10.2196/
mental.5165

Torous,	J.,	Staples,	P.,	Barnett,	I.,	Sandoval,	L.	R.,	Keshavan,	M.,	&	Onnela,	
J.- P. (2018). Characterizing the clinical relevance of digital pheno-
typing data quality with applications to a cohort with schizophre-
nia. Npj Digital Medicine, 1(1),	 15.	 https://doi.org/10.1038/s4174	
6-	018-	0022-	8

Torous,	 J.,	 Staples,	P.,	 Shanahan,	M.,	 Lin,	C.,	 Peck,	P.,	Keshavan,	M.,	&	
Onnela,	 J.-	P.	 (2015).	Utilizing	 a	 Personal	 Smartphone	Custom	App	
to	Assess	 the	 Patient	Health	Questionnaire-	9	 (PHQ-	9)	Depressive	
Symptoms	 in	 Patients	 With	 Major	 Depressive	 Disorder.	 Journal 
of Medical Internet Research: Mental Health, 2(1), e8. https://doi.
org/10.2196/mental.3889

Wang,	R.,	Scherer,	E.	A.,	Tseng,	V.	W.	S.,	Ben-	Zeev,	D.,	Aung,	M.	S.	H.,	
Abdullah,	 S.,	&	Merrill,	M.	 (2016).	CrossCheck: Toward passive sens-
ing and detection of mental health changes in people with schizophre-
nia.	 Proceedings	 of	 the	 2016	ACM	 International	 Joint	 Conference	
on	 Pervasive	 and	Ubiquitous	 Computing	 (UbiComp	 ’16),	 886–	897.	
https://doi.org/10.1145/29716	48.2971740

SUPPORTING INFORMATION
Additional	 supporting	 information	 may	 be	 found	 online	 in	 the	
Supporting	Information	section.

How to cite this article:	Pellegrini	AM,	Huang	EJ,	Staples	PC,	
et	al.	Estimating	longitudinal	depressive	symptoms	from	
smartphone data in a transdiagnostic cohort. Brain Behav. 
2022;12:e2077. https://doi.org/10.1002/brb3.2077

https://doi.org/10.1038/npp.2016.7
https://doi.org/10.1038/npp.2016.7
https://doi.org/10.1038/nrd3439-c1
https://doi.org/10.1038/nrd3439-c1
https://doi.org/10.1109/EMBC.2012.6346977
https://doi.org/10.2196/jmir.4273
https://doi.org/10.2196/jmir.4273
https://doi.org/10.2196/mental.5165
https://doi.org/10.2196/mental.5165
https://doi.org/10.1038/s41746-018-0022-8
https://doi.org/10.1038/s41746-018-0022-8
https://doi.org/10.2196/mental.3889
https://doi.org/10.2196/mental.3889
https://doi.org/10.1145/2971648.2971740
https://doi.org/10.1002/brb3.2077

