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Abstract

Drug combinations have demonstrated great potential in cancer treatments. They alleviate

drug resistance and improve therapeutic efficacy. The fast-growing number of anti-cancer

drugs has caused the experimental investigation of all drug combinations to become costly

and time-consuming. Computational techniques can improve the efficiency of drug combi-

nation screening. Despite recent advances in applying machine learning to synergistic drug

combination prediction, several challenges remain. First, the performance of existing meth-

ods is suboptimal. There is still much space for improvement. Second, biological knowledge

has not been fully incorporated into the model. Finally, many models are lack interpretability,

limiting their clinical applications. To address these challenges, we have developed a knowl-

edge-enabled and self-attention transformer boosted deep learning model, TranSynergy,

which improves the performance and interpretability of synergistic drug combination predic-

tion. TranSynergy is designed so that the cellular effect of drug actions can be explicitly

modeled through cell-line gene dependency, gene-gene interaction, and genome-wide

drug-target interaction. A novel Shapley Additive Gene Set Enrichment Analysis (SA-

GSEA) method has been developed to deconvolute genes that contribute to the synergistic

drug combination and improve model interpretability. Extensive benchmark studies demon-

strate that TranSynergy outperforms the state-of-the-art method, suggesting the potential of

mechanism-driven machine learning. Novel pathways that are associated with the synergis-

tic combinations are revealed and supported by experimental evidences. They may provide

new insights into identifying biomarkers for precision medicine and discovering new anti-

cancer therapies. Several new synergistic drug combinations have been predicted with high

confidence for ovarian cancer which has few treatment options. The code is available at

https://github.com/qiaoliuhub/drug_combination.
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Author summary

The number of anti-cancer drugs has been consistently and quickly growing. They are

mainly used as standardized mono-therapy. Drug combinations show substantial advan-

tages over the anti-cancer mono-therapy. Cancer cells treated with the mono-therapy

could later activate bypassing pathways and harbor drug resistances. Drug combinations

can alleviate this issue by using a smaller doses of each anti-cancer drug or targeting mul-

tiple oncogenic pathways. However, the investigation of all anti-cancer drug combinations

using experimental methods is costly and time-consuming. Machine learning provides an

attractive solution to screening synergistic drug combinations, but it is a black-box and

not easy to explain. We have developed a knowledge-enabled deep learning model, TranS-

ynergy, to predict synergistic drug combinations and have demonstrated that our model

outperformed other state-of-the-art methods. A novel Shapley Additive Gene Set Enrich-

ment Analysis (SA-GSEA) method is introduced to improve the interpretability of the

machine learning model. Using TransSynergy and SA-GSEA, we can deconvolute genes

responsible for the synergistic drug combination, suggesting the potential of machine

learning in developing precision anti-cancer therapy.

Introduction

With the advance of understandings of cancer cell disorders, more and more anti-cancer

drugs have been designed and are under investigation. However, the "one drug, one target"

drug monotherapy suffers limited efficiency due to inherent or acquired resistance [1–3].

Drug combination therapy is a more effective strategy to solve this challenging problem [4–8].

In addition to cancer, synergistic drug combinations have several successful applications in the

treatment of other diseases, such as AIDS [9,10], and fungal or bacterial infections [11–13].

Thus, the selection of efficient drug combination therapy for pathogens emerges as a compel-

ling treatment strategy. Considering that the number of anti-cancer drugs has increased drasti-

cally, the possible combination of all these drugs has also become enormous [14,15]. The

existing experimental method requires a large number of samples with different drug doses

and cancer cells [16], thus it is infeasible to exhaust all the possible drug combinations. The

computational method can be used to pre-select drug combinations with high synergy at

lower cost and with more efficiency. The recent advancement of computational modeling,

especially the deep learning technique, has dramatically increased the prediction power of

computational models and has many promising applications in the biomedical field. The com-

bination of computational and experimental methods can improve the effectiveness of the

drug combination discovery.

The deep learning model has been shown to have superior performance to conventional

machine learning algorithms in many biomedical applications [17,18]. High-quality experi-

mental drug combination datasets are necessary for the success of deep learning. With the

advancement of high throughput drug combination screening tests, the number of samples

grows fast so that the data size limitation is considerably alleviated [19–23]. DeepSynergy is a

state-of-the-art deep learning-based prediction model for the prediction of the synergistic

drug combination. It has been trained using the dataset released by Merck [24]. In addition to

suboptimal performance, the issue for this model is that the interpretation of the model is lim-

ited by the way adopted to represent drugs and cell lines as well as the model architecture. For

instance, it is not easy to associate the contribution or feature importance of drug descriptors,
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including toxophores, physicochemical properties, and fingerprints, with the mechanism of

drug action in cells using a feedforward neural network [25–27].

Recent studies have shown that gene-gene interaction and drug mechanism of action drew

more and more attention in the synergistic drug combination study [28]. In addition, cell line

drug sensitivity strongly depends on whether the drug directly or indirectly inhibits the essen-

tial gene of the cell line [22]. Thus, it is desirable to incorporate information from the gene-

gene interaction network, gene dependency, and drug-target association into the computa-

tional model. To this end, we implemented a mechanism-driven and self-attention boosted

deep learning model TranSynergy for the prediction of synergistic drug combinations and the

deconvolution of cellular mechanisms contributing to them. We applied the random walk

with restart algorithm (RWR) on a protein-protein interaction (PPI) network to infer a novel

drug-target profile as the drug features. For the features of each cell line, we used gene expres-

sions or gene dependencies profile. These mechanism related features make the model readily

interpretable. Furthermore, we applied the self-attention transformer to encode the gene-gene

interactions responsible for the synergistic drug combination. Attention mechanisms have

been widely used in image processing and natural language processing [29–31] and has shown

promise in the predictive modeling of nucleic acid sequences [32]. When combining the net-

work propagated drug target profile, gene dependency, and gene expression, TranSynergy out-

performs the state-of-the-art model. To reveal novel genes that are associated with the

synergistic drug combination from the learned biological relations in the TranSynergy model,

we developed a novel Shapley Additive Gene Set Enrichment Analysis (SA-GSEA) based on

SHAP [33]. The revealed novel gene set may serve as a patient-specific biomarker for precision

medicine or drug targets for discovering new cancer combination therapy. We further applied

the model for the prediction of novel synergistic drug combinations targeting cancers that

have few treatment options. Given the emergence of next-generation sequencing technology,

the transcriptome of patient-derived cancer cells can be readily obtained [34]. The TranSy-

nergy can be used to predict and interpret the synergistic drug combination in distinct

patient-derived cancer cells. Our study shows the potential of a mechanism-driven interpret-

able machine learning model in the application of personalized cancer treatment.

Results

TranSynergy architecture

TranSynergy is a transformer boosted deep learning model for the prediction of drug combi-

nation synergy. It includes three major components, input dimension reduction component,

self-attention transformer component, and output fully connected component (Fig 1). The

input features are composed of three vectors. Each vector has 2401 dimensions, forming a

2401x3 matrix. The first two columns are the representations of two drugs. The third column

is the representation of the cell lines. The drug feature is a drug-target interaction profile on

2401 selected genes. The cell line feature includes the gene expression or gene dependency of

2401 genes. It is worth mentioning that the number of columns changes to 4 when both gene

expression and dependency are used for the representation of cells. In the matrix, each row

corresponds to a gene or protein, and encodes the impact of drug on the gene. The input

dimension reduction component is a single-layer neural network to reduce the dimension of

input. The modified transformer component takes the output from the first component and

includes a scaled dot product based self-attention mechanism module. Here, the self-attention

is applied to model gene-gene interactions. It is also worth noting that we customized the

transformer model by removing the positional encoding layer since the order input feature

dimensions should be irrelevant to the final prediction. Then the final output of the predicted
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synergy score comes from a fully connected neural network. The hyperparameters used in

each component and training process are listed in S1 Table.

The input of our deep learning model includes the vector representations of two drug mole-

cules in the drug combination and a cell line that is treated by the drug combination. One pop-

ular strategy is to use the physicochemical properties, toxicophores, or extended connected

fingerprints (ECFP) that are derived from the molecular structure of chemical compounds for

the representation of drugs [24]. The disadvantage of using the chemical structure as the fea-

ture is that it is not straightforward to establish a relationship between the physicochemical

properties of drugs and the cellular mechanism of drug action. Biological representation based

on drug-target interaction profile is an alternative strategy to infer the drug representation vec-

tor [35]. Drug target information that is collected from databases, including DrugBank and

ChEMBL [36,37], are mainly proteins that can directly associate with drugs. We also need to

encode the effect of drugs on down-stream non-target proteins and the whole biological sys-

tem. The protein-protein interaction network is utilized to infer the drug response of the non-

target proteins considering that the protein-protein interaction mediates information trans-

mission in the biological system. We apply the RWR algorithm to simulate this network propa-

gation process (Fig 2). Compared with the chemical information-based approaches for drug

representation, the target-based representation of drug molecules has the following advan-

tages. Firstly, drug target information is closely related to the cellular response to the drug

treatment at both the molecular level and system level. Secondly, it makes it possible to explain

the model output, drug combination synergy, in terms of the contribution of each protein or

gene.

Because drug-combination therapy has cell line-specific responses, another important com-

ponent of inputs is the cell line vector representation. The DeepSynergy uses gene expression

profile as the cell line vector representation [24]. We have applied a novel alternative strategy

to infer cell line vector representation. The gene essentiality varies in the different cell lines

Fig 1. The architecture of TranSynergy. The input features include vector representations of Drug A, Drug B, and cell line vector, respectively. The first input

dimension reduction component reduces the input dimension from 2401x3 to 512x3. The second component is a scaled dot product self-attention transformer. The

third component is a fully connected neural network. Be noted that input matrix dimension changes to 2401x4 when both gene expression and gene dependency

profiles are used for cell line representation.

https://doi.org/10.1371/journal.pcbi.1008653.g001
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and plays a critical role in anti-cancer drug sensitivity. Intuitively, drugs that affect essential

proteins will cause the cell to have a more devastating response. Thus, we take gene essentiality

or gene dependence into account and this information is one of the inputs into our model.

This information has been collected by the BROAD institution using experimental methods

[38]. They have performed a genome-wide loss-of-function screening with pooled RNAi or

CRISPR library and have investigated the resulted cellular response.

TranSynergy outperforms state-of-the-art model and shows superior

performance across different tissues

To evaluate the TranSynergy architecture on drug combination synergy score prediction, we

tested our model in three different scenarios and compared it with the state-of-the-art model

DeepSynergy.

We first assessed the model performance in the setting of leave drug combination out (Fig

3A). We performed a nested five-fold cross-validation using the same data for both models.

We split the data into five folds based on drug combinations such that the drug combination

in one fold would not appear in another fold. Four folds of data were used in the training and

hyperparameter tuning stage and one fold was held out to test model performance. We per-

formed the training/testing procedure five times with each fold held out. TranSynergy signifi-

cantly outperformed the DeepSynergy model for the synergy score prediction (Table 1). The

mean square error (MSE) of the TranSyerngy model was 232, significantly lower than that of

DeepSynergy (p-value < 0.001). The accuracy improved by 3% and 5% when measured with

Pearson’s correlation and Spearman’s correlation, respectively. We also showed that TranSy-

nergy presented a superior performance in classification scenarios (Table 2). PR-AUC

improved by 5.6% when comparing TranSynergy with DeepSynergy, although the improve-

ment of ROC-AUC was by a small margin. It is noted that other genomic features of cell lines

Fig 2. Illustration of genome-wide drug-target profile. Observed drug target profile is processed with RWR to infer drug effects on both targets and non-target

proteins.

https://doi.org/10.1371/journal.pcbi.1008653.g002
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(mutations and CNVs) were not used in both TranSynergy and DeepSynergy. Considering

that they could provide additional information relevant to the drug mode of action, especially

for targeted therapy, it would be interesting to incorporate extra genomic features into TranSy-

nergy in the future.

We further explored the performance of the TranSynergy model on 6 different tissues:

colon, breast, melanoma, ovarian, prostate, and lung. The average Pearson correlation coeffi-

cient between ground truth synergy scores and predicted scores were 0.741 for colon cancer

cells, 0.742 for breast cancer cells, 0.705 for melanoma, 0.788 for ovarian cancer cells, 0.660 for

prostate cancer cells, and 0.738 for lung cancer cells (Fig 4A and 4B). The Pearson correlation

coefficients of the TranSynergy across cell lines ranged from 0.616 to 0.858, and the Spearman

correlation coefficients ranged from 0.592 to 0.863 for (Fig 4C and 4D). Compared with Deep-

Synergy, the superior performance of TranSynergy was consistent across tissues except for the

prostate. The prostate tissue had the lowest Pearson correlation coefficient among all tissues

included in our data. VCAP, which is the only prostate cancer cell line, had the third-lowest

Pearson correlation coefficient and Spearman correlation coefficient across all cell lines. The

mediocre performance of the VCAP cell line could be due to that it is not closely similar to

other cell lines. To reflect relationships between cell lines, we performed the t-SNE analysis to

visualize the high dimensional vector representation of cell lines mapped to a 2D space with

the first two t-SNE components (Fig 5). It showed that the VCAP cell line is located on the

edge of one cluster, which indicates the VCAP cell line might have distinctive features. We also

noticed that five cell lines were isolated from the remaining cell lines in the t-SNE plot. They

included T47D and OCUBM from the breast tissue, HCT116 from the colon tissue, as well as

UWB1289 and OVCAR3 from ovarian tissue. The variances of these three tissues were higher

than those of the other three tissues. These larger variances among cell line features within

these three tissues might contribute to the observed larger performance variances.

Fig 3. Illustration of three training/test dataset splitting scenarios. Each data point is composed of two drugs and a cell line. The data samples in white and red are the

training/validation dataset and test dataset, respectively. A) Leave drug combination out scenario. In this example, drug pairs, including drug1+drug2 and drug3+drug4,

are colored red and held out as test dataset. B) Leave cell line out scenario. In this example, the cell line 2 is colored red and held out as test dataset. C) Leave drug out

scenario. In this example, the drug 3 and all drug pairs including the drug 3 are colored red and held out as test dataset.

https://doi.org/10.1371/journal.pcbi.1008653.g003

Table 1. Performance comparison of TranSynergy and DeepSynergy models in regression scenarios.

Model Drug features Cell line features MSE Spearman Correlation Pearson Correlation

TranSynergy Network propagated drug target profile Gene dependency + Gene

expression

231 ± 21 0.730±0.016 0.746±0.018

DeepSynergy Physicochemical properties, toxicophores and

fingerprints

Gene expression 243 ± 17 0.698±0.016 0.726±0.015

Statistical significance (p-value) <0.0001 <0.0001 0.0001

https://doi.org/10.1371/journal.pcbi.1008653.t001
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We additionally tested our models in the most challenging leave cell out scenario (Fig 3B).

We used an affinity propagation method to divide the cell lines into 4 clusters based on cell

line features. Since 28 cell lines are in the biggest cluster, we used them as the training dataset

and held out the remaining cell lines as the test dataset. In this way, the cell lines in the test

dataset are the most different from those in the training dataset. All the cell lines have a similar

amount of data (S4 Table). The leave cell out is a robust method to test the generalization

power of the models. As shown in Tables 3 and 4, the performance of the TranSynergy is

slightly better than DeepSynergy but both are lower than the first scenario.

Similar to the leave cell out scenario, we split the drugs into 5 clusters with the affinity prop-

agation method in leave drugs out scenario (Fig 6). We chose drugs in one cluster and held out

all drug pairs including those selected drugs as the test set (Fig 3C). The remaining drug pairs

are the training/validation set. In this scenario, TranSynergy significantly outperformed Deep-

Synergy, but both were lower than the first two scenarios (Tables 3 and 4).

Mechanism-driven drug representations are critical for superior model

performance

To investigate whether the gene-gene interaction network propagation step is essential for the

model performance, we compared the TranSynergy model trained with only observed drug

target information with that trained with network propagated drug target information. The

observed drug target vector is a binary 2401-dimension vector that indicates whether a drug

physically binds to the corresponding protein. The cell line vector representation used in this

comparison is based on the cell line dependency. Models trained with the network propagated

drug target vector representation showed superior performance in comparison to those with

observed drug target information (Table 5). Given that the model excluding cell line features

had inferior performance in comparison to other models with cell line features, we concluded

that the cell line feature contributed to the synergy score prediction (Table 5). We then investi-

gated three different representations for cell lines, gene dependency, gene expression, or gene

dependency and gene expression. When we represented cell lines with gene dependency pro-

file only or both gene dependency and gene expression profiles, the model exhibited superior

performance to that representing cells with gene expression only (Table 5).

Furthermore, we implemented two novel infrastructures, TranSynergyCI and TranSyner-

gyGNF, to investigate whether the prediction could be improved further by integrating extra

chemical information. TranSynergyCI united the physiochemical, toxophores, and fingerprint

information of each drug. The difference between TranSynergy and TranSynergyCI is that the

latter concatenated the aforementioned features with the output of the Transformer as the

input of the last fully connected component (S1 Fig). It is worth mentioning that the

Table 2. Performance comparison of TranSynergy with different cell line features to DeepSynergy model in classification scenarios.

Models Drug features Cell line features PR-AUC ROC-AUC

TranSynergy Network propagated drug target profile Gene dependency 0.625±0.020 0.908±0.011

Gene expression 0.618±0.016 0.901±0.009

Gene expression + Gene dependency 0.627±0.013 0.907±0.011

DeepSynergy Physicochemical properties, toxicophores and fingerprints Gene expression 0.594±0.021 0.900±0.009

Statistical significance�

(p-value)

<0.0001 0.0134

�TranSynergy that used gene expression+Gene dependency cell line features was used to compute the statistical significance of performance difference between

TranSynergy and DeepSynergy.

https://doi.org/10.1371/journal.pcbi.1008653.t002
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DeepSynergy used the same features for the drug representation. TranSynergyGNF also inte-

grated chemical information to the model input, however, it applied graph convolutional neu-

ral network (GCN) to extract graphical neural fingerprints from drug chemical structures (S2

Fig). More specifically, the GCN layer took drug’s atoms and bonds as inputs. Intuitively, the

drug was represented as a graph structure comprised of atoms as the nodes of the graph, and

bonds as the edges of the graph. The output of this GCN layer is used as the representation of

each drug. The same with TranSyenrgyCI, the outputs of GCN layers are concatenated with

the output of the transformer and served as the input of the last fully connected component.

Both these two models showed the inferior performance to TranSynergy (S2 and S3 Tables).

This illustrates adding extra chemical information may not be necessary to boost the perfor-

mance any further in this experimental setup.

Shapley additive gene set enrichment analysis reveals novel oncogenic

signatures associated with synergistic drug combinations

We propose the use of Shapley Additive Gene Set Enrichment Analysis (SA-GSEA) to deter-

mine the oncogenic signature and the underlying mechanisms associated with each synergistic

drug combination (see methods for details). Shapley additive value is a powerful way to charac-

terize the feature contribution to the final prediction in each instance [33]. Because each of the

features in TranSynergy corresponds to a gene, the Shapley value essentially indicates the attri-

bute of each gene to the synergy prediction. Moreover, genes could be ranked based on the

Shapley value of each input gene feature. This makes it feasible to perform GSEA analysis. As

an example, we explored seven samples, which had high synergistic scores and were accurately

predicted (Table 6 and S3–S9 Figs). These seven samples are from three cell lines, T47D,

Fig 4. Tissue-specific and cell line-specific prediction performances of TranSynergy and DeepSynergy. The top two panels (A and B) are tissue-

specific performance with Pearson correlation and Spearman correlation as the metrics. The bottom two panels (C and D) are cell line-specific

performance with Pearson correlation and Spearman correlation as the metrics.

https://doi.org/10.1371/journal.pcbi.1008653.g004

Fig 5. Visualization of different cell lines with t-SNE analysis. High dimensional cell line vector representations are projected into 2-D space with the first two t-SNE

components. A) Different colors indicate assigned clusters of each cell line by the affinity propagation method. B) Different colors indicate different tissues of each cell

line.

https://doi.org/10.1371/journal.pcbi.1008653.g005
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CAOV3, and MSTO-211H. For the synergistic drug pairs in T47D, BEZ-235 is one of the nota-

ble drugs. The BEZ-235 can inhibit PI3K/AKT/mTOR pathway, which is dysregulated in

breast cancer [39]. In the SA-GSEA of cell line gene dependencies profile, the RAF oncogenic

signature is significantly enriched. It has been established that the RAS/RAF/MEK/ERK path-

way and PI3K/AKT/mTOR pathway are closely interconnected components and form feed-

back loops in breast cancer [40]. This may also suggest the underlying mechanism following

the inhibition of the PI3K/AKT/mTOR pathway by BEZ-235 is related to the RAS/RAF/MEK/

ERK pathway. The drug combination of ETOPOSIDE and MK-8669 is synergistic in the

CAOV3 cancer cell line. ETOPOSIDE targets TOP2A and TOP2B, two topoisomerase compo-

nents. The inhibition of them was believed to cause a DNA double-strand break [41]. MK-

8669 targets mTOR, a crucial component in the PI3K/AKT/mTOR pathway. TUBB also shows

surprising high importance in the SA-GSEA of MK-8669 drug targets (S3 Fig). This indicates

that inhibition of mTOR or TUBB in combination with DNA damage can have a synergistic

effect. In the SA-GSEA of cell line features, the JAK2 oncogenic signature is enriched in the

ranked gene list based on their Shapley values. As suggested in other studies, the JAK2 onco-

genic signature implies a novel pathway affected by this drug combination therapy [42]. For

synergistic drug pairs in the MSTO-211H cell line, one of the drugs is DASATINIB. The

DASATINIB targets BCRABL, SRC, Ephrins, and GFR. For the combination of PACLITAXEL

and DASATINIB in the MSTO-211H cell line, the PACLITAXEL targets tubulin and microtu-

bule-associated proteins. From the SA-GSEA of cell line genes, genes in the ESR1 and BMI1

oncogenic signature gene sets are top-ranked (S7 Fig) [43]. BMI1 was shown to be involved in

the DNA-damage-repair process [44]. The inhibition of these pathways combining the restrain

on mitosis can have high anti-tumor activities in Mesothelioma cancer [45]. For the combina-

tion of DASATINIB and ABT-888 in MSTO-211H, the SNF5 pathway is ranked on the top (S9

Fig). It is worth mentioning that both SNF5 and PARP1/2 play key roles in the DNA repair

process [46,47].

Novel drug combination prediction

Although the majority of drug combinations composed of the drugs available in this study

have been explored experimentally [20], there were still 3650 novel drug pairs that had yet to

be tested. For these 3650 novel samples, Table 7 lists the top 10 pairs which have higher cell

line-wise z-scores (S5 Table). It is noted that ETOPOSIDE, which targets TOP2A and TOP2B,

Table 3. Performance of TranSynergy and DeepSyenrgy on leave cell out scenario and leave drug out scenario for the regression task.

Model Leave cells out Leave drugs out

Spearman Correlation Pearson Correlation Spearman Correlation Pearson Correlation

TranSynergy 0.552 ± 0.013 0.513 ± 0.019 0.477 ± 0.040 0.457 ± 0.031

DeepSynergy 0.547 ± 0.010 0.501 ± 0.010 0.453 ± 0.025 0.437 ± 0.020

Statistical significance (p-value) 0.0716 0.0013 0.0032 0.0001

https://doi.org/10.1371/journal.pcbi.1008653.t003

Table 4. Performance of TranSynergy and DeepSyenrgy on leave cell out scenario and leave drug out scenario for the classification task.

Model Leave cells out Leave drugs out

ROC-AUC PR-AUC ROC-AUC PR-AUC

TranSynergy 0.808 ± 0.017 0.372 ± 0.022 0.778 ± 0.032 0.406 ± 0.106

DeepSynergy 0.805 ± 0.017 0.360 ± 0.022 0.753 ± 0.030 0.378 ± 0.075

Statistical significance (p-value) 0.3328 0.0908 0.0034 0.1379

https://doi.org/10.1371/journal.pcbi.1008653.t004
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exists in most drug pairs that are synergistic on the CAOV3 cancer cell line. It is consistent

with the results of SA-GSEA in which the target combination of TOP2A, TOP2B, and TUBB

shows high feature importance. Two samples show synergistic effects on OV90, another

Fig 6. Visualization of drug features with t-SNE analysis. High dimensional ECFP representations are projected into 2D space with the first two t-SNE components.

Different colors indicate assigned clusters of each drug by affinity propagation method.

https://doi.org/10.1371/journal.pcbi.1008653.g006

Table 5. Ablation study of TranSynergy models.

Drug features Cell line features MSE Spearman Correlation Pearson Correlation

Network propagated drug target profile Gene dependency 232 ± 21 0.725±0.016 0.746±0.017

Gene expression 241 ± 19 0.721±0.021 0.741±0.025

Gene dependencies + Gene expression 231 ± 21 0.730±0.016 0.746±0.018

None 390 ± 11 0.505±0.007 0.400±0.012

Observed drug target profile Gene dependency 305 ± 34 0.634±0.035 0.635±0.048

Gene expression 307 ± 33 0.634±0.038 0.632±0.039

Gene dependencies + Gene expression 300 ± 31 0.645±0.036 0.634±0.038

https://doi.org/10.1371/journal.pcbi.1008653.t005
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ovarian cancer cells. For ETOPOSIDE and VINORELBINE combination, drugs also target

TOP2A, TOP2B, and TUBB. For PACLITAXEL and VINORELBINE, both drugs target tubu-

lin or microtubule-associated proteins. DEXAMETHASONE exists in synergistic drug combi-

nations in three cell lines, OCUBM, SKMES1, and KPL1.

Discussion

In this study, we have presented a novel deep learning model TranSynergy for the synergy

score prediction and mechanism deconvolution of drug combination cancer therapy. We have

demonstrated that the network propagated drug target profile, which indicated both drug-tar-

get interaction and drug effect on non-targeted proteins, was crucial for the comprehensive

representation of drug features. The use of drug target information as drug features in the

model might cause limitation when novel drugs, whose molecular targets are unknown, are

involved in the drug pair. However, this limitation can be partially overcome by using recently

developed methods for the accurate prediction of drug targets, e.g. [48]. In addition, drugs

used in the drug combinations are mainly existing drugs whose targets are largely known, at

least, it is true in the dataset used in this study. Because the drug target provides crucial infor-

mation on the mechanism of drug action, it not only improves the accuracy of the machine

learning model for the prediction of drug combination synergy but also facilitates the model

Table 6. The most important oncogenic signatures revealed by SA-GSEA.

Drug combination (drug 1, drug

2)

Cell line Targets with high SHAP values The most enriched gene set in the cell line

Drug 1 Drug 2

BEZ-235, ERLOTINIB T47D Targets in PI3K/AKT/mTOR

pathway

EGFR oncogenic signature for RAF overexpressed

cells

BEZ-235,

MK-4827

T47D Targets in PI3K/AKT/mTOR

pathway

PARP1/2 oncogenic signature for RAF overexpressed

cells

BEZ-235,

L-778123

T47D Targets in PI3K/AKT/mTOR

pathway

FPTase/ GGPTase oncogenic signature for RAF overexpressed

cells

BEZ-235, DINACICLIB T47D Targets in PI3K/AKT/mTOR

pathway

CDKs oncogenic signature for RAF overexpressed

cells

ETOPOSID, MK-8669 CAOV3 TOP2A/TOP2B mTOR oncogenic signature for JAK2 knock-down

cells

PACLITAXEL, DASATINIB MSTO-

211H

Tubulin/microtubule associated

proteins

BCRABL, SRC, Ephrins and

GFR

oncogenic signature for ESR1- cells

ABT-888, DASATINIB MSTO-

211H

PARP1/2 BCRABL, SRC, Ephrins and

GFR

oncogenic signature for SNF5 know-down

cells

https://doi.org/10.1371/journal.pcbi.1008653.t006

Table 7. Examples of predicted synergistic novel drug pairs.

Drug combination Cell line Predicted Synergy score Z-score

DEXAMETHASONE and ETOPOSIDE CAOV3 94.520215 3.07259459

ETOPOSIDE and METFORMIN CAOV3 70.556332 2.21009253

ETOPOSIDE and SN-38 CAOV3 69.380475 2.16777138

DEXAMETHASONE and VINBLASTINE OCUBM 38.6095235 1.94930657

DEXAMETHASONE and PACLITAXEL SKMES1 37.9697725 1.91635083

ETOPOSIDE and VINORELBINE OV90 33.844834 1.89400207

PACLITAXEL and VINORELBINE OV90 32.5451685 1.81387084

ETOPOSIDE and VINBLASTINE CAOV3 56.799048 1.71494381

DEXAMETHASONE and VINBLASTINE KPL1 37.8084735 1.6825975

ETOPOSIDE and PACLITAXEL CAOV3 53.1252895 1.58271882

https://doi.org/10.1371/journal.pcbi.1008653.t007
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interpretation. We also show that gene essentiality in the cancer cells is a more desirable cell

line representation than raw gene expression profile. Due to the limited data size, we only

selected the minimum number of genes for the representation of drugs and cell lines, includ-

ing only drug targets and annotated cancer-related genes. When too many input features are

used, the model could suffer overfitting problems during the training stage due to the curse of

dimensionality [49,50]. The performance can be further improved when more data are avail-

able or by utilizing unlabeled data sets so that more genes can be included in the representa-

tions. Furthermore, we demonstrated that the performance in cold-start problems, including

leave cell out and drug out scenarios, is relatively lower than the leave drug combination out

scenario. We believe that the relatively lower performance in the cold-start setting could be

improved by applying pretraining strategies.

With more and more high throughput drug combination screening datasets becoming

available, we have to figure out the inconsistency problem in both the experimental and quan-

tification methods for the determination of drug combination effects. Firstly, the combina-

tional spaces for the drug doses used to generate the drug dose matrix diversify in different

studies. Secondly, several distinguished methods were proposed to calculate the expected drug

combination effect from experimental data, such as combination index (CI)-isobologram

equation [51–53], Bliss independence (BI) method [54–56], and Loewe Additivity (LA) model

[57,58]. The calculated drug synergy scores are not the same when different quantification

methods are utilized. To further improve the data quality, it is necessary to develop new meth-

ods to harmonize different data sets.

Deep learning-based computational models have made promising breakthroughs in many

biomedical areas. Interpretation of deep learning models becomes critical to overcoming the

skepticism of it being a black-box [59]. Recently, many explainable AI methods have been pro-

posed, such as input perturbation methods [60,61], backpropagation based methods [62], and

the calculation of SHAP values [33]. Attention-based approaches have been proposed to inter-

pret the models using attention mechanisms. However, previous work has shown that the

attention weights learned from self-attentions may not provide a meaningful explanation for

the final prediction [63]. As a result, we carefully design the input features so that each feature

dimension is corresponding to a gene and is easily interpretable. Through examining the

SHAP values of gene-wise input feature, we extract the information regarding the effect of

drug-target interactions and gene-gene interactions on the cancer cell response. Considering

that evidence has shown synergistic effects could be attributed to either pathway cross-talking

[64], nonoverlapping pathways [28], or same pathways, the explanation of drug combination

synergy score learned with our model could come from either of instances. More conclusive

statements for the underlying mechanisms might require additional experimental evidence,

which is out of our work’s scope. However, we suggest that this potentially provides a method

to generate testable hypothesis for studying the underlying mechanism of the drug combina-

tions therapy.

Drug combinations can be a more efficient therapeutic strategy for cancer by targeting mul-

tiple proteins to defer the rapid emergence of drug resistance. The exploration of effective and

synergistic drug combinations is hindered by the costly and time-consuming experimental

preclinical investigation. Computational methods can be a cheaper and faster alternative

approach to facilitate the development of drug combination therapy for cancer patients [65].

Nowadays, more emphasis is put on personalized medicine, which requires the consideration

of the heterogeneity of each patient’s cancer types and genomics information to find more effi-

cient therapy. Given a large amount of data for patients’ genome information, the development

of an accurate and interpretable computational model is critical for the realization of
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personalized medicine. Mechanism-driven machine learning as demonstrated in this study is

a promising direction to address challenges in precision medicine of combination therapy.

Methods

Drug combination synergy score dataset

The large-scale drug combination screening dataset was initially published by Merck [20] and

preprocessed to calculate the synergy scores [24]. The screening test was performed with 38

drugs and 39 cancer cell lines. In total, 583 pairs of drug combinations were investigated and

23062 data points were collected. Among them, two drugs lack target information, and the

gene dependency and gene expression data of four cells are not available. These drugs and cell

lines were excluded from our data set. We finally selected 36 drugs that targeted at least one

protein and 35 cell lines. The final dataset has 18553 data points and 523 pairs of drug

combinations.

Drug representation

The observed drug target profile was collected from two datasets, Drugbank and ChEMBL, for

the 36 drugs [36,37]. The observed drug target matrix is a 36�2401 binary matrix that indicates

whether a drug targets a protein. The observed drug target profile was processed with the

RWR algorithm to obtain a novel network propagated drug targets profile. We solved the

RWR problem with the Fast RWR methods [66]. Following is the formal equation:

r ¼ aWr þ ð1 � aÞe;

α is a hyperparameter equal to 1—restart rate. To avoid information leaking and overfitting,

we performed nested cross-validation for hyperparameter tuning and model selection. In each

iteration, the data were split into training/validation/test sets. After the model was fitted using

the training data set, optimal hyperparameter α in RWR was selected by the grid search over

the validation set. The grid search determined the optimal α = 0.5 (S6 Table) over the valida-

tion set. W is the transition matrix denoting the transition probability between nodes. We

used the protein-protein interaction network matrix from STRING as the transition probabil-

ity matrix [67]. The edge weight between nodes is the protein-protein association confidence

score. e is the seed vector, a drug target binary vector for each drug in this Eq 1, denotes that

the drug is targeting the protein. r is the final probability distribution of each node in the net-

work. Intuitively, r[i] denotes the effect of the drug on each protein. Drug’s atoms and edges

information were extracted with rdkit from the drug’s SMILES string. We then used the multi-

hot encoder method to represent each node and edge. The final representation includes 62

atoms and 6 bonds information.

Cell line representation

Gene expression profiles were downloaded from Harmonizome [68] and were initially col-

lected in Broad Institute Cancer Cell Line Encyclopedia (CCLE) and Genomics of Drug Sensi-

tivity in Cancer (GDSC) [69–71]. Gene dependencies profile dataset is a combined dataset

from the Broad Institute Project Achilles [72–74] and Sanger CRISPR data from Wellcome

Trust Sanger Institute and Broad Institute[75,76]. The dataset was downloaded from the Dep-

Map portal [38]. The linear regression imputation method was used to fill in the missing value

in the dataset with the MICE package [77].
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Model architecture

Transformer. The transformer has been widely used and shown promising performance

in many different applications, including natural language processing and image processing

[29–31]. It includes two major components, encoder and decoder. The input for both encoder

and decoder has three matrices, query, key and values. Both encoder and decoder contain

many sublayers. Each sublayer is comprised of three stages, attention mechanism, add & norm

stage, and feed forward stage. The add & norm stage contains a residual structure and a layer

normalization structure. The attention mechanism is the module to encode the interaction of

different features with the following equation:

AttentionðQ;K;VÞ ¼ softmaxðQ � KT=
ffiffiffiffiffi
ðd

p
ÞÞ � V

where Q, K, and V are the query, key and, values matrices, d is the dimension of hidden vector

representation and softmax is the activation function.

Graph convolutional neural network. We applied the graph convolutional network

(GCN) module to extract drug neural fingerprint in our TranSynergyGNF model (S2 Fig).

Each drug is parsed as a graph, consisting of nodes that are the chemical atoms, and edges that

are the chemical bonds. The GCN was used to extract and integrate the information of nodes

and edges in each node’s neighborhood. The output hidden representation can be interpreted

as a representation of chemical substructure within the multi-hop distances from each node.

The output of each GCN layer can be calculated with the following equation:

GCNðHl;AÞ ¼ softmaxðD� 1ðAþ IÞHlWlÞ;

where A is the adjacency matrix for the graph structure, I is an identity matrix, D is the diago-

nal node degree matrix of A+I, H is the hidden representation from the previous layer, W is

the learnable parameter matrix and softmax is the activation function. To construct the hidden

representation of the whole drug, we concatenate the hidden representation for each node to a

single vector.

Model evaluation

Model evaluations were performed in three scenarios. a) In the leave drug combination out

scenario, we applied the nested cross-validation method. The data was split into five folds such

that the drug pair in one fold does not overlap with the drug pairs in other folds (Fig 3A).

Because the drug combination of drug A with drug B and drug B with drug A should have the

same drug combination synergy score, the size of training data was doubled by swapping the

drug A and drug B. The model was iteratively trained/validated in four folds and then tested in

the remaining one fold. b) We further tested our models in the most challenging leave cell out

scenario. We used affinity propagation methods to group the cell lines into 4 clusters based on

cell line features similarity (Fig 3B). Since 28 cell lines are in the biggest cluster, we used them

as the training/validation dataset and held out the remaining cell lines in other clusters as the

test dataset (Fig 5). In this way, the cell lines in the testing set are significantly different from

those in the training/validation set. c) In the leave drug out scenario, we grouped the drugs

into 5 clusters with the affinity propagation method based on their structural similarities (Figs

3C and 6). We chose drugs in one cluster and held out all drug pairs including these three

drugs as the test set. The remaining drug pairs are the training/validation set. We performed

three tests with keeping out the drugs in each of the three smallest clusters. In each test, the

ratio of samples in the training and the testing data is around 4:1.
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In all the above scenarios, the MSE was used as the training loss. We then investigated the

Spearman correlation and Pearson correlation between predicted data and ground-truths.

ROC-AUC and PR-AUC were also used to evaluate the model performance for the classifica-

tion task. Drug pairs with synergy scores larger than 30 were classified as positive pairs and

those with lower synergy scores were classified as negative pairs.

2.5 Shapley additive gene set enrichment analysis

We used the GradientExplainer and DeepExplainer in the SHAP package to calculate Shapley

value that characterizes the contribution of each input feature to the final prediction [33]. We

used k-means to summarize the total dataset as the background dataset. The final Shapley

value of each input feature was the average value of 10 tests for each sample data. We then

ranked genes based on the Shapley values for the gene-wise features of cell line representation

and conducted gene set enrichment analysis to unveil the enriched gene sets with GSEA

[78,79].
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57. Loewe S, Muischnek H. Über Kombinationswirkungen. Naunyn-Schmiedebergs Archiv für experimen-

telle Pathologie und Pharmakologie. 1926; 114(5):313–26. https://doi.org/10.1007/BF01952257

PLOS COMPUTATIONAL BIOLOGY Mechanism-driven prediction of drug combination synergy

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008653 February 12, 2021 20 / 22

https://doi.org/10.1038/s41467-018-06916-5
https://doi.org/10.1038/s41467-018-06916-5
http://www.ncbi.nlm.nih.gov/pubmed/30389920
https://doi.org/10.1093/annonc/mdz381
https://doi.org/10.1093/annonc/mdz381
http://www.ncbi.nlm.nih.gov/pubmed/31859349
https://doi.org/10.1016/j.ctrv.2013.03.009
http://www.ncbi.nlm.nih.gov/pubmed/23643661
https://doi.org/10.1038/nrc2607
http://www.ncbi.nlm.nih.gov/pubmed/19377506
https://doi.org/10.1111/jcmm.12162
http://www.ncbi.nlm.nih.gov/pubmed/24237791
https://doi.org/10.1007/s00277-008-0603-8
https://doi.org/10.1007/s00277-008-0603-8
http://www.ncbi.nlm.nih.gov/pubmed/18781299
https://doi.org/10.1128/MCB.00981-10
http://www.ncbi.nlm.nih.gov/pubmed/21383063
https://doi.org/10.1093/carcin/bgt166
http://www.ncbi.nlm.nih.gov/pubmed/23677068
https://doi.org/10.1016/j.dnarep.2019.03.007
http://www.ncbi.nlm.nih.gov/pubmed/30897376
https://doi.org/10.1038/bjc.2011.382
http://www.ncbi.nlm.nih.gov/pubmed/21989215
https://doi.org/10.1101/2020.10.08.332346
https://doi.org/10.1101/2020.10.08.332346
https://doi.org/10.1038/nrc2294
http://www.ncbi.nlm.nih.gov/pubmed/18097463
https://doi.org/10.1142/9789813207813%5F0022
https://doi.org/10.1142/9789813207813%5F0022
http://www.ncbi.nlm.nih.gov/pubmed/27896977
https://doi.org/10.1016/0165-6147(83)90490-X
https://doi.org/10.1016/0065-2571%2884%2990007-4
https://doi.org/10.1016/0065-2571%2884%2990007-4
http://www.ncbi.nlm.nih.gov/pubmed/6382953
https://doi.org/10.1158/0008-5472.CAN-09-1947
http://www.ncbi.nlm.nih.gov/pubmed/20068163
https://doi.org/10.1111/j.1744-7348.1939.tb06990.x
https://doi.org/10.1093/infdis/137.2.122
http://www.ncbi.nlm.nih.gov/pubmed/627734
http://www.ncbi.nlm.nih.gov/pubmed/7568331
https://doi.org/10.1007/BF01952257
https://doi.org/10.1371/journal.pcbi.1008653


58. Loewe S. The problem of synergism and antagonism of combined drugs. Arzneimittelforschung. 1953;

3(6):285–90. Epub 1953/06/01. PMID: 13081480.

59. Ching T, Himmelstein DS, Beaulieu-Jones BK, Kalinin AA, Do BT, Way GP, et al. Opportunities and

obstacles for deep learning in biology and medicine. J R Soc Interface. 2018; 15(141). Epub 2018/04/

06. https://doi.org/10.1098/rsif.2017.0387 PMID: 29618526; PubMed Central PMCID: PMC5938574.

60. Heaton J, McElwee S, Fraley J, Cannady J, editors. Early stabilizing feature importance for TensorFlow

deep neural networks. 2017 International Joint Conference on Neural Networks (IJCNN); 2017 14–19

May 2017.

61. Zhou J, Troyanskaya OG. Predicting effects of noncoding variants with deep learning-based sequence

model. Nat Methods. 2015; 12(10):931–4. Epub 2015/08/25. https://doi.org/10.1038/nmeth.3547

PMID: 26301843; PubMed Central PMCID: PMC4768299.

62. Springenberg JT, Dosovitskiy A, Brox T, Riedmiller M. Striving for Simplicity: The All Convolutional Net.

2014.

63. Jain S, Wallace BC. Attention is not Explanation. 2019.

64. Jaeger S, Igea A, Arroyo R, Alcalde V, Canovas B, Orozco M, et al. Quantification of Pathway Cross-

talk Reveals Novel Synergistic Drug Combinations for Breast Cancer. Cancer Res. 2017; 77(2):459–

69. Epub 2016/11/24. https://doi.org/10.1158/0008-5472.CAN-16-0097 PMID: 27879272.

65. Yin Z, Deng Z, Zhao W, Cao Z. Searching Synergistic Dose Combinations for Anticancer Drugs. Front

Pharmacol. 2018; 9:535. Epub 2018/06/07. https://doi.org/10.3389/fphar.2018.00535 PMID:

29872399; PubMed Central PMCID: PMC5972206.

66. Tong H, Faloutsos C, Pan J, editors. Fast Random Walk with Restart and Its Applications. Sixth Interna-

tional Conference on Data Mining (ICDM’06); 2006 18–22 Dec. 2006.

67. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein-pro-

tein association networks with increased coverage, supporting functional discovery in genome-wide

experimental datasets. Nucleic Acids Res. 2019; 47(D1):D607–D13. Epub 2018/11/27. https://doi.org/

10.1093/nar/gky1131 PMID: 30476243; PubMed Central PMCID: PMC6323986.

68. Rouillard AD, Gundersen GW, Fernandez NF, Wang Z, Monteiro CD, McDermott MG, et al. The harmo-

nizome: a collection of processed datasets gathered to serve and mine knowledge about genes and

proteins. Database (Oxford). 2016; 2016. Epub 2016/07/05. https://doi.org/10.1093/database/baw100

PMID: 27374120; PubMed Central PMCID: PMC4930834.

69. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, et al. The Cancer Cell Line

Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012; 483

(7391):603–7. Epub 2012/03/31. https://doi.org/10.1038/nature11003 PMID: 22460905; PubMed Cen-

tral PMCID: PMC3320027.

70. Yang W, Soares J, Greninger P, Edelman EJ, Lightfoot H, Forbes S, et al. Genomics of Drug Sensitivity

in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res.

2013; 41(Database issue):D955–61. Epub 2012/11/28. https://doi.org/10.1093/nar/gks1111 PMID:

23180760; PubMed Central PMCID: PMC3531057.

71. Iorio F, Knijnenburg TA, Vis DJ, Bignell GR, Menden MP, Schubert M, et al. A Landscape of Pharmaco-

genomic Interactions in Cancer. Cell. 2016; 166(3):740–54. Epub 2016/07/12. https://doi.org/10.1016/j.

cell.2016.06.017 PMID: 27397505; PubMed Central PMCID: PMC4967469.

72. Dempster JM, Rossen J, Kazachkova M, Pan J, Kugener G, Root DE, et al. Extracting Biological

Insights from the Project Achilles Genome-Scale CRISPR Screens in Cancer Cell Lines. bioRxiv.

2019:720243. https://doi.org/10.1101/720243

73. Broad D. DepMap 20Q1 Public2020.

74. Meyers RM, Bryan JG, McFarland JM, Weir BA, Sizemore AE, Xu H, et al. Computational correction of

copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells. Nat

Genet. 2017; 49(12):1779–84. Epub 2017/10/31. https://doi.org/10.1038/ng.3984 PMID: 29083409;

PubMed Central PMCID: PMC5709193.

75. Broad D. Project SCORE processed with CERES2019.

76. Behan FM, Iorio F, Picco G, Goncalves E, Beaver CM, Migliardi G, et al. Prioritization of cancer thera-

peutic targets using CRISPR-Cas9 screens. Nature. 2019; 568(7753):511–6. Epub 2019/04/12. https://

doi.org/10.1038/s41586-019-1103-9 PMID: 30971826.

77. van Buuren S, Groothuis-Oudshoorn K. mice: Multivariate Imputation by Chained Equations in R. 2011.

2011; 45(3):67. Epub 2011-12-12. https://doi.org/10.18637/jss.v045.i03

78. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment

analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl

Acad Sci U S A. 2005; 102(43):15545–50. Epub 2005/10/04. https://doi.org/10.1073/pnas.0506580102

PMID: 16199517; PubMed Central PMCID: PMC1239896.

PLOS COMPUTATIONAL BIOLOGY Mechanism-driven prediction of drug combination synergy

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008653 February 12, 2021 21 / 22

http://www.ncbi.nlm.nih.gov/pubmed/13081480
https://doi.org/10.1098/rsif.2017.0387
http://www.ncbi.nlm.nih.gov/pubmed/29618526
https://doi.org/10.1038/nmeth.3547
http://www.ncbi.nlm.nih.gov/pubmed/26301843
https://doi.org/10.1158/0008-5472.CAN-16-0097
http://www.ncbi.nlm.nih.gov/pubmed/27879272
https://doi.org/10.3389/fphar.2018.00535
http://www.ncbi.nlm.nih.gov/pubmed/29872399
https://doi.org/10.1093/nar/gky1131
https://doi.org/10.1093/nar/gky1131
http://www.ncbi.nlm.nih.gov/pubmed/30476243
https://doi.org/10.1093/database/baw100
http://www.ncbi.nlm.nih.gov/pubmed/27374120
https://doi.org/10.1038/nature11003
http://www.ncbi.nlm.nih.gov/pubmed/22460905
https://doi.org/10.1093/nar/gks1111
http://www.ncbi.nlm.nih.gov/pubmed/23180760
https://doi.org/10.1016/j.cell.2016.06.017
https://doi.org/10.1016/j.cell.2016.06.017
http://www.ncbi.nlm.nih.gov/pubmed/27397505
https://doi.org/10.1101/720243
https://doi.org/10.1038/ng.3984
http://www.ncbi.nlm.nih.gov/pubmed/29083409
https://doi.org/10.1038/s41586-019-1103-9
https://doi.org/10.1038/s41586-019-1103-9
http://www.ncbi.nlm.nih.gov/pubmed/30971826
https://doi.org/10.18637/jss.v045.i03
https://doi.org/10.1073/pnas.0506580102
http://www.ncbi.nlm.nih.gov/pubmed/16199517
https://doi.org/10.1371/journal.pcbi.1008653


79. Liberzon A, Subramanian A, Pinchback R, Thorvaldsdottir H, Tamayo P, Mesirov JP. Molecular signa-

tures database (MSigDB) 3.0. Bioinformatics. 2011; 27(12):1739–40. Epub 2011/05/07. https://doi.org/

10.1093/bioinformatics/btr260 PMID: 21546393; PubMed Central PMCID: PMC3106198.

PLOS COMPUTATIONAL BIOLOGY Mechanism-driven prediction of drug combination synergy

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008653 February 12, 2021 22 / 22

https://doi.org/10.1093/bioinformatics/btr260
https://doi.org/10.1093/bioinformatics/btr260
http://www.ncbi.nlm.nih.gov/pubmed/21546393
https://doi.org/10.1371/journal.pcbi.1008653

