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LIGHTHOUSE illuminates therapeutics
for a variety of diseases including COVID-19

Hideyuki Shimizu,1,2,3,4,* Manabu Kodama,1 Masaki Matsumoto,5 Yasuko Orba,6 Michihito Sasaki,6

Akihiko Sato,6,7 Hirofumi Sawa,6,8,9,10,11 and Keiichi I. Nakayama1,12,*

SUMMARY

One of the bottlenecks in the application of basic research findings to patients is
the enormous cost, time, and effort required for high-throughput screening of
potential drugs for given therapeutic targets. Here we have developed
LIGHTHOUSE, a graph-based deep learning approach for discovery of the hidden
principles underlying the association of small-molecule compounds with target
proteins. Without any 3D structural information for proteins or chemicals,
LIGHTHOUSE estimates protein-compound scores that incorporate known evolu-
tionary relations and available experimental data. It identified therapeutics for
cancer, lifestyle related disease, and bacterial infection. Moreover,
LIGHTHOUSE predicted ethoxzolamide as a therapeutic for coronavirus disease
2019 (COVID-19), and this agent was indeed effective against alpha, beta,
gamma, and delta variants of severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) that are rampant worldwide. We envision that LIGHTHOUSE will
help accelerate drug discovery and fill the gap between bench side and bedside.

INTRODUCTION

Despite enormous efforts to eradicate serious medical conditions such as cancer and infectious diseases,

the translation of innovative research results into clinical practice progress slowly (Klein et al., 2017), leaving

a large gap between bench side and bedside. The difficulty in identifying bioactive chemicals for a given

target protein is one reason for this slow progress, with high-throughput screening (HTS) of a sufficiently

diverse compound library being required for each target. About 1060 natural compounds with a molecular

mass of <500 Da are thought to exist (Dobson, 2004), but HTS in most cases has been performed with only

�106 compounds. Over the past few decades, molecular docking simulations have become widely adop-

ted to reduce the cost, time, and effort required for HTS. This approach has been successful for some pro-

teins whose crystal structures have been solved. More recently, with the advent of AlphaFold2 (Jumper

et al., 2021), the ability to predict protein structures has been greatly improved, but it remains difficult

to identify pockets of proteins that are potential drug targets and drug discovery without three-dimen-

sional (3D) structural information therefore remains a challenge. Given that high-resolution 3D structural

data are not available for most proteins to date and the high computational requirements of molecular

docking simulations, the application of this approach has been limited.

Mathematical approaches have gained popularity in various fields, including sensing technologies (Grey-

bush et al., 2019; Mohammadi Estakhri et al., 2019), clinical stratification (Shimizu andNakayama, 2021), and

other medical areas (Rajkomar et al., 2019). In particular, recent advances in artificial intelligence (AI) have

demonstrated its potential in the pharmaceutical industry (Paul et al., 2021). Although many AI-based drug

discovery methods have been proposed, they have had limited success in translational medicine. Whereas

some studies have presented AI models with biological validation experiments (Stokes et al., 2020) or de

novo molecular design (Zhavoronkov et al., 2019), many others have performed only computer-based vali-

dation without proof-of-concept biomedical experiments (Huang et al., 2021; Öztürk et al., 2018; Tsubaki

et al., 2019). In addition, most platforms to date have been trained with small datasets, such as Directory of

Useful Decoys Enhanced (DUD-E), that have known biases (Chen et al., 2019) and are far from reflecting

real-world data. Furthermore, many existing methods are based on a single network structure, whereas

ensemble learning, which combines multiple network structures with different properties, might be ex-

pected to be more accurate and appropriate for AI-based drug discovery (Hansen and Salamon, 1990).
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As far as we are aware, no published study has described the discovery and validation of therapeutics for

multiple human diseases based on the use of a single AI platform.

Nevertheless, AI-driven drug discovery continues to gain momentum and achieve critical milestones, espe-

cially in industry. The first AI-designed drug candidates to enter clinical trials were reported by Exscientia in

early 2020. All three molecules (DSP-1181, EXS21546, and DSP-0038) are in phase 1 trials and were discov-

ered with Exscientia’s AI platform (Jayatunga et al., 2022). DSP-1181 is a full agonist of the 5-HT1a serotonin

receptor that was discovered in a collaboration between Exscientia and Sumitomo Dainippon Pharma, and

EXS21546 is an A2a adenosine receptor antagonist discovered in a collaboration between Exscientia and

Evotec. Another example is ISM001-055, a small-molecule inhibitor aimed at idiopathic pulmonary fibrosis.

The target and the drug were identified by using AI (Kirkpatrick, 2022). Several other AI-based small-mole-

cule drug candidates are also now in clinical trials (Jayatunga et al., 2022). However, technological details

have not been disclosed, and the AI systems are not available to other researchers.

With this background, we have developed a new AI-based drug discovery platform, designated

LIGHTHOUSE (Lead Identification with a GrapH-ensemble network for arbitrary Targets by Harnessing

Only Underlying primary SEquence), an ensemble, end-to-end, graph-based deep learning tool that can

predict chemicals able to interact with any protein of interest without 3D structural information. We have

applied LIGHTHOUSE to malignant, infectious, and metabolic diseases. In addition, we show that

LIGHTHOUSE successfully discovered a drug effective against wild-type and variant forms of severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2), with this drug already having been approved for other

purposes. We therefore believe that LIGHTHOUSE will promote drug discovery by identifying, from the

vast chemical space, candidate compounds for a given protein with a reduced cost, time, and effort and

with a wide range of potential biomedical applications.

RESULTS

LIGHTHOUSE predicts confidence and IC50-related scores for any protein-chemical pair

We developed an end-to-end framework that relies on amessage passing neural network (MPNN) for com-

pound embedding (Gilmer et al., 2017) to calculate scores for the association between any protein and any

chemical. This chemical encoder takes simplified molecular-input line-entry system (SMILES) chemical en-

coding as input, considers the compounds as (mathematical) graph structures, and transforms them into

low-dimensional vector representations. We adopted three different embedding methods for protein se-

quences: CNN (convolutional neural network) (Öztürk et al., 2018), Transformer (Vaswani et al., 2017), and

AAC (amino acid composition up to 3-mers) (Reczko and Bohr, 1994). These methods take amino acid se-

quences and embed them in numerical vectors that take into account nearby (CNN) or distant (Trans-

former) sequences or physicochemical properties (AAC). The products of these chemical and protein en-

coding steps are then concatenated and entered into a feed forward dense neural decoder network. Each

chemical-protein pair is converted into a single score after this series of computations (Figure 1A). We used

this architecture to estimate both the confidence level for chemical protein pairs and their median inhibi-

tory concentration (IC50) values.

To train the platform to estimate confidence, we used�1.3 million compound–(human) protein interactions

(CPIs) stratify-sampled from STITCH (Table S1), which is one of the largest CPI databases (Szklarczyk et al.,

2016) and registers compound-protein pairs together with confidence scores. These scores are based on

experimental data, evolutionary evidence such as homologous protein and compound relations, and co-

occurrence frequencies in literature abstracts (scores range from 0 to 1, with 1 being the most reliable).

To avoid overfitting, we randomly divided the overall data into training (80%), validation (10%), and test

(10%) datasets (Figure S1A).

We fed the network with protein primary structures and chemicals and trained it to output the scores from

the STITCH training dataset (Figure 1B). When we trained the three models (CNN, AAC, and Transformer

for protein encoders) separately, the mean squared error (MSE) for the validation data was gradually

decreased, and the area under the receiver operating characteristic curve (AUROC) was also improved

(Figures S1B–S1G). These findings indicated that our AI models learned the approximation of the hidden

1D relation underlying the compound-protein pairs without overfitting the training data. We examined the

performance of the models with the test dataset at the end of the training and (epoch-wise) validation

phases, and we discovered that the AUROC for all three models was >0.80 (Table S2). These scores are
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equivalent to or better than those of cutting-edge 3D docking simulations (Hsin et al., 2016; Moussa et al.,

2021; Wang et al., 2020). It is of note that our AI models can be applied to proteins for which 3D structural

information is not available. We took the harmonic mean of the three scores to define the confidence score

(Figure 1B).

We also trained the models to predict scores based on IC50 values. For this purpose, we used data from

BindingDB (Gilson et al., 2016), which collects a variety of experimental findings, and we divided the

data into training (80%), validation (10%), and test (10%) datasets (Figure S2A). The same architecture

was adopted to train the AI models to predict scaled IC50 values (Figure 1C), yielding an interaction score,

and we confirmed that the models adequately learned how to predict IC50 from amino acid sequence–

chemical pairs (Figures S2B–S2G). Finally, we assessed the performance of the models with undisclosed

test data, finding that they performed well in predicting IC50 (Table S3).

LIGHTHOUSE architecture outperforms state-of-the-art methods

We next compared the performance of LIGHTHOUSE with that of similar existing methods. To ensure a fair

comparison, we used DUD-E data as were used in previous studies (Tsubaki et al., 2019; Wallach et al.,

2015). In brief, we randomly split DUD-E data (102 target proteins) into training (72 proteins) and test (30

proteins) data and then trained the LIGHTHOUSE architecture with the DUD-E training data for classifica-

tion of compounds as active or decoy with regard to the protein in question. After this training, we exam-

ined LIGHTHOUSE performance with the DUD-E test data (Figure S3A). Of note, we used only amino acid

sequences of the proteins for training and evaluation of LIGHTHOUSE, even though DUD-E provides struc-

tural data (as PDB files) for proteins. In addition, we used the balanced dataset of DUD-E—the training sam-

ples comprise 22,886 active (positive) and 22,886 decoy (negative) samples—as in a previous study (Tsubaki

et al., 2019). LIGHTHOUSE yielded an AUROC for the DUD-E test data of 0.956 (Figure S3B), which was

higher than the values produced by state-of-the-art methods including 3D-CNN (Ragoza et al., 2017),

AtomNet (Wallach et al., 2015), and a graph-based deep learning method proposed by Tsubaki et al.

(2019) (Figure S3C).

For further comparison of LIGHTHOUSE with the second best method, we downloaded CPI data for human

and Caenorhabditis elegans from the GitHub repository of Tsubaki et al. (2019). Both of these datasets

were generated previously (Liu et al., 2015). Similar to Tsubaki et al., we retrained the LIGHTHOUSE archi-

tecture with these training data, and we found that LIGHTHOUSE outperformed this other method on the

basis of both AUROC and F1 metrics (Table S4). These bodies of evidence thus show that LIGHTHOUSE is

one of the best architectures for drug discovery available to date.

In silico verification of LIGHTHOUSE

We next evaluated the performance of LIGHTHOUSE in terms of its ability to predict known CPIs. We

generated two datasets for this purpose: a ‘‘Positive’’ dataset consisting of reliable CPIs (STITCH

Figure 1. Development of LIGHTHOUSE for discovery of drug candidates without 3D structural data

(A) The basic network structure of LIGHTHOUSE consists of encoder and decoder networks. The basic network encodes

the amino acid sequence of the protein of interest as numerical vectors by one of three independent methods: CNN,

AAC, and Transformer. It also takes the SMILES representation of each small-molecule compound and computes the

neural representation with the MPNN algorithm. The network then concatenates the protein and compound

representations and calculates a ‘‘Score.’’

(B and C) LIGHTHOUSE consists of twomodules. Module 1 estimates the association between a given compound-protein

pair, and module 2 predicts a scaled IC50 value for the pair. In each module, the three different streams of the basic

network (MPNN_CNN, MPNN_AAC, and MPNN_Transformer) are used, and the harmonic mean of the three scores is

presented as the final ensemble score. Each of the three streams in module 1 (B) is trained to minimize the error between

the predicted ‘‘Score’’ and the score registered in the STITCH database, which contains millions of known and estimated

CPIs. The higher the confidence score (closer to 1), the more confident LIGHTHOUSE is that there is some relation

between the compound and the protein; conversely, the lower the confidence score (closer to 0), the more confident

LIGHTHOUSE is that there is no such relation. Each of the three streams in module 2 (C) is trained to predict scaled IC50

values with the use of BindingDB data. For instance, an interaction score of 4 means that, if the compound has inhibitory

activity, the IC50 would be�100 mM, whereas an interaction score of 9 means that, if the compound has inhibitory activity,

the IC50 would be�1 nM. Note that module 2 only works if the compound and protein interact, so this module is auxiliary

to module 1.

See also Figures S1, S2 and Tables S1, S2, S3.
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Figure 2. In silico verification of LIGHTHOUSE

(A) For investigation of whether LIGHTHOUSE is able to enrich for compounds with known targets, two datasets were

generated from STITCH: a ‘‘Positive’’ dataset consisting of CPIs with high scores (>0.9), and a ‘‘Negative’’ dataset

consisting of the same CPIs but with the amino acid sequences of the proteins reversed (for example, MTSAVM to

MVASTM). Proteins in the ‘‘Negative’’ dataset would not be expected to interact with the corresponding compounds.

LIGHTHOUSE tended to yield higher confidence scores for CPIs in the ‘‘Positive’’ dataset, with the exception of the

rightmost peak for the ‘‘Negative’’ dataset, presumably because these chemicals (such as ATP) are well known and

frequently mentioned in the PubMed literature.

(B) ROC curve showing that LIGHTHOUSE was able to distinguish the ‘‘Positive’’ and ‘‘Negative’’ datasets.
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confidence score of >0.9), and a ‘‘Negative’’ dataset in which the amino acid sequences of the ‘‘Positive’’

dataset were inverted so that they would no longer be expected to interact with the corresponding chem-

icals. Calculation by LIGHTHOUSE of the confidence scores for both datasets revealed that those for the

‘‘Positive’’ dataset were heavily skewed toward 1 (Figure 2A). Receiver operating characteristic (ROC) curve

analysis showed that the two datasets could be distinguished on the basis of their LIGHTHOUSE confi-

dence scores (Figure 2B). Given that the STITCH database used for the training of LIGHTHOUSE relies

not only on experimental CPI data but also on co-appearance of chemicals and proteins in the literature,

some well-studied molecules, such as ATP, have high values even in the ‘‘Negative’’ dataset. We calculated

confidence and interaction scores for ATP as well as for the tyrosine kinase inhibitor drugs sorafenib and

sunitinib as true positive examples. ATP showed a skewed distribution with respect to the confidence

score, indicating that it is a false positive compound (Figure S4A). In contrast, the distribution of confidence

scores for both sorafenib and sunitinib (Figures S4B and S4C) was completely different from that for ATP.

Despite the presence of such false positives, LIGHTHOUSE proved to be effective in predicting the degree

of association between protein-chemical pairs solely on the basis of protein primary structure.

To demonstrate further the predictive power of LIGHTHOUSE, we searched all 10 known targets of sora-

fenib registered in the DrugBank database (Wishart et al., 2018). We found that 9 out of the 10 known tar-

gets were located in the promising compartment (confidence score of >0.7 and interaction score of >7.0)

(Figure S5A), which constitutes statistically significant enrichment (p = 2.4 3 10�14, Fisher exact test).

Furthermore, 8 of the 10 known sorafenib targets were among the top 25 candidate proteins (confidence

score of >0.75 and interaction score of >7.5) (Figure S5B). In addition to these 8 known sorafenib targets,

the top 25 candidate proteins included an additional 2 kinases that may be unknown targets of this multi-

kinase inhibitor. Thus, 40% of the top candidates (10 out of 25) were found to be experimentally verified or

likely true positives.

We next validated the effectiveness of LIGHTHOUSE for well-studied compound-protein pairs.

LIGHTHOUSE yielded high confidence scores for adrenergic receptors (a1, a2, b1, b2, and b3) and

epinephrine (Figure 2C). Histamine receptors are classified into four subtypes (Seifert et al., 2013), with

HRH1 and HRH2 being targets of anti-allergy and antiulcer drugs, respectively. LIGHTHOUSE predicted

that the HRH1 antagonist fexofenadine would associate to a greater extent with HRH1 than with HRH2,

whereas the HRH2 inhibitor famotidine would associate to a greater extent with HRH2 than with HRH1 (Fig-

ure 2D). These results suggested that LIGHTHOUSE is able to accurately discriminate receptor subtype–

level differences solely on the basis of amino acid sequences.

LIGHTHOUSE also proved informative both for macrocyclic chemicals such as rapamycin, yielding a high

confidence score for this drug and mechanistic target of rapamycin (MTOR) (Figure 2E), as well as for pep-

tide drugs such as bortezomib (used for treatment of multiple myeloma), leuprorelin (hormone-responsive

cancers), and semaglutide (type 2 diabetes) (Figure 2F), yielding high confidence scores for these drugs

and their known targets: proteasome subunit PSMB1 (Berkers et al., 2005), gonadotropin-releasing hor-

mone receptor (GNRHR) (Borroni et al., 2000), and glucagon-like peptide–1 (GLP-1) receptor (GLP1R)

(Knudsen and Lau, 2019), respectively. Given the rapidly growing demand for peptide drugs (Muttenthaler

et al., 2021), LIGHTHOUSE will prove useful for the development of novel peptide therapeutics for a variety

of promising targets.

We also applied LIGHTHOUSE to five drugs that were approved by the US Food and Drug Administration

(FDA) in 2020 but which had not yet been registered in the STITCH database. LIGHTHOUSE successfully

Figure 2. Continued

(C–F) Known CPIs and their confidence scores predicted by LIGHTHOUSE.

(C) Epinephrine and a-adrenergic (ADRA) and b-adrenergic (ADRB) receptors.

(D) Fexofenadine and the histamine receptor HRH1, and famotidine and the histamine receptor HRH2.

(E) The macrocyclic drug rapamycin and MTOR.

(F) The peptide drugs bortezomib, leuprorelin, and semaglutide and their targets PSMB1, GNRHR, and GLP1R,

respectively. These peptide drugs were converted to numerical vectors with the use of SMILES expression and MPNN.

(G) Application of LIGHTHOUSE to five drugs approved by the FDA in 2020 that were not included in the training dataset

(published in 2016). FNTA, protein farnesyltransferase/geranylgeranyltransferase type–1 subunit a; COMT, catechol

O-methyltransferase; S1PR1, sphingosine 1-phosphate receptor 1; DRD2, D2 dopamine receptor.

See also Figures S5, S8 and Table S5.
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predicted the association between these new drugs and their target proteins (Figure 2G), indicating the

expandability of LIGHTHOUSE to a much larger exploration space than that encompassed by STITCH.

Furthermore, we also evaluated IC50 data from BindingDB, which are derived from actual bioassays. We

found that the predicted value and observed value correlate well for the BindingDB test dataset (Figure S6).

This series of findings thus demonstrated the ability of LIGHTHOUSE to discover new drugs for a broad

spectrum of diseases.

LIGHTHOUSE discovers an inhibitor of PPAT, a key metabolic enzyme for cancer treatment

We investigated whether LIGHTHOUSE can identify compounds for potentially important therapeutic tar-

gets. As such a target, we chose phosphoribosyl pyrophosphate amidotransferase (PPAT), a rate-limiting

enzyme in the de novo nucleotide synthesis pathway, given that its expression is most correlated among all

metabolic enzymes with poor prognosis in various human cancers and that its depletion markedly inhibits

tumor growth (Kodama et al., 2020). Although no PPAT inhibitor has been developed and the 3D structure

of the protein has not been solved, we attempted to discover an inhibitor for PPAT by LIGHTHOUSE solely

on the basis of its amino acid sequence. We virtually screened �109 commercially available compounds in

the ZINC database (Sterling and Irwin, 2015) (Figure S7). To reduce the calculation time, we adopted a step-

by-step application of LIGHTHOUSE (Figure 3A). The MPNN_CNN model excluded most of the chemicals

unrelated to PPAT, with only 2.41% of the starting compounds having a score of >0.5 in this initial screening

(Figure 3B). The selected compounds were then processed by the MPNN_AAC and MPNN_Transformer

models, which reduced the number of candidate chemicals to 0.0356% of the initial compounds. We

also calculated interaction scores by LIGHTHOUSE and visualized them in a 2D plot (Figure 3C, left). We

hypothesized that we would achieve better prediction with the use of both confidence and interaction

scores, and the model indeed improved by �17.9% as determined on the basis of the AUROC

(Figures 2A, 2B, and S8).

The best candidates would be expected to have high confidence and interaction scores, appearing in the

upper right corner of the 2D plot. Indeed, this criterion was met by several well-known drug-target combi-

nations (Figure 3C, right). To thoroughly investigate known drug-protein interactions, we downloaded the

‘‘Model List of Essential Medicines’’ published by WHO (World Health Organization, 2021) and then

searched the DrugBank database (Wishart et al., 2018) for each essential drug and excluded those without

known target proteins. If multiple known target proteins were registered, the protein at the top of the

target list was used as a representative example, and its amino acid sequence was obtained from

UniProt, which is linked to DrugBank. Of the 112 drug-protein combinations that we calculated by

LIGHTHOUSE, most (79 combinations, 70.5%) (Table S5) were located in the upper right compartment de-

picted in Figure 3C (right).

Among the >333,000 final compounds in the PPAT analysis, the top candidate PPAT inhibitor with the high-

est confidence score was ZINC8551105 (riboflavin 50-monophosphate), with a predicted IC50 of 1–10 mM

(Figure 3D). We performed a biochemical assay to test this prediction and found that riboflavin 50-mono-

phosphate indeed markedly inhibited PPAT activity with an actual IC50 of 7.5 mM (Figure 3E). This com-

pound, discovered by LIGHTHOUSE solely on the basis of the PPAT amino acid sequence, is thus a poten-

tial lead compound for the development of new therapeutics targeted to a variety of cancers. It is also of

note that we tested only this compound, so other top candidates might also inhibit PPAT activity.

LIGHTHOUSE identifies an inhibitor of drug-resistant bacterial growth

Bacterial infections pose a clinical problem worldwide, especially in developing countries, and the emer-

gence of drug-resistant bacterial strains as a result of the overuse of antibiotics has exacerbated this prob-

lem. b-Lactamase enzymes produced by antibiotic-resistant bacteria (Tooke et al., 2019) target the b-lac-

tam ring of antibiotics of the penicillin family. We therefore applied LIGHTHOUSE to search for

antibiotics not dependent on b-lactam structure.

LIGHTHOUSE predicted that pyridoxal 50-phosphate might associate with penicillin binding proteins such

as PBP2 (mrdA), PBP3 (ftsI), and PBP5 (dacA), all of which are essential for cell wall synthesis in Escherichia

coli (Macheboeuf et al., 2006) (Figure 4A). This compound indeed suppressed the growth of wild-type E.

coli strain JM109 in a concentration-dependent manner (Figure 4B). Importantly, pyridoxal 50-phosphate
alsomarkedly inhibited the growth of an ampicillin-resistant E. coli transformant that produces b-lactamase
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Figure 3. Discovery of lead compounds for treatment of cancer

(A) Scheme for PPAT inhibitor discovery. The amino acid sequence of PPAT (517 residues) and the SMILE representation

for each chemical were entered into the MPNN_CNNmodel. If the predicted score was >0.5, the compound was entered

into MPNN_AAC, and if the new predicted score was >0.5, the compound was entered into MPNN_Transformer. The

harmonic mean of the three scores was then computed to obtain the confidence score.

(B) Almost 1 billion compounds in the ZINC database were processed as in (A). The first filter (MPNN_CNN score >0.5) and

subsequent two filters (MPNN_AAC score >0.5, MPNN_Transformer score >0.5) greatly reduced the initial chemical

space (to 0.0356%). The interaction scores for these selected candidates were then also calculated.

(C) A 2Dmap of the 333,290 selected candidates from (B) is shown on the left. Ideal candidates would be expected to have

high confidence and interaction scores and would be plotted in the upper right corner of the map. Indeed, some well-

known drug-target pairs meet this criterion, as shown on the right, with compounds represented by the blue circles in the

shaded area potentially possessing inhibitory activity for PPAT. ABL1, ABL proto-oncogene 1; COX1, cyclooxygenase 1;

HMG-CoA, 3-hydroxy-3-methylyglutaryl–coenzyme A.

(D) The top hit compound, ZINC8551105 (riboflavin 50-monophosphate), is shown together with its confidence score and

estimated IC50 value.

(E) In vitro PPAT activity assay performed in the presence of various concentrations (1, 5, 10, 50, 100, 500 nM, 1, 5, 10, 50,

and 100 mM) of riboflavin 50-monophosphate, with the determined IC50 value being within the range predicted by

LIGHTHOUSE. Data are shown for four biological replicates.

See also Figures S7 and S8.
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(Figure 4C). These results thus suggested that, even though it was trained with human proteins,

LIGHTHOUSE can also be applied to nonhuman (even bacterial) proteins.

LIGHTHOUSE informs optimization of lead compounds

Diabetes mellitus is also a serious public health concern, with the number of affected individuals expected

to increase markedly in the coming decades (Zheng et al., 2018). Dipeptidyl peptidase–4 (DPP-4) cleaves

and inactivates the incretin hormones GLP-1 and glucose-dependent insulinotropic polypeptide (GIP),

and DPP-4 inhibitors are a new class of antidiabetes drug (Deacon, 2020). Given that LIGHTHOUSE also

predicts interaction scores, we examined whether it might also contribute to the optimization step of

drug development. Indeed, LIGHTHOUSE accurately predicted the rank order of potency for several

recently identified DPP-4 inhibitor derivatives (Li et al., 2016) (Figure 5A). Furthermore, LIGHTHOUSE pre-

dicted that removal of the phosphate group would reduce the inhibitory potency of riboflavin 50-mono-

phosphate for PPAT (Figure 3E), and this prediction was confirmed correct by the finding that the IC50 value

was increased from 7.5 to 49.9 mM (Figure 5B). These data suggested the possibility that LIGHTHOUSE is

capable of predicting activity cliffs.

LIGHTHOUSE is also able to estimate the effect of point mutations on CPIs. For example, the T315I muta-

tion of ABL1 in leukemia cells reduces the efficacy of imatinib (Jabbour et al., 2008), and LIGHTHOUSE

accurately predicted the effect of this mutation (Figure 5C). LIGHTHOUSE is able to provide such

insight from only wild-type amino acid sequences, given the lack of variant information in the original

A B

C

Figure 4. LIGHTHOUSE is applicable to prokaryotic proteins

(A) LIGHTHOUSE predicted that pyridoxal 50-phosphate would associate with several penicillin binding proteins (PBPs) of

E. coli (strain K12). MrdA and FtsI are peptidoglycan D,D-transpeptidases, whereas DacA is a D-alanyl-D-alanine

carboxypeptidase.

(B) Escherichia coli strain JM109 was cultured in 2xYT medium supplemented with various concentrations of pyridoxal

50-phosphate, and optical density at 600 nm (OD600) of the culture was monitored. Data are means G SD for three

independent experiments.

(C) The JM109 strain of E. coli was transformed with the pBlueScript II SK + plasmid, which contains an ampicillin

resistance gene as a selection marker, and the cells were plated on LB agar plates containing ampicillin in the absence or

presence of pyridoxal 50-phosphate (3 mg/mL) and were incubated overnight. The pH of pyridoxal 50-phosphate was

adjusted to 7.0 in order to avoid potential nonspecific toxicity.
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training dataset. Our results suggest that LIGHTHOUSE is able to predict the effects of small changes in

protein or chemical structure, and that this will be the case even if such variants do not exist in nature.

LIGHTHOUSE identifies potential on- and off-targets of given compounds

Opposite to the mode of drug discovery for a given protein, LIGHTHOUSE might also be able to identify

proteins as potential on- or off-targets for a given compound. To verify this notion, we examined statins,

which are HMG-CoA reductase inhibitors widely administered for the treatment of hyperlipidemia. Epide-

miological studies have shown that statins not only lower cholesterol, however, but also have effects on

A

B

C

Figure 5. LIGHTHOUSE directs optimization of lead compounds

(A) Prediction of the potency of DPP-4 inhibitor derivatives by LIGHTHOUSE. The predicted interaction scores are

compared with the reported IC50 values.

(B) LIGHTHOUSE accurately predicts that riboflavin is a less potent PPAT inhibitor than is riboflavin 50-monophosphate.

(C) The interaction scores calculated by LIGHTHOUSE for both wild-type (WT) and T315I mutant forms of ABL1 accurately

predict that the point mutation reduces the effectiveness of the leukemia drug imatinib.
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cancer, although the target molecules for these effects have remained unclear (Mei et al., 2017). We there-

fore applied LIGHTHOUSE to three representative statins (atorvastatin, cerivastatin, and fluvastatin) and

computed confidence scores for all human protein-coding genes (Figures 6A and 6B, Table S6). We

then sorted the genes on the basis of these confidence scores and performed Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway enrichment analysis for the top 500 potential statin targets. In addition to

A

B C

D E

Figure 6. LIGHTHOUSE uncovers potential target proteins for given drugs

(A) Identification of statin targets by LIGHTHOUSE. LIGHTHOUSE was applied to calculate confidence scores for all

human protein-coding genes in the UniProt database and fluvastatin, atorvastatin, and cerivastatin. The harmonic mean

of these confidence scores (Fluvastatin Score, Atorvastatin Score, and Cerivastatin Score) was calculated as an affinity

score for statins. Sorting on the basis of this affinity score yielded a list of potential statin target proteins. HMGCR (HMG-

CoA reductase), a known key target of statins, was ranked 136th with a score of 0.790. The top 500 identified genes were

then subjected to enrichment analysis. LDLR, low-density lipoprotein receptor; APOE, apolipoprotein E; SCD, stearoyl-

CoA desaturase; STAT3, signal transducer and activator of transcription 3.

(B) Distribution of the harmonic mean of the Atorvastatin Score, Cerivastatin Score, and Fluvastatin Score (affinity score for

statins).

(C) KEGG pathway enrichment analysis for the top 500 potential statin targets identified by LIGHTHOUSE. Minus log10-

transformed q values are shown.

(D) Confidence scores for representative predictions by LIGHTHOUSE of the association of statins with cancer-related

proteins.

(E) Enrichment analysis for expression sites of the top 500 potential statin targets. Minus log10-transformed q values are

shown. See also Table S6.
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lipid-related pathways such as atherosclerosis and fatty liver, ‘‘pathways in cancer’’ was one of the most en-

riched KEGGpathways (Figure 6C), consistent with previous findings (Ahern et al., 2014; Alfaqih et al., 2017;

Matusewicz et al., 2015; Mullen et al., 2016). Potential targets of statins for cancer treatment identified by

LIGHTHOUSE included STAT3, CCND1, AKT1, and CCL2 (Figure 6D).

Given that side effects of drugs often manifest in organs that express target proteins, we hypothesized

that LIGHTHOUSE might be able to identify which organs are at risk of damage from a given drug. We

performed another enrichment analysis for the same top 500 potential statin target genes to determine

which organs or cell types preferentially express these genes. The top three candidates were the liver,

adipocytes, and lung (Figure 6E), consistent with the liver being the primary site of statin metabolism

and interstitial pneumonia being one of the most severe side effects of statins (Momo et al., 2018). Pre-

diction of potential target proteins for a given drug by LIGHTHOUSE will thus provide insight into which

organs warrant close monitoring by physicians during treatment with the drug, especially in first-in-hu-

man clinical trials.

LIGHTHOUSE identifies potential therapeutics for COVID-19

SARS-CoV-2 emerged at the end of 2019 and has caused a pandemic of infectious pulmonary disease,

COVID-19 (Hu et al., 2021). We noticed that genes whose expression is up-regulated after SARS-CoV-2

infection (Blanco-Melo et al., 2020; Riva et al., 2020; Wyler et al., 2021) were enriched in the list of potential

statin targets identified by LIGHTHOUSE (Figure 7A). Indeed, previous studies have shown that statins pre-

vent exacerbation of COVID-19 (Gupta et al., 2021; Zhang et al., 2020). With this finding that LIGHTHOUSE

is also effective for COVID-19 drug discovery, we applied it to the virtual screening of �10,000 approved

drugs, given that drug repurposing may allow faster delivery of effective agents to patients in need. We

calculated scores for angiotensin-converting enzyme 2 (ACE2), which is targeted by SARS-CoV-2 for infec-

tion of host cells (Walls et al., 2020), and the top drug candidate, ethoxzolamide, was selected for validation

analysis (Figure 7B). Immunocytofluorescence analysis revealed that ethoxzolamide blocks proliferation of

SARS-CoV-2 in Vero-TMPRSS2 cells (Figure 7C). Furthermore, ethoxzolamide was effective against not only

the wild-type virus but also the alpha, beta, gamma, and delta variants. It thus rescued virus-challenged

cells in a concentration-dependent manner without affecting non-infected cells (median cytotoxicity con-

centration of >50 mM) (Figures 7D, 7E, and S9; Table S7), and it reduced the virus load present in the culture

supernatant of the cells (Figures 7F, 7G, and S10). Ethoxzolamide is approved for the treatment of seizures

and glaucoma (Ghorai et al., 2020; Pospelov et al., 2021), and its pharmacodynamics are therefore known. It

is therefore immediately available for repurposing for the treatment of patients with COVID-19, with its

further optimization having the potential to save many lives.

Experimental evaluation of the potential inhibitory effect of acetazolamide, which was ranked second in the

list of potential ACE2-targeting drugs predicted by LIGHTHOUSE and has a known mechanism of action

(carbonic anhydrase inhibitor) similar to that of ethoxzolamide, revealed that acetazolamide did not inhibit

SARS-CoV-2 infection, despite its LIGHTHOUSE confidence score for ACE2 being very similar to that of

ethoxzolamide (0.837 versus 0.881, respectively). We therefore hypothesized that ethoxzolamide might

preferentially target a SARS-CoV-2 protein rather than host ACE2. To test this hypothesis, we computed

the scores of ethoxzolamide and acetazolamide for each of the SARS-CoV-2 protein sequences (4789 en-

tries in the UniProt database, including predictions) (Figure S11). The virus-derived protein with the largest

Figure 7. LIGHTHOUSE-based drug repurposing for COVID-19

(A) Enrichment analysis of the top 500 potential statin targets identified in Figure 6 for COVID-19–associated gene sets. Minus log10-transformed q values are

shown.

(B) Prediction by LIGHTHOUSE of ethoxzolamide as a potential therapeutic for SARS-CoV-2 infection on the basis of its confidence and interaction scores for

ACE2.

(C) Vero-TMPRSS2 cells were infected with wild-type SARS-CoV-2 at a multiplicity of infection (MOI) of 0.0001, cultured for 64 h in the presence of the

indicated concentrations of ethoxzolamide, and subjected to immunocytofluorescence analysis with antibodies to SARS-CoV-2 N protein (green). Nuclei

were stained with Hoechst 33342 (blue). Scale bars, 100 mm.

(D and E) Vero-TMPRSS2 cells challenged with wild-type (WK-521) or delta strains of SARS-CoV-2, respectively, were cultured in the presence of various

concentrations of ethoxzolamide for 3 days and then subjected to the MTT assay of cell viability. Nonchallenged cells were examined as a control. Data are

means G SD for independent experiments each performed in duplicate.

(F and G) Effect of ethoxzolamide on the SARS-CoV-2 load in culture supernatants of Vero-TMPRSS2 cells challenged with wild-type (WK-521) or delta strains

of the virus, respectively. Data are from independent experiments, with the graph line connecting mean values. TCID50, median tissue culture infectious

dose; N.D., not detected.

See also Figures S9–S12 and Tables S7–S9.
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difference in confidence scores (ethoxzolamide minus acetazolamide) was spike protein S, and ORF7, a

protein involved in host-virus interaction, showed the second-largest difference (Table S8). These results

suggested that ethoxzolamide also targets the viral S protein, whereas acetazolamide does not. Molecular

docking simulation suggested that ethoxzolamide binds to the interface between ACE2 and S protein and

thereby blocks virus entry into host cells (Figure S12).

We tested another 10 drugs and found another 2 compounds that also inhibited SARS-CoV-2 infection

(Table S9). This high hit rate of 25% (3 hits in 12 compounds) shows the potential power of

LIGHTHOUSE for drug discovery.

DISCUSSION

Although recent advances in biological and medical research have uncovered various proteins as prom-

ising therapeutic targets in a variety of diseases, the clinical application of these research findings has

been limited because of the difficulty in identifying therapeutic chemicals for these targets in a cost-effec-

tive and high-throughput manner. Acquisition of 3D structural data for target proteins has been labor-

intensive, and processing of such data requires a huge amount of computer capacity and time, resulting

in a delay in the translation of research findings from the laboratory to the clinic. We have now shown

that LIGHTHOUSE facilitates the identification, from a vast chemical space, of candidate compounds for

given target proteins solely on the basis of the primary structure of these proteins. Furthermore, the

AUROC for LIGHTHOUSE is equivalent to or better than that for state-of-the-art 3D docking simulation

methods as well as for other AI methodologies.

Existing in silico drug discoverymethods can be broadly classified into two categories: SBDD (structure-based

drug discovery) and LBDD (ligand-based drug discovery). SBDD requires the 3D structure of the target protein

andmanual configuration of the binding box. LBDD requires a list of existing compounds with activity data for

the target protein. These substantial requirements limit the applicability of AI-powered drug discovery.

LIGHTHOUSE is a computational method that eliminates the drawbacks of these two approaches: It does

not require the 3D structure of the target protein or the setting of the binding box, and it can be applied

to ‘‘undruggable’’ targets for which no inhibitors are currently available. Conventional methods, in particular

SBDD, require desktop computers or high-performance cloud computing (such as Amazon EC2) and can

calculate only up to 10 CPIs per minute. In contrast, LIGHTHOUSE requires only a simple laptop computer

and is able to calculate >1000 CPIs per minute. The time and cost savings of LIGHTHOUSE are therefore

several orders of magnitude relative to conventional docking simulation techniques.

We have applied LIGHTHOUSE to attractive targets for various diseases, including cancer, bacterial infec-

tion, metabolic diseases, and COVID-19. We have presented three examples that show the effectiveness of

LIGHTHOUSE with experimental validation. The actual targets of identified compounds require further

biological investigation, especially in the case of pyridoxal 50-phosphate and PBPs. As for ethoxzolamide,

we attempted to obtain clinical evidence in support of its effectiveness against COVID-19. However, ethox-

zolamide is an old drug and is essentially no longer prescribed as a result of the development of more

potent agents such as acetazolamide. We were therefore not able to find data to address whether

COVID-19 patients taking ethoxzolamide have a better clinical outcome.We were also not able to decipher

the mechanism of action of ethoxzolamide, but our results suggest that the drug might block the interac-

tion between ACE2 and the viral S protein (Figure S12). The beta, gamma, and delta variants of SARS-CoV-2

appeared to have a higher threshold for drug effectiveness compared with the original and alpha strains

(Figures 7F, 7G, and S10). However, when the drug concentration exceeds several micro molar, the virus

load sharply drops to the level of undetected (please bear in mind that the y-axis is log10 transformed).

The important point with regard to our manuscript is that the virus-challenged cells could be rescued by

applying ethoxzolamide, thereby providing experiential validation of the prediction of LIGHTHOUSE.

As for COVID-19, there aremany published AI systems to help clinicians. For example, various imaging data

(X-ray, CT, MRI, etc.), blood tests, age, gender, region, etc., are integrated to predict the severity of COVID-

19 and the occurrence of various symptoms, which definitely help physicians to choose the appropriate

approved drugs for that patient (Jamshidi et al., 2020). LIGHTHOUSE differs from these AI models in

that it discovers drugs on the basis of the amino acid sequence of a target protein, not on that of clinical

information. Furthermore, LIGHTHOUSE is able to identify potential drugs not only for COVID-19 but also

for other diseases including cancer, bacterial infection, and lifestyle-related conditions.

ll
OPEN ACCESS

14 iScience 25, 105314, November 18, 2022

iScience
Article



The hit compounds themselves identified in the present study are not sufficient for immediate clinical use.

An additional potential application of LIGHTHOUSE is drug optimization. One promising method to sup-

port such optimization is to apply LIGHTHOUSE and either reinforcement learning (Pereira et al., 2021)

(Figure S13) orMetropolis-Hasting (MH) approaches together. Virtual libraries can be generated from iden-

tified lead compounds in an intensive manner with the use of sophisticated chemoinformatics algorithms

such as RECAP (Retrosynthetic Combinatorial Analysis Procedure) (Lewell et al., 1998). LIGHTHOUSE can

score the generated virtual compounds and help to narrow down the candidates with better scores than

the original hit compound. Selected candidates can then be synthesized in collaboration with organic

chemists and their effects tested. Given the recent success of the MH approach in various life science fields

(Biswas et al., 2021; Chen et al., 2021), LIGHTHOUSE should be able to facilitate the optimization of drug

candidates by iterating these steps.

LIGHTHOUSE is not limited to compounds for drug repurposing; it can be applied to any compound for

which an SMILES representation is available. LIGHTHOUSE facilitates the discovery of compounds that

have the potential to interact with targets for which no binding agents have previously been identified.

For instance, PPAT has had no known inhibitors and has therefore been categorized as undruggable. In

addition, the 3D structure of PPAT has not been reported, with the result that conventional docking simu-

lationmethods cannot be applied to discover potential inhibitors. With the use of the amino acid sequence

of PPAT alone, LIGHTHOUSE was able to predict potential inhibitors, one of which, compound

ZINC8551105, was indeed shown to inhibit PPAT activity. PPAT is therefore no longer an undruggable

target. Furthermore, with the use of a hit compound as a starting point, LIGHTHOUSE can be applied to

drug optimization. We have calculated the LIGHTHOUSE scores for thousands of analogs of hit com-

pounds that interact with PPAT, and have thereby discovered several PPAT inhibitors that are more potent

than the original compounds (manuscript in preparation). LIGHTHOUSE can thus be applied to de novo

drug discovery and drug optimization as well as to drug repurposing.

Open Targets is a tool that allows data mining on the basis of the function of a gene of interest and a sum-

mary of genome-wide association study (GWAS) data available for the relation of the gene to disease

(Ochoa et al., 2022). PandaOmics automatically executes differentially expressed gene (DEG) searches

and network analysis on the basis of publicly available data from The Cancer Genome Atlas and GEO da-

tabases or user-uploaded data. In addition, the AI system of PandaOmics displays and ranks genes that are

the most successful therapeutic targets for a disease (Zhavoronkov et al., 2019). Although both of these

methods are relatively effective for target identification, they are not designed to identify medications

for the target genes. The identification of promising therapeutic target genes by Open Targets and

PandaOmics can thus be followed by the prediction of lead compounds for these targets by LIGHTHOUSE.

An important improvement will be to reduce the number of false positives, which may necessitate taking

advantage of CPIs that have not been experimentally explored with the use of methods such as collabora-

tive filtering. The next step for more sophisticated AI-dependent drug discovery and its clinical application

will be the use of huge-scale and robust protein-chemical binding (and nonbinding) data, with the recent

introduction of academic journals that specialize in big data reflecting the growth of this field. Moreover,

development of improved approaches to the handling of imbalanced data (Park et al., 2021) is another

active research field in computer science. These advances in both data and methodology should allow

more reliable modeling of physical interactions and further facilitate drug discovery in the coming years.

For de novo drug design, it will be necessary to develop an approach to efficiently explore the huge chem-

ical space (1060 compounds), and the development of algorithms using Bayesian optimization with appro-

priate acquisition function as well as chemical generators (Figure S13) is desirable.

In summary, we have developed LIGHTHOUSE as a means to discover promising lead compounds for any

target protein irrespective of its 3D structural information. Furthermore, we have demonstrated the power

of LIGHTHOUSE by identifying and validating therapeutics for various global health concerns including

COVID-19. LIGHTHOUSE will serve as a guide for researchers in all areas of biomedicine, paving the

way for a wide range of future applications.

Limitations of the study

The biggest limitation of LIGHTHOUSE is the generation of false positives, which is due in part to the fact that

the confidence score provided by STITCH is not based solely on experimental data but also on other factors
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such as co-occurrence in the literature. This confidence score therefore does not necessarily reflect actual

interaction for a given protein-chemical pair, and well-studied molecules are thus prone to score higher

than others. On the other hand, low confidence scores do not necessarily mean that the protein and chemical

in question do not interact. We modeled this score because current biologically determined CPI datasets

contain fewer CPI pairs. In addition, as a result of publication bias and biological experimental conditions,

it is sometimes difficult to tell whether a protein and chemical do not interact, whether they did not bind under

the specific assay condition, or whether theywere not tested. This drawback of LIGHTHOUSE canbemitigated

partially by combining the three different models (CNN, AAC, and Transformer). It may also be important to

perform a counter–virtual screening to determine whether an identified small molecule reacts specifically with

the target protein or whether it scores highly withmany proteins. Such an approach has the potential to reduce

the number of false positives and provide more accurate guidance. Furthermore, we also modeled IC50 data

from BindingDB, which is derived from actual bioassays. We found that the predicted value and observed

value correlate well in the BindingDB test dataset (Figure S6). By combining the confidence score (from

STITCH) and the interaction score (from BindingDB) provided by LIGHTHOUSE, we were able to discover a

clinically approved drug that was able to block SARS-CoV-2 infection.

Another potential limitation is that the performance for STITCH data might be overestimated because we

downsampled the original imbalanced data (Table S1). There are several ways to tackle imbalanced data,

including downsampling, oversampling, and more complex sampling methods such as SMOTE (Chawla

et al., 2011). Each of these approaches has potential limitations, however (Kulkarni et al., 2021; Yu and

Zhou, 2021). In the present study, we adopted downsampling, as in a previous study (Tsubaki et al.,

2019), so the performance for STITCH data may be overestimated when compared with use of the entire

STITCH data. Furthermore, LIGHTHOUSE can in principle handle only low molecular weight compounds,

and it is therefore challenging to apply it directly to the design of nucleic acid, which is gaining popularity as

biopharmaceuticals and biosensors.

Despite these limitations, LIGHTHOUSE proved to be effective for the identification of lead compounds for

all conditions tested. It can theoretically be applied to any protein of any organism, and even to proteins

that do not exist naturally. This is an advantage over 3D docking simulationmethods, which require prior 3D

structural knowledge of the protein of interest. LIGHTHOUSE computes and embeds structural information

in numerical vectors, which are then readily retrieved by the subsequent decoding module. Given the

accelerating development of protein embedding technologies (Bepler and Berger, 2021) and graph-based

chemoinformatics approaches, LIGHTHOUSE has the potential to be a cornerstone of drug discovery. It is

also of note that we split the STITCH dataset once, given that a previous study (Tsubaki et al., 2019) showed

it could obtain high performance with a relatively small range of hyperparameter tuning. In-depth hyper-

parameter tuning with cross-validation may further boost the performance of the model.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Keiichi I. Nakayama (nakayak1@bioreg.kyushu-u.ac.jp).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d All data used for training were downloaded and are publicity available from STITCH (http://stitch.embl.

de) (Szklarczyk et al., 2016) and BindingDB (https://www.bindingdb.org/bind/index.jsp) (Gilson et al.,

2016) web servers. SMILES representations for small-molecule compounds were downloaded from

PubChem (https://pubchem.ncbi.nlm.nih.gov) or ZINC15 (https://zinc15.docking.org) (Sterling and Ir-

win, 2015). Amino acid sequences were obtained from UniProt (https://www.uniprot.org) (UniProt Con-

sortium, 2021). For Figure S11, we obtained all registered proteins associated with SARS-CoV-2 (https://

www.uniprot.org/taxonomy/2697049) and filtered out those containing >7000 amino acids. For drug re-

purposing analyses, we used the KEGG-DRUG database (https://www.genome.jp/kegg/drug) (Kanehisa

et al., 2021). DrugBank (https://go.drugbank.com) was used for identification of target proteins for WHO

essential drugs. All referenced COVID-19 signatures are available at Coronascape (https://metascape.

org/COVID) (Zhou et al., 2019).

d Code for LIGHTHOUSE with pretrained weights together with a notebook reproducing the results pre-

sented in this paper is available at https://github.com/Shimizu-Lab/LIGHTHOUSE.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

SARS-CoV-2 assays

Vero-TMPRSS2 cells (Sasaki et al., 2021) were maintained in Dulbecco’s Modified Eagle’s Medium (DMEM)

supplemented with 10% fetal bovine serum. The WK-521 strain of SARS-CoV-2 (EPI_ISL_408667) as well as

the alpha (QK002, EPI_ISL_768526), beta (TY7-501, EPI_ISL_833366), gamma (TY8-612, EPI_ISL_1123289),

and delta (TY11-927, EPI_ISL_2158617) variants were obtained from National Institute of Infectious Dis-

eases in Japan. Stocks of these viruses were prepared by inoculation of Vero-TMPRSS2 cell cultures as

described previously (Sasaki et al., 2021). The MTT assay was performed to evaluate cell viability after virus

infection also as previously described (Sasaki et al., 2021). In brief, serial two-fold dilutions of ethoxzola-

mide in minimum essential medium (MEM) supplemented with 2% fetal bovine serum were added in dupli-

cate to 96-well microplates. Vero-TMPRSS2 cells infected with wild-type or variant SARS-CoV-2 at 4 to 10

TCID50 (median tissue culture infectious dose) were also added to the plates, which were then incubated at

37�C for 3 days. The viability of the cells was then determined with the MTT assay, and the culture super-

natants were harvested for determination of the TCID50 value as a measure of viral load. For indirect

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Python code for LIGHTHOUSE This paper https://github.com/Shimizu-Lab/LIGHTHOUSE

Python 3.7.12 Python Software Foundation https://www.python.org

R 4.1.3 The Comprehensive R Archive Network https://cran.r-project.org

JMP Pro 15 JMP Statistical Discovery https://www.jmp.com/en_us/home.html

ADFRsuite 1.0 The Scripps Research Institute https://ccsb.scripps.edu/adfr/downloads

AutoDock Vina software 1.2.3 Trott and Olson (2010) https://vina.scripps.edu
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immunofluorescence analysis, cells infected with wild-type SARS-CoV-2 at a MOI of 0.0001 were cultured in

the presence of various concentrations of ethoxzolamide for 64 h, fixed with 3.7% buffered formaldehyde,

permeabilized with 0.05% Triton X-100, and incubated with antibodies to SARS-CoV-2 N protein (GeneTex,

Cat# GTX635679). Immune complexes were detected with Alexa Fluor Plus 488–conjugated goat anti-

bodies to rabbit immunoglobulin G (Invitrogen–Thermo Fisher Scientific, Cat# A32731). Nuclei were

stained with Hoechst 33342 (Invitrogen). Fluorescence images were captured with an IX73 fluorescence mi-

croscope (Olympus).

PPAT activity assay

Sf21 cells were cultured in Sf-900 II SFM (Gibco, Cat# 10902-088) supplemented with 10 mM ferric ammo-

nium citrate. They were transfected with a bacmid encoding human PPAT for 64 h, harvested, washed three

times with phosphate-buffered saline, and lysed in a solution containing 150 mMNaCl, 25 mM Tris-HCl (pH

7.4), 0.5% Triton X-100, and 5 mM EDTA. The lysate was centrifuged at 10,0003 g for 6 min at 4�C, and the

resulting supernatant (100 ng/mL) was incubated for 4 h at 37�C together with 5mMglutamine (Gibco, Cat#

25030-081), 1 mM phosphoribosyl pyrophosphate (Sigma, Cat# P8296), 10 mMMgCl2, 50 mM Tris-HCl (pH

7.4), and various concentrations of riboflavin 50-monophosphate (Sigma, Cat# F2253-10). Enzyme activity

was assessed on the basis of glutamate production as measured with a glutamate assay kit (Abcam,

Cat# 138883). The IC50 value was estimated from biological quadruplicates with a four-parameter logistic

model (Pries et al., 2018) and with the use of JMP Pro 15 software (version 15.1.0).

Assay of E. coli growth

Portions (20 mL) of E. coli strain JM109 (1 3 1010 colony-forming units (CFU)/mL) were cultured for various

times in 2 mL of 2xYT liquid medium (BDDifco, Cat# 244020) containing various concentrations of pyridoxal

50-phosphate (pH adjusted to 7.0), after which OD600 was measured with a GENESYS 30 visible spectropho-

tometer (Thermo Fisher Scientific, Cat# 840–277000). In addition, the JM109 strain was transformed with

1 mg of the pBlueScript II SK + plasmid (Invitrogen), which harbors an ampicillin resistance gene as a selec-

tion marker, and was then spread on LB agar plates containing ampicillin (100 mg/mL) (Wako, Cat# 012–

23303) with or without pyridoxal 50-phosphate (3 mg/mL) and incubated overnight.

METHOD DETAILS

Generation of a dataset for the training phase of LIGHTHOUSE

The compound SMILES strings of the dataset were extracted from the PubChem compound database on the

basis of compound names and PubChem compound IDs (CIDs). The protein sequences of the dataset were

extracted from the UniProt protein database on the basis of gene names/RefSeq accession numbers or the

UniProt IDs. We downloaded the protein-chemical link dataset of Homo sapiens (Taxonomy ID 9606) from

the STITCH database (version 5.0). Given that the STITCH score is heavily biased toward 0, we separated

the data into nine bins on the basis of the score and stratify-extracted the same number of CPIs (140,000

each), yielding 1,260,000 CPIs (Table S1). We then randomly separated these data into training (80%), valida-

tion (10%), and test (10%) datasets (Figure S1A). With regard to IC50, we downloaded data from BindingDB,

obtained SMILES expressions and amino acid sequences similarly, and again separated the data into training

(80%), validation (10%), and test (10%) datasets (Figure S2A). Given that IC50 values differ widely, we scaled the

values by log transformation (Equation 1) and used the transformed values for BindingDB training.

IC50 ðscaledÞ = � log10

�
IC50½M�+ 10� 10

�
(Equation 1)

LIGHTHOUSE architecture and training

The proposed overall model comprises two encoder networks (for chemicals and proteins) and one decoder

network. MPNN is a message passing graph neural network that operates on compound molecular graphs

(Gilmer et al., 2017). In brief, MPNN conveys latent information among the atoms and edges. The message

passing phase runs for t time steps and is defined in terms of message functions Mt and vertex update func-

tionsUt. During this phase, hidden states hv
t (128 dimensions in our model) at each node in the chemical graph

are updated with the incoming messages mv
t+1 according to the following equations (Equations 2 and 3):

mt + 1
v =

X

w ˛NðvÞ
Mt

�
ht
v ; h

t
w ;evw

�
p (Equation 2)

ht + 1
v = Ut

�
ht
v ; m

t + 1
v

�
(Equation 3)
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where evw represents edge feature between nodes v and w,N(v) denotes the neighbor nodes of vertex v in

graphG, and message functionsMt and update functions Ut are learned differentiable functions. After T (=

3) cycles of message passing and subsequent update, a readout function (average) is used to extract the

embedding vectors at the graph level.

CNN is powerful for computer vision, but here we used a multilayer 1D CNN for protein sequence, as

described previously (Öztürk et al., 2018). In brief, the target amino acid is decomposed to each individual

character and is encoded with an embedding layer and then fed into the CNN convolutions. We used three

consecutive 1D convolutional layers with an increasing number of filters, with the second layer having dou-

ble and the third layer having triple the number of filters in the first layer (32, 64, and 96 filters for the three

layers). The convolution layers are followed by a global max-pooling layer. AAC is an 8420-length vector in

which each position corresponds to a sequence of three amino acids (Reczko and Bohr, 1994). Transformer

uses a self-attention–based transformer encoder (Vaswani et al., 2017) that operates on the substructure

partition fingerprint of proteins. Algorithmically speaking, Transformer follows O(n2) in computation

time and memory, where n is the input size. This bottleneck prevented us from considering each amino

acid as a token. We therefore used partition fingerprints to decompose amino acid sequence into protein

substructures of moderate size and then fed each of the partitions into the model as a token (Huang et al.,

2021).

As for the decoder, we exploited a previously described architecture (Paul et al., 2021). In brief, encoder

outputs are concatenated and entered into a three-layer feed forward dense neural network (1024,1024,

and 512 nodes), which finally outputs one value. We used Rectified Linear Unit (ReLU) (Shimizu and Na-

kayama, 2020), g(x) = max(0,x), as the activation function in the decoder network.

We defined our loss function with MSE (Equation 4):

MSE =
1

n

Xn

i = 1

ðPi � yiÞ2 (Equation 4)

where Pi is the LIGHTHOUSE-predicted score for the ith compound-protein pair and Yi is the true label in

the corresponding training data, with a batch size of 128. We trained three architectures (MPNN_CNN,

MPNN_AAC, MPNN_Transformer) separately for the STITCH and BindingDB training data with the

Adam optimizer and a learning rate of 0.001. For evaluation metrics, we used MSE, concordance index,

and Pearson correlation as well as AUROC. For every 10 epochs, we compared the current loss (in the vali-

dation dataset) with that of 10 epochs ago; if the loss was not decreasing, we terminated the training for

that model. As a result of this early termination, we trained MPNN_CNN for 40 epochs, MPNN_AAC for

70 epochs, and MPNN_Transformer for 100 epochs with regard to the confidence score (Figures S1B–

S1G). As for the models for the interaction score, we trained MPNN_CNN for 70 epochs, MPNN_AAC

for 100 epochs, and MPNN_Transformer for 70 epochs (Figures S2B–S2G), according to the same guide-

lines. After the training was completed, we finally evaluated the models with the test datasets, which

were kept aside during the training and so had not previously been seen by the models.

Linear combination of confidence and interaction scores

We generated a combined score by linear combination of the confidence and interaction scores

(confidence + alpha*interaction), where alpha represents the relative weight of the interaction score. We

initially set alpha in order to scale the maximum values of the confidence (max 1) and interaction (max

10) scores. We then conducted a grid search with regard to alpha, which ranges from 0.05 to 0.2, and iden-

tified the optimal alpha to distinguish between positive and negative data. Finally, the combination score

was defined as confidence score plus 0.075*interaction score.

Generation of virtual chemical libraries and prediction by LIGHTHOUSE

We prepared nearly 1 billion purchasable substances, which were downloaded from the ZINC database

(Sterling and Irwin, 2015) as of 30 July 2020, for virtual PPAT inhibitor screening. For drug repurposing,

we obtained approved drugs from the KEGG-DRUG database (Kanehisa et al., 2021) as of 24 January

2021. For calculation of confidence and interaction scores, we fixed the proteins of interest (PPAT or

ACE2) and changed the compounds iteratively, which yielded lists of predicted scores for all the
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compounds tested. As for the peptide drugs shown in Figure 2, we converted them as for small-molecule

compounds with the use of SMILES.

Virtual identification of statin targets and enrichment analyses

Three representative statins were fixed as chemical inputs, and all human protein-coding genes in the

UniProt database were iteratively changed. The harmonic mean of the three confidence scores was calcu-

lated as an affinity score for statins, and the human protein-coding genes were sorted on the basis of this

score. The resulting top 500 potential targets were then subjected to enrichment analyses with the use of

the Metascape web server (Zhou et al., 2019).

Molecular docking simulation

The crystal structure of the receptor binding domain of the spike protein of SARS-CoV-2 in complex with

ACE2 (Shang et al., 2020) was downloaded from PDB (accession number: 6VW1) and converted to a pdbqt

file with ADFRsuite (version 1.0) according to the recommendations of the developers. A grid box was then

set with the following parameters in angstroms: center (X, Y, Z) = (80, 0, 180) and dimensions (X, Y, Z) = (30,

30, 30). Docking simulation was performed with the use of AutoDock Vina software (version 1.2.3) (Trott and

Olson, 2010) and with an exhaustiveness of 32.

QUANTIFICATION AND STATISTICAL ANALYSIS

A p value of <0.05 was regarded as statistically significant. Statistical tests are indicated in the results or

STAR+methods sections as well as in figure legends. We used R software (version 4.1.3) for statistical anal-

ysis, with the exception of the IC50 calculation presented in Figure 3, for which we used JMP Pro (version

15.1.0).
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