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Abstract

Background: DC are activated by pathogen-associated molecular patterns (PAMPs), and this is pivotal for the induction of
adaptive immune responses. Thereafter, the clearance of activated DC is crucial to prevent immune pathology. While PAMPs
are of major interest for vaccine science due to their adjuvant potential, it is unclear whether and how PAMPs may affect DC
viability. We aimed to elucidate the possible apoptotic mechanisms that control activated DC lifespan in response to PAMPs,
particularly in vivo.

Methodology/Principal Findings: We report that polyinosinic:polycytidylic acid (PolyIC, synthetic analogue of dsRNA)
induces dramatic apoptosis of mouse splenic conventional DC (cDC) in vivo, predominantly affecting the CD8a subset, as
shown by flow cytometry-based analysis of splenic DC subsets. Importantly, while Bim deficiency conferred only minor
protection, cDC depletion was prevented in mice lacking Bim plus one of three other BH3-only proteins, either Puma, Noxa
or Bid. Furthermore, we show that Type I Interferon (IFN) is necessary and sufficient for DC death both in vitro and in vivo,
and that TLR3 and MAVS co-operate in IFNß production in vivo to induce DC death in response to PolyIC.

Conclusions/Significance: These results demonstrate for the first time in vivo that apoptosis restricts DC lifespan following
activation by PolyIC, particularly affecting the CD8a cDC subset. Such DC apoptosis is mediated by the overlapping action of
pro-apoptotic BH3-only proteins, including but not solely involving Bim, and is driven by Type I IFN. While Type I IFNs are
important anti-viral factors, CD8a cDC are major cross-presenting cells and critical inducers of CTL. We discuss such paradoxical
finding on DC death with PolyIC/Type I IFN. These results could contribute to understand immunosuppression associated with
chronic infection, and to the optimization of DC-based therapies and the clinical use of PAMPs and Type I IFNs.
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Introduction

Dendritic cells (DC) are the most potent professional antigen-

presenting cells and play a key role in the induction of tolerance

and initiation of adaptive immune responses [1]. Such decisive

role of DC has attracted major attention for the improvement of

vaccine efficacy, including the targeting of antigens to DC and the

use of adjuvants to optimally activate DC and consequently boost

immunity [2].

The DC system is composed of phenotypically and functionally

heterogeneous subsets [1,3]. Migratory DC reside in non-lymphoid

organs and are able to capture antigens at the sites of infection or

injury and transport them to draining lymph nodes. Lymphoid

tissue-resident, conventional DC (cDC) are non-migratory and

serve as sentinels in secondary lymphoid organs and tissues for in situ

antigen capture and presentation. In the mouse, several DC

subtypes can be found in the spleen: two subsets of cDC (CD8a+

CD11b2 and CD82 CD11b+, hereafter termed CD8a and CD11b

subsets), inflammatory monocyte-derived DC, and plasmacytoid

DC (pDC).

Pattern-Recognition Receptors (PRR), including the Toll like

receptor (TLR) family, detect Pathogen-Associated Molecular

Patterns (PAMPs) and are important for the stimulation of

antigen-presenting activity, featuring up-regulation of co-stimula-

tory molecules and the secretion of a variety of chemokines and

cytokines [4]. Importantly, following detection of PAMPs, DC

switch from tolerance induction to T cell priming. Notably, the

various DC subsets differ in their profile of PRR expression as well
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as in their cytokine responses and antigen-presenting capacities,

with a consequent division of labour amongst DC subsets in

pathogen recognition and immune response initiation [4,5].

Amongst the different PAMPs under research and used in clinical

studies, the synthetic dsRNA analog polyinosinic:polycytidylic acid

(PolyIC) has proven superiority as a vaccine adjuvant for Th1

immunity, including in DC targeted vaccines [2], with the

induction of Type I Interferon (IFN) by PolyIC being key to the

enhancement of DC function [6].

The control of DC lifespan is yet another critical parameter

that can profoundly influence the outcome of an immune

response, potentially affecting vaccine efficacy and its side-effects

[7,8]. While an increase in the lifespan of DC can elicit

autoimmunity [9], reduced DC numbers correlate with immu-

nosuppressed states in several settings both in humans and in

mice, including chronic viral infection, sepsis and cancer [7]. The

DC compartment must be strictly regulated, in order to sustain

homeostasis, to return to steady-state levels following the

induction of an immune response, to prevent autoimmunity,

and to avoid immunosuppresion.

Apoptotic cell death is thought to play a critical role in the

regulation of the numbers and function of DC [7,8]. Mammals

have two distinct but ultimately converging apoptosis signaling

pathways. The ‘‘death receptor’’ (or ‘‘extrinsic’’) pathway is

triggered by members of the TNF-R family, containing intra-

cellular ‘‘death domains’’ (e.g. Fas, TNF-R1), and requires

activation of the initiator caspase, caspase-8. The ‘‘Bcl-2-

regulated’’ (also called ‘‘intrinsic’’ or ‘‘mitochondrial’’) apoptotic

pathway can be triggered by developmental cues, cytokine

withdrawal or cytotoxic stress signals (e.g. DNA damage); it

involves mitochondrial outer membrane permeabilization

(MOMP) and consequent release of apoptogenic factors, such as

cytochrome c, which promotes activation of the initiator caspase-9,

unleashing the caspase cascade. This pathway is controlled by the

Bcl-2 family and these proteins can be sub-divided according to

structure and function [10]. The anti-apoptotic members,

including Bcl-2, Bcl-xL, Mcl-1 and A1, share up to 4 regions of

homology (BH or Bcl-2 Homology domains) and are essential for

cell survival. Bax and Bak have three BH regions and are critical

for MOMP and activation of the effector phase of apoptosis. The

BH3-only subgroup, including Bim, Bid, Puma and Noxa, is

essential for initiation of apoptosis and thought to activate Bax/

Bak proteins either directly or indirectly by sequestering their pro-

survival relatives [11]. Both the ‘‘death receptor’’ and the ‘‘Bcl-2-

regulated’’ apoptotic pathways converge upon the activation of the

effector caspases, caspase-3, -6 and -7, which cleave a multitude of

substrates and thereby cause cellular demolition. In addition,

cross-talk between ‘‘intrinsic’’ and ‘‘extrinsic’’ apoptosis pathways

may occur. For instance, caspase-8 may proteolytically activate the

pro-apoptotic BH3-only member Bid that will then activate the

‘‘intrinsic’’, mitochondrial death pathway.

The apoptotic mechanisms that regulate DC function are

poorly understood. T-cell dependent killing of antigen-presenting

DC has been described for both CD4 and CD8 T cells, via FasL

and perforin secretion, respectively, as a negative feedback

mechanism to attenuate immune responses [12,13]. However,

there is incomplete or contradictory evidence on the consequences

of microbial stimulation for DC viability. Treatment of DC in vitro

with TLR-Ls results in up-regulation of the pro-apoptotic protein

Bim, but TLR-Ls rather promote survival and appear to have an

inhibitory effect on the spontaneous apoptosis of DC in culture

[14]. Furthermore, Bim-deficient DC are partially protected from

spontaneous apoptosis in vitro, regardless of the presence or

absence of TLR-Ls [14]. In contrast, treatments in vivo using TLR-

Ls, such as CpG or LPS, as well as infection with E.coli or LCMV-

Armstrong, induce loss of splenic cDC [15,16]. To date, there is a

lack of information on the possible apoptotic pathways that control

DC populations during the early phases of activation in vivo,

particularly in response to PAMPs and independently of other

immune cells.

Here we show that PolyIC induces apoptosis of splenic cDC

following their activation in vivo, with the CD8a cDC being more

susceptible than the CD11b cDC subset. Proving the apoptotic

mechanism involved in vivo, absence of Bim together with a

second BH3-only family member (Bid, Noxa or Puma) leads to

protection from DC death. We also show that Type I IFN

production is required and sufficient for PolyIC-induced DC

death. This study sheds light into the mechanisms of activated

DC death in vivo. The results could contribute to an understand-

ing of immunosuppression during chronic viral infection and

inflammation, and may provide important clues for the

optimization of vaccines and treatments featuring PAMPs and

Type I IFNs.

Results

Splenic cDC are reduced in numbers following PolyIC
treatment

Splenic cDC were analyzed at several time-points following

injection of PolyIC in WT mice. In spleen, cDC are characterized

as CD11c MHC-II B2202 and are commonly divided into the

CD8a+ CD24+ CD11b2 SIRPa2 and CD82 CD242 CD11b+

SIRPa+ subsets with a steady-state ratio of 1:3 [3]. The other

major DC subset, the pDC, expresses intermediate levels of

CD11c and is B220+. Moreover, infiltrating monocytes can

differentiate into DC expressing CD11c and Gr-1 (moDC). We

therefore identified splenic cDC as CD11c+ B2202 Gr-12 and

sub-divided them into CD8a or CD11b subsets. As expected,

PolyIC induced cDC activation, characterized by up-regulation of

the co-stimulatory molecules CD40, CD80 and CD86, with a peak

between 10–20 h (Fig. 1A). Activation was more pronounced in

the CD8a subset and correlated with a marked increase in their

absolute numbers at 10 h (Fig. 1B). Between 40 and 100 h,

however, the CD8a subset was dramatically reduced in numbers,

with as little as 10% remaining when compared to starting

numbers (Fig. 1B and C). In comparison, the CD11b subset

showed a less pronounced activation as well as less expansion and

subsequent reduction. Within 130 h of PolyIC treatment, both

cDC subsets returned to steady-state levels. These results

demonstrate that, in response to PolyIC injection, splenic cDC

undergo transient activation followed by a marked reduction in the

CD8a cDC subset in vivo.

Splenic cDC depletion upon PolyIC stimulation is
independent of both T cells and NK cells

Previous reports have described the killing of DC by both CD4

and CD8 T cells, via Fas ligand and perforin, respectively [12,13].

Splenic cDC depletion was therefore investigated in the FasLPR

spontaneous mutant (Fas-deficient) mice and perforin (Pfn)-

deficient mice at 40 h of PolyIC treatment. In neither case was

the loss of splenic cDC prevented (Fig. 2A), showing that the

previously described CD4 and CD8 T cell controls of DC

populations by these factors are not involved in PolyIC-induced

splenic cDC depletion. To further evaluate the contribution of NK

cells and/or T cells in this loss of splenic cDC, we injected PolyIC

into mice lacking both cell types due to deficiency in Rag-2 and

the cytokine receptor common c-chain (cc) (Rag-22/2cc
2/2)

(Fig. 2B and Fig. S1A). Treatment of Rag-22/2cc
2/2 mice with

PolyIC Kills DC via Type I IFN/BH3-Only Proteins
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PolyIC induced a marked reduction in the numbers of splenic

cDC (Fig. S1B). The fold-change in total cells with PolyIC

showed that CD8a cDC were more extensively depleted, while

CD11b cDC were less reduced, in Rag22/2cc
2/2 mice compared

to WT mice (Fig. 2B). Interestingly, Rag-22/2cc
2/2 mice showed

a steady-state CD8a-to-CD11b cDC ratio close to 0.8, in contrast

to WT mice which display a ratio of ,0.3. Such altered ratio is

seen in all mice lacking B cells (K.S. and D.V., unpublished

Figure 1. Kinetics of PolyIC-induced activation and loss of splenic cDC subsets. Mice were injected for several lengths of time with PolyIC
(n = 3 per time-point) or PBS (time-points 0, 10, 70 or 130 h) as controls. A. The geometric mean of fluorescence intensity (GeoMFI) is shown for the
activation markers CD40, CD80 and CD86 within each splenic cDC subset analyzed as in C. B. Total cells from each cDC subset per time-point as
indicated. P-values indicate significance per time-point compared to injection with PBS. C. Gating strategy for the analysis of splenic cDC subsets,
showing one representative sample. Splenic leukocytes were gated for CD11c B2202Gr-12 cDC (R1xR2), and further segregated into CD8a or CD11b
subsets. Data are representative of at least two independent experiments (except for time-point 130h).
doi:10.1371/journal.pone.0020189.g001
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observations) and may have influenced the pattern of depletion

upon PolyIC treatment in Rag-22/2cc
2/2.

Regardless, these results demonstrate that a T cell- and NK cell-

independent mechanism must reduce spleen cDC numbers and

thereby limit DC responses to PolyIC stimulation.

Depletion of splenic cDC also occurs upon treatment
with different TLR-Ls and pathogenic infection

It has been shown that both CpG (TLR9-L) and LPS (TLR4-

L) induce loss of splenic DC, albeit with limited distinction and

quantitation of DC subsets [15]. We therefore examined

whether preferential depletion of CD8a cDC was unique to

PolyIC, or whether it could also be observed with other PAMPs.

At 12 h, both CpG and LPS induced activation of the two cDC

subsets (Fig. S2A), as well as a reduction in their cell numbers at

40 h (Fig. S2B). Interestingly, as in the case of PolyIC, LPS and

CpG induced a greater activation and cDC loss in CD8a cDCs

compared to CD11b cDCs. While CpG induced more modest

effects, LPS treatment caused an extent of activation and

subsequent depletion of CD8a cDCs comparable to PolyIC.

PolyIC is a synthetic dsRNA analog that mimics genome or

replication intermediates often found in viruses. In order to

examine whether cDC depletion also occurs during infection with

live pathogens in vivo, we analyzed the splenic cDC composition in

mice at early time-points following challenge with LCMV or

Leishmania parasites. Infection with 209000 pfu of LCMV-

Armstrong has previously been shown to reduce the numbers of

both splenic cDC subsets by ,50% at day 3 [16]. In our study, we

inoculated mice i.v. with 109000 pfu of LCMV-WE, a more

aggressive and persistent strain of LCMV [17]. Early activation

(CD86) on day 2 was accompanied by partial loss of cDC, and

even more profound loss was observed on day 3 (Fig. 3A). Again,

the CD8a cDC subset was more severely affected than the CD11b

subset. Compared to the previously reported data on LCMV-

Armstrong infection [16], the more aggressive LCMV-WE strain

induced a bigger loss of cDC.

In addition, we challenged mice with the two Leishmania species,

L. major and L. guyanensis, causing cutaneous and mucocutaneous

leishmaniasis, respectively. Leishmania parasites stimulate surface as

well as endosomal TLRs. Interestingly, L. guyanensis harbors a

dsRNA virus that can provide additional TLR-3 stimulation [18],

similar to PolyIC. Systemic infection of mice with L. major or L.

guyanensis resulted in activation (CD86) of both cDC subsets on

days 2 and 3 (Fig. 3B). Significant loss of splenic cDC was only

observed with L. guyanensis but not L. major, presumably due to the

stimulation by leishmaniavirus carried in L. guyanensis (additio-

nalTLR3-L component).

Altogether, these data show that loss of splenic cDC was not

restricted to stimulation with synthetic PolyIC but was also found

in more patho-physiologically relevant infectious settings.

PolyIC modulates expression of pro- and anti-apoptotic
Bcl-2 family genes in splenic cDCs in vivo

Given the dramatic loss of splenic cDC upon PolyIC treatment,

independently of other immune cells, we wanted to distinguish

between emigration and cell death. For this purpose, we first

analyzed pro- and anti-apoptotic Bcl-2 family members in cDC

subsets purified 14 h after treatment in vivo with PolyIC, a time

shortly before their depletion (Fig. S3A). Due to the low numbers

of DCs that can be obtained and the clearance of apoptotic cells in

vivo, we examined modulation of Bcl-2 family members at the

mRNA level by quantitative real time (qRT)-PCR, a potential

early apoptotic event (Fig. S3B). Amongst the pro-apoptotic BH3-

only members analyzed, a strong induction of Bim and, albeit to a

lesser extent, Puma could be consistently detected in both cDC

subsets. Of note, CD8a cDCs expressed a higher steady-state level

of Bim (three-fold) and Puma (two-fold) compared to the CD11b

subset (PBS controls). While Noxa displayed inter-experimental

variability in CD8a cDCs, being on average maintained, it was

also up-regulated in CD11b cDCs. Interestingly, Bid expression

was clearly down-regulated with PolyIC in CD8a cDCs, while

CD11b cDCs expressed lower levels in steady-state (PBS) as

compared to CD8a cDCs and maintained these levels after

treatment. In the anti-apoptotic Bcl-2 family members analyzed,

Bcl-xL was clearly increased in both subsets, being in CD8a cDCs

more extensively up-regulated. Bcl-2 was maintained in CD11b

cDCs and slightly down-regulated in CD8a cDCs, while PolyIC

up-regulated Mcl-1, and A1 slightly, in both subsets.

These results show a change in the transcriptional program of

pro- and anti-apoptotic Bcl-2 family members upon PolyIC

treatment, with the strongest induction seen for Bim in both

subsets.

Figure 2. Loss of splenic cDC occurs independently of T, B or NK cells. A. FASLPR or perforin2/2 or control (WT) mice were treated with PBS
(n = 3) or PolyIC (n = 3) and their splenic cDC analyzed after 40 h. The fold-change in total cells with PolyIC relative to PBS treatment is shown for each
splenic cDC subset. B. Rag22/2cc

2/2 and control (WT) mice were injected with PBS (n = 3) or PolyIC (n = 3), and their splenic DC composition
evaluated as described in Figure S1. The fold-change in total cells with PolyIC relative to PBS treatment is shown. Data are presented as mean +/2 SD.
doi:10.1371/journal.pone.0020189.g002
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Multiple BH3-only proteins mediate PolyIC-induced
apoptosis of splenic cDC, including but not solely
involving Bim

Further to changes in gene expression, post-transcriptional and

post-translational regulation of certain Bcl-2 family members is a

common event, for instance proteolytic Bid activation. We wanted

to examine whether the mitochondrial apoptotic pathway is

responsible for splenic cDC depletion, and to identify the pro-

apoptotic members possibly involved. To this end, we injected mice

lacking Bim, Puma, Noxa, Bid or combinations of two of these

BH3-only proteins (Puma2/2Noxa2/2, Bim2/2Puma2/2, Bim2/2

Noxa2/2 and Bim2/2Bid2/2) with PolyIC and determined their

cDC numbers after 40 h (Fig. 4). These different knock-out mice

displayed normal DC populations (absolute numbers and ‘CD8a+:

CD8a2 cDC’ ratio) in steady-state as compared to WT mice (Fig.
S4). Following PolyIC treatment, mice singly deficient for Bid,

Puma or Noxa displayed a reduction in both cDC subsets that was

comparable to that seen in WT mice (Fig. 4C). Remarkably, while

mice lacking Bim showed only a modest protection in cDC, similar

to mice lacking both Puma and Noxa, a striking persistence of cDC

numbers was seen in PolyIC-treated mice lacking Bim and a second

BH3-only protein, either Bid, Puma or Noxa (Fig. 4C). This

protection was already visually striking in the flow cytometric

analysis of cDC subsets (Fig. 4A and B), which showed that the

CD8a cDC subset in particular did not disappear after PolyIC

injection, in contrast to their profound depletion observed in WT

animals.

These results support that apoptosis is responsible for the

depletion of splenic cDC subsets in response to PolyIC, and that

the mechanism requires multiple BH3-only proteins, including

Bim plus either Puma, Noxa or Bid.

Type I IFN is necessary for the induction of splenic cDC
depletion in response to PolyIC

We wanted to identify the signaling events downstream PolyIC

detection that induced DC death. Double-stranded RNA can be

detected by TLR3 in the endosome or by Rig-like Helicases

(MDA-5 and RIG-I) that survey the cytosol compartment and

signal via the adaptor MAVS. PolyIC in particular is a mimic of

long dsRNA (.3 kbp), that may be detected by TLR3 and MDA-

5, but not RIG-I [19]. CD8a cDC are known to express higher

levels of TLR3 than the CD11b subset [4,20] (Fig. S5B). The

expression of MAVS was found to be similar amongst splenic cDC

subsets in WT mice (Fig. S5A). Recent proteomic analysis of DC

subsets has furthermore confirmed such selectively higher levels of

TLR3 in CD8a cDC at the protein level [21]. This might explain

the greater extent of activation, expansion and subsequent

depletion seen in CD8a cDC compared to CD11b cDC.

PolyIC-induced cDC loss was therefore investigated in mice

lacking either Ttlr3 or the adaptor Mavs (downstream of MDA-5)

(Fig. 5). Surprisingly, loss of either Tlr3 or Mavs only resulted in

partially increased persistence of splenic cDC following PolyIC

treatment (Fig. 5A and B). This suggested that apoptosis may be

induced by converging factors downstream dsRNA detection, such

Figure 3. Splenic cDC depletion during infection with LCMV or Leishmania. A. Mice were treated with LCMV-WE or PBS (control). Splenic
cDC activation (CD86 expression) and total cells were analyzed on day 2 (n = 3) and day 3 (n = 4) (control; n = 7). B. Mice were infected with L.
major or L. guyanensis, or injected with PBS (control). Splenic cDC activation (CD86 expression) and total cells were analyzed on day 3 (n = 3)
and day 6 (n = 3) (control; n = 4). Data are presented as mean +/2 SD. P-values indicate significance per inoculation compared to injection
with PBS.
doi:10.1371/journal.pone.0020189.g003
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as the induction of Type I IFNs. Accordingly, splenic cDC

depletion following PolyIC administration was analyzed in mice

lacking the alpha chain of the Type I IFN Receptor (Ifnar12/2,

hereafter termed 1IFNR2/2 mice)1. Remarkably, loss of 1IFNR

clearly protected both splenic cDC subsets from depletion

following PolyIC treatment (Fig. 5A and B).

TLR3 and MAVS cooperate in IFNß production in
response to PolyIC treatment in vivo

The results showed that production of Type I IFN was the

critical event that caused DC loss in vivo in response to PolyIC.

Deficiency of either TLR3 or MAVS did not protect DC from

PolyIC, suggesting that both TLR3 and MAVS cooperate in Type

Figure 4. Loss of two BH3-only proteins, including Bim, protects cDC subsets from PolyIC-induced depletion. Mice of the genotypes
indicated were injected with PolyIC (n = 2 or 3 per strain) or PBS (control; n = 2 per strain, except n = 1 for Bid2/2) and splenic cDC numbers determined
after 40 h. A. Strategy for the flow cytometry analysis of splenic cDC subsets. Total splenocytes were gated for CD11c CD45RA2 (R1), then CD11chighGr-
12 (R2). In order to exclude splenic DC precursors, CD11b cDC were gated as CD8a2 SIRPahigh cells within the cDC (R1xR2), since fully developed CD11b
cDC express high levels of Sirpa and intra-splenic cDC precursors express only intermediate levels of SIRPa and CD11c [64]. One representative example
of a WT and a Bim2/2Puma2/2 mouse injected with either PolyIC or PBS (control) is shown. B. Splenic cDC subset segregation as outlined in (A). One
representative sample is shown per strain and treatment. C. The fold-change in total cells elicited by injection with PolyIC relative to PBS treatment is
shown. Data are represented as mean +/2 SD. P-values indicate significance per mouse strain as compared to WT controls.
doi:10.1371/journal.pone.0020189.g004
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I IFN production. We therefore assessed the relative contributions

of TLR3 and MAVS in IFNß production in response to PolyIC.

First, systemic production was analyzed in sera of WT, TLR32/2,

MAVS2/2 or 1IFNR2/2 mice after 4.5 h of PolyIC injection. In

agreement with previous reports [6,22], MAVS was required for

systemic production of this cytokine (Fig. 5C). Secondly, we

analyzed IFNß production by DC. Splenic DC represent a minor

fraction of cells in vivo (e.g. CD8a cDC are 0.25% of total cells in

spleen) and their relative contribution to IFNß production might

not be detectable in serum or cultures of whole splenocytes. We

therefore analyzed DC-rich spleen fractions (containing cDC

subsets, pDC and B cells) as well as purified CD8a or CD11b

subsets. These were obtained from WT, TLR32/2, MAVS2/2 or

1IFNR2/2 mice and cultured with PolyIC or medium alone for

Figure 5. Type I IFN mediates splenic cDC loss and is cooperatively induced by TLR3 and MAVS in vivo. A and B. WT, TLR32/2,
MAVS2/2 and 1IFNR2/2 mice were treated with PBS (control) or PolyIC. Splenic cDC were analyzed at 40 h as described before. The
segregation of cDC into CD8a and CD11b subsets is shown (A) for one representative experiment per strain. The fold-change in total cells
with PolyIC relative to PBS treatment is shown (B) for experiments with TLR32/2 (n = 4) and MAVS2/2 (n = 3) mice with WT mice as controls
(n = 4), and for 1IFNR2/2 (n = 3) mice with WT mice as controls (n = 3). P-values indicate significance per mouse strain as compared to WT
controls. C. WT, TLR32/2, MAVS2/2, and 1IFNR2/2 mice were injected with PolyIC and the levels of serum IFNb examined 24 h before and
4.5 h after treatment (n = 3, representative of two independent experiments). P-values indicate significance comparing PolyIC treatment to
PBS controls, per strain. D. Splenic DC fractions were isolated from WT, TLR32/2, MAVS2/2 and 1IFNR2/2 mice as depicted in Figure S6 and
cultured in medium (control) or with PolyIC for 4 h. IFNb production was analyzed in supernatants (n = 6 for DC-rich fractions, n = 5 for cDC
subset fractions, from two independent experiments). P-values indicate significance comparing PolyIC treatment to medium alone, per strain.
Data are presented as mean +/2 SD.
doi:10.1371/journal.pone.0020189.g005
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4 h (Fig. 5D and Fig. S6). In WT samples, IFNß was induced in

both the DC-rich fraction and the purified CD8a subset, whereas

the CD11b subset showed no secretion (Fig. 5D). Importantly,

loss of TLR3 abrogated production of IFNß by CD8a cDC, while

MAVS2/2 CD8a DC showed impaired although still detectable

induction of IFNß (Fig. 5D). These results support that TLR3 and

MAVS cooperate to induce IFNß in response to PolyIC, in a cell-

type specific manner. Isolated splenic CD8a cDC required TLR3,

while other cells relied on MAVS and produced IFNß systemi-

cally. Presumably, the relatively small contribution of splenic

CD8a cDC to systemic IFNß production is not detectable in the

serum of MAVS2/2 mice.

CD8a DC lines rely on TLR3 for IFNß production and
apoptosis with PolyIC

In addition to IFNß production by DC, we wanted to validate that

DC undergo apoptosis in response to PolyIC, in isolation from other

cells (in vitro), and assess the requirement of TLR3. Of note, several

technical difficulties render the study of DC apoptosis challenging,

including the scarcity of DC in the mouse and the fact that dying cells

are rapidly cleared in vivo (rendering their detection difficult). We

initially assessed whether apoptosis of DC induced by PolyIC

treatment in vivo could be detected by a subsequent enrichment and

4 h culture of DC ex vivo, allowing for phosphatidylserine

translocation (AnnexinV staining) with minimal phagocytosis by

surrounding cells (Fig. S7A). Although a slight increase in AnnexinV

staining was seen in cDC from PolyIC-treated mice (Fig. S7B), the

rapid spontaneous activation and apoptosis of splenic cDC ex vivo

(4 h in cDC from PBS-treated, Fig. S7B and C) rendered analysis of

PolyIC-induced apoptosis in splenic cDC extremely difficult.

In order to avoid spontaneous apoptosis of DC, we have taken

advantage of novel CD8a DC lines derived from the culture of

tumors arising in our recently reported transgenic mouse model of

Langerhans cell hiostiocytosis [23], harbouring the SV-40LgT

oncogene under the control of the DC-specific CD11c promoter

(Fig. S8A). The DC lines derived share all tested features with

freshly-isolated CD8a DC, such as PAMP-induced up-regulation of

MHC class II and co-stimulation molecules, cytokine secretion

upon activation, and antigen-presentation and cross-presentation

(Fuertes Marraco and Grosjean et al, manuscript in preparation). Following

activation with PolyIC (Fig. S8B), DC lines displayed induction of

apoptosis as confirmed by the standard AnnexinV/7-AAD staining

as well as mitochondrial depolarization (Fig. S8C). Pertinently, the

kinetics of apoptosis in DC lines was reminiscent of the depletion of

splenic cDC observed in response to PolyIC in vivo (Fig. 1).

Several genetically deficient DC lines were derived from tumors

in CD11c:SV40LgT-TG mice crossed to various genetically

deficient backgrounds, including 1IFNR2/2, TLR32/2 and

MAVS2/2. Upon treatment with PolyIC for 48 h, 1IFNR2/2 DC

lines were protected from PolyIC-induced apoptosis (Fig. 6A and
B), in agreement with the requirement for the 1IFNR for splenic

cDC loss in vivo (Fig. 5A and B). Strikingly, TLR32/2 DC lines

were also resistant to PolyIC, whereas MAVS2/2 DC lines remained

normally susceptible (Fig. 6A and B). Importantly, MAVS2/2 DC

lines produced IFNß in response to PolyIC, whereas the resistance

of TLR32/2 DC lines correlated with a lack of IFNß production

(Fig. 6C), in agreement with the requirement of TLR3 for IFNß

production by freshly isolated splenic CD8a cDC (Fig. 5D).

IFNb is sufficient to induce apoptosis of DC lines in vitro
and splenic cDC loss in vivo

We next investigated whether Type I IFN was not only

necessary but also sufficient to induce apoptosis of splenic cDC.

Notably, except for 1IFNR2/2 DC lines, all other DC lines readily

underwent apoptosis after 48 h of treatment with IFNß, including

the PolyIC-resistant TLR32/2 DC lines (Fig. 6A and B). In

addition, effector caspase-3/-7 and initiator caspase-8 activities

were clearly evident in WT DC lines after ,30 h of stimulation

with either PolyIC or IFNß (Fig. 6D).

Further to the preliminary evidence in DC lines, it was critical

to investigate the sufficiency of IFNß to induce loss of splenic cDC

in vivo. Experiments using WT and 1IFNR2/2 mice showed that

injection of IFNß was sufficient to deplete WT splenic cDC subsets

to an extent similar to that achieved by treatment with PolyIC

(Fig. 7). Moreover, TLR32/2MAVS2/2 double deficient mice

were generated in order to test whether TLR3 and MAVS have a

cooperative action in the loss of splenic cDC in response to PolyIC.

Remarkably, TLR32/2MAVS2/2 splenic cDC were found to be

resistant to PolyIC injection, but remained susceptible to

treatment with IFNß (Fig. 7). These data support the co-operative

action between TLR3 and MAVS in IFNß production in vivo, and

demonstrate that IFNß is alone sufficient to induce splenic cDC

loss in vitro and in vivo.

Discussion

PolyIC kills splenic cDC in vivo, in particular CD8a cDC, via
the conjunction of multiple BH3-only proteins, including
but not solely involving Bim

There are contradictory reports on the effects of microbial

stimulation on DC viability, and to date no reports exist on

apoptotic mechanisms controlling DC populations in vivo. One

prediction is that recognition of pathogens would enhance DC

survival to guarantee potent DC function, thus promoting efficient

adaptive immune responses. Conversely, given the harmful

consequences of exaggerated immune responses, strong microbial

stimulation might be expected to create a need for increased DC

turnover. We show here that splenic cDC undergo apoptosis in

response to PolyIC, particularly affecting the CD8a subset.

Furthermore, loss of splenic cDCs occurred in the absence of T

cells or NK cells, pointing to an apoptotic mechanism that is

intrinsic to DCs and distinct from previous reports [12,13]. In our

hands, concomitant CD40 cross-linking did not rescue CD8a DC

from PolyIC-induced death (data not shown) [24].

Remarkably, while loss of Bim alone afforded only minor

protection of DC, no DC loss was seen in PolyIC-injected mice

lacking Bim plus either Puma, Noxa or Bid. Such correlation

supports that DC apoptosis takes place in vivo in response to

PolyIC. Whether DC that are deficient for two BH3-only proteins

(including Bim) are generally more resistant to apoptosis cannot be

excluded. To test the latter hypothesis, alternative unrelated

treatments that induce apoptosis in splenic cDC would need to be

identified and investigated in the different BH3-only deficient

mice. Of note however, the different mice deficient for BH3-only

members did not display increased DC populations in steady-state

(neither numbers nor CD8a+-to-CD8a2 cDC ratio, Fig. S4). This

excludes the presence of abnormally high starting numbers of

splenic cDC in mice deficient for BH3-only members that would

then render DC loss with PolyIC less significant. The involvement

of Bim together with other BH3-only proteins in splenic cDC loss

suggests that it is the overall balance between the pro-apoptotic

BH3-only proteins and the anti-apoptotic Bcl-2 members, which

regulates cDC lifespan after PolyIC stimulation. A similar

overlapping action of several BH3-only proteins has been reported

in neutrophil apoptosis and in the context of inflammatory

arthritis [25,26]. To our knowledge, this is the first report on the

apoptotic mechanism regulating activated DC lifespan in vivo,
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mediated by the overlapping action of pro-apoptotic BH3-only

proteins, including but not solely involving Bim.

The CD8a cDC subset is predominantly lost
Intriguingly, in response to PolyIC, LPS and CpG, the CD8a

cDC subset showed greater up-regulation of co-stimulatory

markers (e.g. CD86) and also greater subsequent depletion than

the CD11b subset. Notably, CD8a cDCs displayed a higher

steady-state level of gene expression for Bim, Puma and Bid as

compared to CD11b cDCs (PBS controls), supporting the

hypothesis of a higher intrinsic susceptibility of CD8a cDCs to

apoptosis. Clearly in both subsets, PolyIC treatment further up-

regulated Bim and Puma. Interestingly, CD8a cDC also strongly

up-regulated anti-apoptotic Bcl-xL in response to PolyIC, and

down-regulated pro-apoptotic Bid to the levels of CD11b cDC,

which were maintained upon treatment. This could reflect an

attempt by CD8a cDC to overcome the initially higher pro-

apoptotic to pro-survival Bcl-2 family member ratio than CD11b

cDC, as a negative feedback mechanism in order to temporarily

sustain their activation. The aforementioned results using mice

genetically deficient for pro-apoptotic Bcl-2 family members

nevertheless show that ultimately, in both subsets, Bim with a

second BH3-only protein is sufficient to tilt the pro-to-anti-survival

balance towards cell death. Possible speculations on such

preferential death of the CD8a cDC subset are discussed further

below.

Figure 6. DC lines show TLR3-dependent IFNb secretion with PolyIC and sufficiency of IFNb for apoptosis induction. A and B. WT,
MAVS2/2, TLR32/2 and 1IFNR2/2 DC lines were cultured in medium, PolyIC, CTRL supernatant or IFNb-containing supernatant (n = 3, representative of
at least three independent experiments). AnnexinV/7-AAD staining was performed at 48 h. One representative sample (A) and the fold-change in the
GeoMFI of AnnexinV with treatment (B) are shown. C. Supernatants from WT, TLR32/2, MAVS2/2 and 1IFNR2/2 DC lines were assayed for IFNb levels
upon treatment with medium or PolyIC for 4 h (n = 3 independent experiments). D. WT DC lines were treated with medium, PolyIC, CTRL supernatant
or IFNb-containing supernatant (n = 3) for the time-points indicated and analyzed for caspase-3/-7 activity and caspase-8 activity. Data are presented
as mean +/2 SD. Where shown, P-values indicate significance comparing PolyIC treatment to medium alone, per strain.
doi:10.1371/journal.pone.0020189.g006
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Type I IFN is necessary and sufficient for PolyIC-induced
DC death, with a cell-type specific and cooperative
involvement of TLR3 and MAVS in vivo

A fundamental question was to dissect the signaling events that

induced apoptosis of DC, and not only their activation, in response

to PolyIC treatment. We show that DC depletion required the

1IFNR, and IFNb was necessary and sufficient to kill DC lines and

deplete splenic cDC in vivo. In our hands, IFNß was predominantly

detected over IFNa in DC culture supernatants (data not shown).

However, while we addressed induction of DC apoptosis with IFNß,

it cannot be excluded that other members of the Type I IFN family,

notably the different IFNa proteins, may induce similar DC death.

Interestingly, neither endosomal TLR3 nor cytosolic MAVS

were individually indispensable, rather double deficiency (TLR32/2

MAVS2/2) was necessary to prevent DC loss in vivo. In response to

PolyIC, TLR3/TRIF and MDA-5/MAVS signaling axes have

been reported to cooperate in DC activation, antibody production,

as well as CTL and NK responses [6,22,27]. In agreement with the

latter reports [6,22], systemic IFNb production in response to

PolyIC required MAVS. However, we have found that splenic

cDC, in particular the CD8a subset and DC lines, rely on TLR3 for

IFNb production. Such TLR3 requirement in CD8a cDC is in

contrast to a previous report using isolated DEC205+ (CD8a+) DC

[6], where rather MAVS is required. To our knowledge, we provide

first evidence that CD8a cDC rely on TLR3 for IFNß production

and in vitro apoptosis in response to PolyIC, in line with their

characteristic expression of TLR3 [20,21]. Importantly, treatment

with IFNb alone was sufficient induce apoptosis in TLR32/2 DC

lines and loss of splenic cDC in mice doubly deficient for both TLR3

and MAVS.

Our findings support the hypothesis that both TLR3 and

MAVS cooperate in vivo in a cell-type specific manner to produce

IFNb upon PolyIC treatment and consequently splenic cDC loss.

However, different cell types display a differential requirement for

either of these signaling pathways, with systemic IFNß production

depending on MAVS, and splenic CD8a cDC (including DC

lines) requiring TLR3. This furthermore implies that both

autocrine and paracrine Type I IFN production induces DC

death.

Type I IFNs are well recognized anti-viral factors; virtually all

cells may respond to Type I IFN, inducing diverse, and ubiquitous

or cell-type specific effects [28]. Due to the pleiotropic nature of

Type I IFN effects, many of the details of Type I IFN mechanism

of action and their particular relevant scenarios remain to be

elucidated [29]. Inducing an antiviral state, Type I IFNs may

cause growth arrest and apoptosis in several cell types, particularly

in transformed cells. As part of their anti-viral effectiveness, Type I

IFN also induce immune activation, and may further induce

proliferation and sustained survival of certain immune cell types

such as T cells [30].

Induction of Type I IFN by PRR has been recently shown to be

critical for DC function, in particular in the context of the

adjuvant effect of PolyIC [6]. There is however limited evidence

concerning the impact of Type I IFN in DC viability. In vitro, Type

I IFN can antagonize the survival effects of TLR-Ls in fibroblasts

and human MoDC [31], and IFNb induces death in BM-DC

cultures only when they are concomitantly treated with a

stimulatory cocktail [32]. Generally, Type I IFN alone is not

sufficient to induce apoptosis in most cell types [29]. Rather, the

pro-apoptotic effect of Type I IFN generally relies on sensitization

to concomitant apoptotic triggers, such as treatments with TNF

family members [33]. In addition, Type I IFN may itself induce

TNF family members such as TRAIL, and consequently apoptosis

[34], as shown in the context of multiple myeloma. TNFa is

Figure 7. IFNb is sufficient to induce splenic cDC loss in vivo. WT (n = 4), TLR32/2 MAVS2/2 (n = 3) or 1IFNR2/2 (n = 4) mice were treated with
PBS, PolyIC, CTRL cells or IFNb-producing cells and the splenic cDC composition was analyzed after 40 h by flow cytometry as described in Figure 1B.
A. The segregation of splenic cDC into CD8a+ or CD11b+ subsets is shown for one representative sample. B. The fold-change in total cells with
treatment relative to PBS controls per cDC subset is shown. Data are presented as mean +/2 SD, from two independent experiments. P-values
indicate significance per treatment as compared to PBS controls, per mouse strain.
doi:10.1371/journal.pone.0020189.g007
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another important cytokine for DC activation, for example during

viral infection [35]. Furthermore, the contribution of Bid in

PolyIC-induced DC loss that we observed (Fig. 4) raises the

question of whether death receptor signaling contributes to DC

apoptosis. We therefore tested for a possible involvement of TNFa

or TRAIL in splenic cDC depletion with PolyIC-induced Type I

IFN. Reduction in both cDC subsets with PolyIC still occurred as

extensively in TNFa2/2 mice (Fig. S9A) or in WT mice treated

with TRAIL-R2:Fc blockade (blocking soluble TRAIL) (Fig.
S9B). Other genetic deficiencies within the TNF or TNF-R

family, including LTa2/2 or TNFR12/2TNFR22/2 mice (data

not shown), did not affect the loss of splenic cDC with PolyIC.

Our results show for the first time that IFNb is sufficient to

induce death of splenic cDC in vivo, in absence of accompanying

stimuli, demonstrating a novel apoptotic effect of Type I IFN in a

critical antigen-presenting cell.

What may be the physiological significance of DC death
upon PAMP/Type I IFN stimulation?

Given the critical function of DC for the induction of adaptive

immune responses, the apoptosis of DC in response to a microbial-

like stimulus and/or Type I IFN (critical anti-viral mediators),

affecting in particular the cross-presenting CD8a cDC subset, may

appear paradoxical. Several speculations may be advanced

concerning the physiological significance that such DC death

may have.

DC apoptosis may limit the spread of infection and allow for an

adequate shutdown of immune responses. Critically, DC apoptosis

must maintain a healthy balance between excessive DC clearance

leading to immunosuppression and the maintenance of immune

competence without causing autoimmunity. Aberrant accumula-

tion of DC results in chronic lymphocyte activation and systemic

autoimmune manifestations, as shown in transgenic mice express-

ing the baculoviral pan-caspase inhibitor p35 under the DC-

specific CD11c promoter [9]. Similarly, Bim-deficient DC display

a decrease in spontaneous death in culture and their adoptive

transfer induces autoantibody production in vivo [14]. Conversely,

a reduction in DC numbers has been linked to states of immune

suppression, such as sepsis [36,37] and chronic viral infection.

Impairment of DC function during LCMV infection was reported

and linked to immunosuppressive states, with the LCMV-WE

being more immunosuppressive and persistent than LCMV-

Armstrong [17]. Interestingly, we observed that LCMV-WE

infection causes more extensive cDC depletion than previously

reported for LCMV-Armstrong [16]. Several studies have detected

an impairment of DC function upon TLR stimulation [38],

similarly to chronic inflammatory or infectious states [39,40]. This

has been thought to be a consequence of loss of antigen uptake and

processing in activated DC, but may well (at least in part) have

been due to the here-described DC death.

1IFNR2/2 mice succumb to infection with many viruses,

showing the importance of Type I IFN for antiviral responses,

including stimulation and clonal expansion of CTL [41,42].

However, a Type I IFN response may also be detrimental under

certain circumstances, such as infection with listeria monocytogenes

[29,43]. While Type I IFN is required for the initiation of

adequate anti-viral responses, the DC apoptosis we report could be

a negative secondary effect of Type I IFN, either when

‘‘inappropriately’’ induced or upon persistent infections. In

support of this idea, persistence of viral infection and immune

suppression has been correlated with reduced DC numbers and

sustained levels of Type I IFN, in models such as LCMV-

Armstrong infection in mice [44], as well as infections with HIV-1

in humans [45] and SIV in monkeys [46]. Collectively, our

findings suggest that one major cause of transient or chronic

immunosuppresion during infectious conditions is a consequence

of apoptotic depletion of DC linked to sustained and/or aberrantly

high Type I IFN levels.

The DC apoptosis we report is particularly relevant for the

therapeutic exploitation of TLR-Ls and Type I IFNs (e.g.

adjuvants, multiple sclerosis, cancer, Langerhans cell histiocytosis)

[2,47,48,49]. Both the adjuvant immune stimulatory and direct

anti-proliferative properties of Type I IFN have a strong potential

for therapeutic exploitation for cancer treatments [50,51].

Similarly, IFNß has been used for the treatment of autoimmune

diseases such as multiple sclerosis [52]. It would be critical to

investigate whether current or developing therapies featuring the

use of Type I IFN or TLR-Ls induce DC loss. Accordingly,

therapeutic regimes should be carefully designed (e.g. dosage,

timing of antigen/adjuvant treatment) in order to avoid the

potentially deleterious side effects of DC apoptosis leading to

immunosuppression.

CD8a DC are particularly potent at phagocytosing dying cells

for antigen cross-presentation and at inducing CTL responses

[53], being thus one key target for vaccines against cancer and

infectious diseases [54,55,56]. Strategies for vaccine enhancement

include the targeting of antigens to CD8a cDC [2,57], for which

PolyIC has been shown to be an optimal adjuvant [2]. Pertinently,

several lines of evidence support that TLR3 expression by CD8a
DC and downstream Type I IFN production is critical for the

adjuvant effect of dsRNA (PolyIC), including cell-associated

dsRNA for cross-presentation [58,59,60,61]. Given the unique

functions of CD8a cDC, their preferential death with a virus-like

stimulus (PolyIC) and Type I IFN (anti-viral mediator), as

compared to the other CD11b DC subset, appears contradictory.

However, on the one hand, apoptosis may be an evolutionary

adaptation to limit the spread of intra-cellular pathogens within

such critical DC subset. On the other hand, apoptosis may serve as

an efficient mechanism to amplify the response to intracellular

pathogens, by an apoptosis-mediated ‘‘DC to DC cross-presenta-

tion’’ of antigens. Via this mechanism, infected cells (DC) would be

sacrificed, while pathogen would be continuously processed and

diluted amongst neighboring cross-presenting DC, correlating

with pathogen load. Such apoptosis-driven ‘‘DC to DC cross-

presentation’’ would be particularly relevant when antigen is

limiting, or considering the naturally low frequency of DC, to

mount an adequate and rapid adaptive immune response.

Perspectives
Future experiments should shed light on the physiological

impact of DC death with PolyIC and Type I IFN. It will be

addressed whether DC death promotes amplification of cross-

presentation, protects from autoimmune pathology, induces side-

effect immunosuppression, and/or affects vaccine efficiency. In

addition to antigen targeting to DC and the use of TLR-Ls as

adjuvants, efforts to optimize vaccine efficacy also include

increasing DC viability after activation [62,63]. Our findings have

the potential to contribute to the optimization of vaccine therapies,

providing an important basis for the design of strategies to enhance

DC viability and consequently function.

Materials and Methods

Ethics statement
Animal experiments were performed in strict accordance to the

Swiss Federal Regulations. The protocol was approved by the

‘‘Service de la consommation et des affaires vétérinaires du

Canton de Vaud’’, Switzerland (Permit Number: 1847.1). All
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efforts were made to minimize suffering and minimize the number

of mice needed to assess statistical significance and experimental

reproducibility. The generation and use of mouse DC lines for in

vitro research represents a considerable advance towards the

implementation of the 3R (Refine, Reduce, Replace) principle in

animal experimentation.

Mice and treatments
The mice used were females or males aged at least 8 weeks.

Mice were WT (C57BL/6) or FasLPR, Perforin (pfn)2/2, Bim2/2,

Puma2/2, Noxa2/2, Bid2/2, Puma2/2Noxa2/2, Bim2/2Pu-

ma
2/2

, Bim2/2Noxa2/2, Bim2/2Bid2/2, Rag22/2cc2/2,

Tlr32/2, Mavs2/2, Tlr32/2Mavs2/2, Ifnar12/2, Tnfa2/2 (see

strain nomenclature, genetic background and references in Table

S1). Mice were injected intra-peritoneally (i.p.) with 50 ug PolyIC

(Poly(I:C)-HMW from Invivogen) or, as a control, with PBS. No

transfecting reagent or liposomal vehicle was used along with

PolyIC. Infection with LCMV-WE consisted of intra-venous (i.v.)

inoculation with 109000 pfu. Systemic infection with Leishmania

was achieved by injection of 206106 parasites i.v. and 36106

parasites in both hind foot-pads, using infectious stationary phase

promastigotes of either L. major (LV39, MRHO/SU/59/P) or L.

(V.) guyanensis (WHI/BR/78/M5313) strains. Treatment with

IFNß in vivo was performed as described below.

Flow cytometry-based quantitation of splenic cDC
subsets

Splenocyte suspensions were obtained by digestion with

collagenase D (1 mg/mL) and DNAse I (40 ug/mL) in 3% FCS-

RPMI-1640 at 25uC for 30 min. Cell suspensions were passed

through 40 um sieves and washed in PBS containing 5 mM

EDTA and 5 ug/mL DNAse I and then resuspended in PBS

containing 5 mM EDTA and 3% FCS. Total numbers of live

splenic leukocytes were determined by staining with Trypan blue

and counting under a microscope or by using the CasyH cell

counter and analysis system. Fluorochrome-conjugated monoclo-

nal antibodies for flow cytometry were either generated and

conjugated in house or purchased from eBioscience and

BioLegends. Antibodies were specific to CD11c (clone N418,

PECy7, in house or eBioscience), CD45R-B220 (clone RA3-6B2,

PECy5.5, eBioscience), CD45RA (clone 14.8, APC, in house),

GR1/Ly6G (clone RB6-8C5, PE, BioLegends, or biotinylated/

SAVPerCPPECy5.5, in house), CD8a (clone 54-6.7, FITC,

eBioscience, or APC-Cy7, in house), CD11b (clone M1/70,

APC, eBioscience), SIRPa (a.k.a. CD172, clone p84, FITC, in

house), CD40 (clone 1C10, APC, eBioscience), CD80 (clone 16-

10A1, PECy5, eBioscience) and CD86 (clone GL1, APC,

eBioscience). Analyses of Rag22/2cc2/2 splenocytes included

antibodies specific for CD3e (clone 145-2C11, PE, eBioscience),

CD19 (clone 6D5, PECy5.5, eBioscience), and CD49b (clone pan-

NK DX5, FITC, eBioscience). Analysis was performed on Canto

or LSR II machines (Becton Dickinson) using FACSDiva and

FlowJo (Becton Dickinson) for data processing. Total numbers of

cDC subsets were based on the total splenic leukocyte count and

the fractions of cells in each gate used to arrive at a given cDC

subset.

DC isolation, cultures and treatments
The medium composition was IMDM-glutamax (GIBCO

31980) supplemented with 8–10% heat-inactivated FCS, 10 mM

Hepes, 50 uM b-mercaptoethanol, and 50 U/mL of penicillin and

50 mg/mL streptomycin. Cells were cultured at 37uC with 5%

CO2. Different DC populations were obtained from spleens as

depicted in Fig. S6. Briefly, splenocyte suspensions were

fractionated by density centrifugation in isohexol carbohydrate

medium (Nycodenz, Axis-Shield, Norway) at 1.077 g/cm3 [64].

The DC-enriched, light density fraction was collected as the ‘DC-

rich fraction’ (Fig.S6, fraction 1). Purified cDC subsets (.95%)

were obtained from DC-rich fractions using anti-CD11c antibody-

coupled magnetic micro-beads (Miltenyi Biotech) and flow

cytometry cell sorting of CD11c+/B2202 cells into CD8a DC or

CD11b DC (Fig. S6, fraction 2 or 3, respectively) using a

FACSAria cell sorter (Becton Dickinson). DC lines were derived as

detailed in Materials and Methods S1. For apoptosis assays, DC

lines were seeded at 26105 cells/mL the day prior and treated

with medium, PolyIC at 5 mg/mL, or CTRL and IFNb-

containing supernatants as detailed below. For IFNß production

assays, supernatants were obtained from DC cultures (DC lines or

DC ex vivo) at 106 cells/mL treated with medium or PolyIC at

25 ng/mL for 4 h. The PolyIC used was Poly(I:C)-HMW from

Invivogen and no transfecting reagent or liposomal vehicle was

used.

Recombinant IFNß production and treatments
Recombinant murine IFNß was produced in house by lentiviral

transduction of 1IFNR2/2 DC lines, allowing to obtain a DC-

conditioned medium containing IFNß, in the absence of secondary

effects from the IFNß on the producer cells (see Materials and

Methods S1 for the details). Concentrated IFNß (1–5 ug/mL) was

obtained using high cell density culture systems (CELLine

AD1000, Integra-Biosciences) and diluted to 25 ng/mL of IFNß

for experiments in vitro, with mock-transduced DC line supernatant

used as a control. For treatments in vivo, mice were injected i.p.

with 56106 IFNß-producing cells or mock-transduced cells

(CTRL).

IFNb quantitation
IFNb quantitation was performed on cell culture supernatants

or peripheral blood sera by ELISA (PBL 42400, PBL Interferon-

source).

Apoptosis assays
AnnexinV/7-AAD. AnnexinV staining was performed using

fresh AnnexinV-binding buffer (ABB) (14 mM NaCl, 2.5 mM

CaCl2, 10 mM Hepes) containing AnnexinV-PE (BD

Pharmingen) and 7-AAD (eBioscience), both at 1:50, for 15 min

at RT in the dark. All samples were analyzed within 30 min.

Caspase activity assays. The fluorogenic substrates used

were ac-IETD-amc for Caspase-8 and ac-DEVD-amc for

Caspase-3/-7 (Enzo Life Sciences). Caspase-activity assays were

performed on DC line samples according to the manufacturer’s

protocol, measuring caspase-3/-7 activity after 60 min and

caspase-8 activity after 120 min and normalizing data to protein

content quantitated by the standard Bradford reaction.

Statistical analyses
P-values were obtained using two-tailed unpaired t-tests with

95% confidence intervals (ns = not significant; * = p,0.05; ** =

p,0.01; *** = p,0.001).

Supporting Information

Figure S1 Flow cytometry analysis of Rag2-/-cc
-/- mice

treated with PBS or PolyIC. Rag2-/-cc
-/- mice were injected i.p.

with 50 ug PolyIC (n = 3) or, as a control, PBS (n = 3), and their

splenic composition compared to that of similarly treated WT

mice (n = 3 for PolyIC, n = 3 for PBS). Consistent with previous
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observations [65], flow cytometric analyses of the spleens of these

rag2-/-cc
-/- mice was complicated by the presence of auto-

fluorescent cells. A. Rag2-/-cc
-/- mice lack B cells, T cells and

NK cells. The autofluorescent cell population in the staining for B

cells, T cells and NK cells is visible on a fluorochrome-empty flow

cytometry channel (FL4). Staining profiles for representative PBS-

treated mice is shown for each strain. B. Gating strategy for the

analysis of splenic cDC, excluding pDC, monocyte-derived DC

and autofluorescent cells by a first gate on GR1 and B220 double-

negative cells (an additional flow cytometry channel was not

available in the staining combination for cDC analysis). CD11c+

cells from the GR12B2202 were selected for segregation into

CD8a+ vs CD11b+ subsets. Data from one representative mouse

for each strain and treatment is shown. C. Total numbers of each

cDC subset were calculated on the basis of total splenocytes

harvested multiplied by the fraction of cells per gate as indicated in

(b). To obtain the fold-changes in the cDC subset cellularities

elicited by injection with PolyIC, the total number of DC in the

spleens of mice treated with PolyIC were divided by the total

number of DC in the spleens of PBS-treated mice. P-values

indicate significance per strain as compared to WT controls.

(TIF)

Figure S2 Loss of splenic cDC after CpG and LPS
injection. Mice (C57BL6) were injected i.p. with PBS (control;

n = 4), 50 ug of CpG (n = 3), 10 ug of LPS (n = 3) or, as

comparison to data shown in Figure 1, with 50 ug PolyIC (n = 1).

Splenic cDC subsets were analyzed at 12 h post-injection for

expression of the activation marker CD86 (GeoMFI = geometric

mean of fluorescence intensity) and at 40 h for total numbers of

cDC subsets. P-values indicate significance per treatment com-

pared to injection with PBS.

(TIF)

Figure S3 Changes in gene expression of Bcl-2 family
members in cDC treated with PolyIC in vivo. Mice were

injected with 50 ug PolyIC (n = 9) or PBS (control; n = 9). After 14 h,

the spleens were harvested and pooled for cDC subset isolation and

gene expression analysis. The experiment was performed twice in

two independent laboratories as described in the Methods section,

with a total of four biological replicates per sample. a. Strategy for

flow cytometric analysis, gating and isolation of CD8a or CD11b

cDC subsets from total splenocytes. One representative experiment

is shown. b. Analysis of the levels of mRNA for pro-apoptotic Bcl-2

family members Bim (n = 4), Puma (n = 4), Noxa (n = 4), Bid (n = 3)

and anti-apoptotic Bcl-2 (n = 4), Mcl-1 (n = 4), A1 (n = 3) and Bcl-xL

(n = 3). Open symbols (#, e) correspond to qRT-PCR data

generated at the WEHI (Melbourne), normalized to b-actin as a

house-keeping gene. Closed symbols (N, ¤) correspond to qRT-PCR

data generated at the DB-UNIL (Lausanne), normalized to TBP as

a house-keeping gene. The primers used were as detailed in Table

S2A. In order to obtain an inter-experimental and inter-laboratory

comparison, a second normalization was performed relative to

CD8a cDCs treated with PBS.

(TIF)

Figure S4 Steady-state splenic cDC populations in mice
deficient for BH3-only members. Splenic cDC subsets were

quantitated as described before amongst WT (n = 6), Bim-/- (n = 4),

Puma-/- (n = 2), Noxa-/- (n = 4), Bid-/- (n = 3), Puma-/-Noxa-/- (n = 2),

Bim-/-Puma-/- (n = 2), Bim-/-Noxa-/- (n = 4), Bim-/-Bid-/- (n = 2). A.

Ratio of CD8a+-to-CD8a2 cDC per mouse strain as indicated. B.

Total numbers of each cDC subset per spleen per mouse strain as

indicated. Data are represented as mean +/- SD. P-values indicate

significance per strain as compared to WT controls.

(TIF)

Figure S5 Expression levels for TLR3, MAVS and the
IFNaR1 in splenic cDC subsets and DC lines. Purified

splenic CD8a as well as CD11b cDC subsets and DC line

samples (n = 2 per sample) were examined for the levels of mRNA

for Mavs and Ifnar1 by qRT-PCR using the primers detailed in

Table S2B. Tlr3 mRNA expression was analyzed by semi-

quantitative PCR.

(TIF)

Figure S6 Strategy and flow cytometry analysis for the
purification of DC-rich and cDC subset fractions.
Splenocyte suspensions were fractionated by density centrifugation

in isohexol carbohydrate medium (Nycodenz, Axis-Shield, Nor-

way) at 1.077g/cm3. The light density fraction was collected as the

DC-rich fraction (fraction 1, as indicated). CD11c+ cDC were

isolated from DC-rich fractions using anti-CD11c antibody

coupled magnetic micro-beads (Miltenyi Biotech). Purified cDC

subsets were obtained from cDC by flow cytometry cell sorting

separating CD11c+/B2202 cells into CD8a or CD11b subsets,

collecting fractions 2 and 3, respetively, as indicated. One

representative sample is shown. The cDC represent 1-2% of total

splenic leukocytes. Within the cDC population, typically ,20%

were CD8a+ cDC and ,60% CD11b cDC. At least 5 mice were

required to isolate ,0.56106 CD8a+ cDC. Density centrifugation

allowed for a ,10-fold enrichment in DC prior to immunomag-

netic bead selection. Enriched DC preparations subjected to flow-

cytometric cell sorting contained .75% cDC, and resulting cDC

subsets were purified to at least 95%.

(TIF)

Figure S7 Activation and apoptosis in splenic cDC ex-
vivo, isolated from either PBS- or PolyIC-treated mice.
A. Experimental outline. Briefly, WT mice (n = 2) were treated

with PBS or PolyIC for 24h. Splenic cDC were enriched by

density centrifugation and analyzed inmediately (‘‘0h’’) or after 4h

of culture (‘‘4h’’). Analysis included the segregation of cDC subsets

as before and the apoptosis staining AnnexinV (B) or the

activation marker CD86 (C). Data are represented as mean +/-

SEM.

(TIF)

Figure S8 PolyIC induces activation and apoptosis in
DC lines. A. Phenotype of DC lines derived from

CD11c:SV40LgT-transgenic mice (NB. harbouring the eGFP

reporter for the transgene) [23], analyzed by flow cytometry and

compared to splenic cDC in WT mice as indicated. B and C. DC

lines (WT) were treated in vitro with 8 ug/mL poly I:C. B.

Histograms showing the up-regulation of co-stimulatory markers

CD40, CD80 and CD86 at 24 h of treatment with PolyIC (dark

grey) as compared to unteated controls (pale grey). C. The kinetics

of poly I:C treatment are shown for a representative experiment,

with flow cytometry analysis of FSC vs SSC plots, AnnexinV/7-

AAD double-staining and TMRM histograms at different time

points as indicated.

(TIF)

Figure S9 Splenic cDC loss with PolyIC still occurs in
TNFa-/- mice or with TRAIL-R2:Fc blockade. A. WT and

TNFa-/- mice were treated with PBS (control) or PolyIC and

splenic cDC were analyzed at 40 h as described before (n = 2 per

treatment per mouse strain). The fold-change in total cDC subset

cells with PolyIC relative to PBS treatment is shown per strain as

indicated. B. WT mice were treated with PBS or TRAIL-R2:Fc

6h before and at 18h after treatment with either PBS or PolyIC

(time 0h) and splenic cDC were analyzed at 40 h as described

before (n = 2 per treatment). Total numbers of each cDC subset
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per are shown per treatment as indicated. Data are presented as

mean +/- SD.

(TIF)

Materials and Methods S1 Materials and Methods used
for the experiments shown in Supporting Figures and
related to Materials and Methods.

(DOC)

Table S1 Mouse strains used (related to Materials and
Methods and Materials and Methods S1).

(DOC)

Table S2 Primers used for gene expression analyses
(related to Materials and Methods S1).

(DOC)
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