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Abstract: Primary simian varicella virus (SVV) infection and reactivation in nonhuman primates
is a valuable animal model in the study of varicella zoster virus disease [varicella (chickenpox)
and herpes zoster (shingles)]. To understand SVV pathogenesis in skin, we inoculated 10 rhesus
macaques with SVV, resulting in varicella rash. After the establishment of latency, eight of the
monkeys were immunosuppressed using tacrolimus with or without irradiation and prednisone
and two monkeys were not immunosuppressed. Zoster rash developed in all immunosuppressed
monkeys and in one non-immunosuppressed monkey. Five monkeys had recurrent zoster. During
varicella and zoster, SVV DNA in skin scrapings ranged from 50 to 107 copies/100 ng of total DNA
and 2–127 copies/100 ng of total DNA, respectively. Detection of SVV DNA in blood during varicella
was more frequent and abundant compared to that of zoster. During varicella and zoster, SVV
antigens colocalized with neurons expressing β-III tubulin in epidermis, hair follicles, and sweat
glands, suggesting axonal transport of the virus. Together, we have demonstrated that both SVV
DNA and antigens can be detected in skin lesions during varicella and zoster, providing the basis
for further studies on SVV skin pathogenesis, including immune responses and mechanisms of
peripheral spread.

Keywords: simian varicella virus; varicella; zoster; skin pathogenesis

1. Introduction

Varicella zoster virus (VZV) typically causes childhood varicella (chickenpox), es-
tablishes latent infection in multiple ganglia along the neuraxis, and reactivates decades
later to produce herpes zoster (shingles), predominantly in the elderly. Varicella presents
as a disseminated vesicular/macular/papular skin rash; in contrast, zoster appears as a
unilateral dermatomal-distribution vesicular rash corresponding to the ganglia associated
with the affected dermatomes. Due to VZV’s restricted host range, dissecting mechanisms
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through which VZV spreads to multiple organs, including skin, during primary infection
and reactivation has been challenging. Using a SCID-hu mouse model of VZV pathogene-
sis, T lymphocytes have been shown to transport virus to skin from lymph nodes during
primary infection [1]. However, it is unclear how VZV is transported from ganglia to
multiple organs, including skin, during zoster. Earlier comparative studies of peripheral
blood mononuclear cells (PBMCs) during varicella and zoster revealed that, viremia occurs
at a much lower magnitude during zoster, despite abundant VZV DNA and virions de-
tected in zoster vesicles [2–5]. Zoster skin lesions have been clinically categorized into four
stages (erythematous, vesicular, pustular, and ulcerative), VZV spreads to the epidermis
via sensory nerves during the erythematous stage and then to the dermis in the vesicular
stage [6]. Further, virus antigens have been found mostly around the isthmus and less
often near the bulb of the hair follicle [7]. Lymphocytes surrounding blood vessels have
also been shown to contain VZV immediate early protein 63 (IE63), but not other structural
proteins [8]. The selective detection of VZV antigens has also been reported following
immunohistochemical analysis of biopsied skin samples from varicella and zoster [9]. Most
studies related to VZV infection in skin have been performed on human skin biopsies
because VZV is an exclusively human pathogen. Simian varicella virus (SVV) infection
in non-human primates (NHP) has served as a useful model since its pathological and
immunological features are similar if not identical to VZV infection in humans [10]. Upon
experimental inoculation in rhesus macaques, SVV produces varicella, establishes latent
infection, and can be reactivated via immunosuppression [11,12]. We previously showed
that SVV antigens can be detected in sweat glands in zoster skin [13]. In this report, we
extend our studies by analyzing skin scrapings and fixed skin samples (for SVV DNA and
antigens, repectively), from the same rhesus macaques during both varicella and zoster.

2. Materials and Methods
2.1. Ethis Statement

Rhesus macaques that were used in this study were all housed at the Tulane National
Primate Center (TNPRC) in Covington, LA. All animal housing, care, and research were
performed in compliance with The Guide for the Care and Use of Laboratory Animals
(National Research Council), the Animal Welfare Act guidelines, and the guidelines at the
TNPRC, accredited by the Association of the Assessment and Accreditation of Laboratory
Animal Care. Protocols were approved by the Institutional Animal Care and Use Committee
of Tulane University (The Assurance Number A4499-01; Protocol Title: Varicella Virus
Latency and Reactivation in the Nonhuman Primate, IACUC Protocol #PO177R3, 25 Oct
2021). All procedures were conducted by highly qualified veterinarians.

2.2. Monkeys

Ten male SVV-seronegative rhesus macaques were housed in the Tulane National
Primate Center (TNPRC) in Covington, LA, and used for all experiments. The age, sex,
and weight of each monkey are listed in Table 1. During acute infection and reactivation,
monkeys from this study were housed in the same room, either in single or dual cages.
During the immunsuppression and reactivation phase, treated monkeys, shown to be
behaviorally compatable, were pair-housed with other treated monkeys. The two untreated
monkeys, LT27 and LE91, were also pair-housed. A paraformaldehyde-fixed paraffin-
embedded skin sample from a rhesus macaque that developed a fulminant SVV infection
53 days after irradiation (kind gift from From Dr. Steven Shipley) and an uninfected SVV-
sero negative monkey (R110368) purchased from Primate biologicals (Bethesda, MD, USA)
were used as positive and negative controls.
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Table 1. List of monkeys used in this study.

Group Monkey
ID

Age a Sex
Weight

(Kg)

Primary
Infection

(dpi b)

Reactivation

Treatment Dpx c/mpi d

1
KI92 4.0 M 9.9 7 A e 84
KG58 4.2 M 9.5 9 A 63

2

LB56 6.7 M 8.2 9 B f 45
LT26 4.3 M 4.3 9 B 66
LK67 4.7 M 8.1 9 B 42
LR16 4.4 M 8.3 9 B 10
LR42 4.4 M 8.0 9 B 56
LR70 4.4 M 9.2 9 B 45

3
LT27 4.3 M 8.3 9 C g 3.8 d

LE91 6.6 M 10.5 7 C -

control B321 3.0 M 5.9 D h E i 56

control R110368 5.0 M U j NA k NA NA
a Years. b Days post-inoculation. c Days post-immunosuppression. d months post inoculation, e A-Irradiation,
tacrolimus, prednisone. f B-Tacrolimus. g C-Not immunosuppressed, h D-time of natural primary infection
unknown, i E-Irradiation, j Unknown, k Not applicable.

2.3. Acute SVV Infection and Establishment of Latency

A deltaherpesvirus strain of wild type-SVV isolated from a naturally infected monkey
(Erythrocebus patas) was propagated in rhesus fibroblasts (Frhl-2) (ATCC, Manassas, VA,
USA) and a virus stock was prepared as described previously [14]. SVV-seronegative
monkeys were inoculated intratracheally with 2.4–5 × 105 plaque forming units (pfu) of
wild type-SVV-infected Frhl-2 cells. All monkeys were monitored following anesthesia by
physical exam and blood collections every 3 to 7 days with skin scrapings and punch biopsy
(4 mm) samples from skin collected upon the appearance of typical varicella rash lesions.
All ten monkeys developed a typical varicella rash within 7–9 days post-inoculation (dpi)
and monitoring continued until the establishment of latency confirmed by the absence of
SVV DNA in PBMCs for two consecutive weeks.

2.4. Immunosuppressive Regimens

Eight months after primary infection, establishment of SVV latency in KI92 and KG58
(group 1, Figure 1) was confirmed (absence of detectable SVV DNA in two consecutive
bleeds) and immunosuppresion phase was initiated with transport of the two monkeys in
a van (3-h round trip) from the TNPRC in Covington, LA, USA to the School of Veterinary
Medicine, Radiation Oncology facility at Louisiana State University in Baton Rouge, LA.
They were anesthetized and exposed to a single dose of 200-cGy total body X-irradiation,
then treated daily with oral tacrolimus (Prograf; 500 µg; 80 µg/kg of body weight/day) and
prednisone (2 mg/kg/day) until virus reactivation was confirmed, and they were eutha-
nized 2–3 months post-zoster (Figure 1). Two months after primary infection, establishment
of latency was confirmed in group 2 animals: LB56, LT26, LK67, LR16, LR42, and LR70
(Figure 1). Immunosuppresion consisted of daily treatment with oral tacrolimus (Prograf;
Sandoz Inc., Princeton, NJ, USA) 80–240 µg/kg of body weight/day) until SVV reactivation
was confirmed, and they were euthanized 2–3 months post-zoster. Group 3 monkeys, LT27
and LE91, were infected with SVV but not immunosuppressed or transported (Figure 1).
These monkeys were also monitored for viral reactivation. All animals were monitored by
physical exams every 7 days, and blood samples were collected weekly until reactivation
and collected again during euthanasia.
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2.4 × 10 5 pfu SVV, and all developed varicella rash between 7–9 dpi. Two months later, all six mon-
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immunosuppressed monkeys developed a zoster rash at indicated dpx (numbers above, unfilled 
arrowheads). Monkeys LB56, LK67, LR16, and LR42 had recurrent zoster, as indicated by multiple 
unfilled arrowheads. All six monkeys were euthanized at the indicated dpx. Two rhesus macaques 
(group 3—LT27 and LE91) were intratracheally inoculated with 2.4 × 105 pfu of SVV, and both de-
veloped varicella rash by nine dpi. Neither were immunosuppressed. One of the monkeys (LT27) 
developed zoster rash 3.8 mpi. Group 3 monkeys were euthanized 8 mpi. DNA extracted from skin 
scrapings obtained at the time of zoster from monkeys in all three groups were analyzed for the 
presence of SVV DNA by qPCR. Euthanasia is indicated by vertical lines on the right end of the 
lines. The numbers at the end of the lines indicate the time (dpx (groups 1–2) or mpi (group 3)) of 
euthanasia. 
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Figure 1. Experimental Design. The monkeys were divided into three groups. Two rhesus macaques
(Group 1—KI92 and KG58) were intratracheally inoculated with 5 × 10 5 pfu of SVV and developed
varicella rash 7–9 days post-inoculation (dpi). Eight months’ post-inoculation (mpi), both monkeys
were exposed to X-irradiation (200 cGy) and daily oral treatment with tacrolimus (80 µg/kg/day) and
prednisone (1 mg/kg/day) for the duration of the experiment. KI92 and KG58 developed zoster rash,
91- and 63-days post-immunosuppression treatment (dpx), respectively. KG58 had recurrent zoster at
107 dpx. KI92 and KG58 were euthanized 108 and 107 dpx, respectively. Six rhesus macaques (group
2—LB56, LT26, LK67, LR16, LR42, and LR70) were intratracheally inoculated with 2.4 × 10 5 pfu SVV,
and all developed varicella rash between 7–9 dpi. Two months later, all six monkeys were treated
with tacrolimus (80 µg/kg/day) daily for the duration of the experiment. All six immunosuppressed
monkeys developed a zoster rash at indicated dpx (numbers above, unfilled arrowheads). Monkeys
LB56, LK67, LR16, and LR42 had recurrent zoster, as indicated by multiple unfilled arrowheads. All
six monkeys were euthanized at the indicated dpx. Two rhesus macaques (group 3—LT27 and LE91)
were intratracheally inoculated with 2.4 × 105 pfu of SVV, and both developed varicella rash by nine
dpi. Neither were immunosuppressed. One of the monkeys (LT27) developed zoster rash 3.8 mpi.
Group 3 monkeys were euthanized 8 mpi. DNA extracted from skin scrapings obtained at the time
of zoster from monkeys in all three groups were analyzed for the presence of SVV DNA by qPCR.
Euthanasia is indicated by vertical lines on the right end of the lines. The numbers at the end of the
lines indicate the time (dpx (groups 1–2) or mpi (group 3)) of euthanasia.

2.5. Determination of Anti-SVV Antibody Levels

Anti-SVV antibody titers in serum obtained from all monkeys prior to SVV inoculation
and during the time of monitoring after inoculation until euthanasia were determined
using a plaque reduction neutralization test (PRNT) as described previously [12].

2.6. Collection and Analysis of Blood Samples for SVV DNA by qPCR

Blood samples collected from monkeys at multiple times following SVV inoculation
and immunosuppression were processed using a Ficoll gradient to isolate PBMCs and a
commercial DNA extraction kit per manufacturer’s instructions (Qiagen, Germantown,
MD, USA), followed by quantitative PCR (qPCR) for SVV DNA in PBMCs as described
previously [15].

2.7. DNA Extractions from Skin Scrapings and qPCR Analysis

During physical examinations, anesthetized monkeys demonstrating typical varicella
lesions on the skin were identified and photographed. Single lesions were scraped using a
scalpel and resuspended in 500 µL of PBS and frozen at −80 ◦C until DNA extraction. After
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thawing, cell suspensions were centrifuged at 20,000× g for 10 min at room temperature
and the pellets were resuspended in 180 µL of ATL buffer (DNA extraction kit, Qiagen) and
20 µL proteinase-k and processed. The samples were incubated overnight at 56 ◦C to ensure
optimal and complete lysis. DNA was extracted using Qiagen DNeasy Blood and Tissue kit
according to the Quick-Start Protocol for tissues. In the final step, DNA was eluted using
70 µL of AE buffer and quantitated before qPCR using a Nanodrop spectrophotometer
(ThermoFisher, Waltham, MA, USA). The DNA samples were analyzed by qPCR using
primers specific for SVV open reading frame (ORF) 61 as described previously [11]. Briefly,
limited dilutions of cloned SVV bacmid (containing 5000, 1000, 100, 50, 10, 5 and 1 copies
of virus DNA in a background of 100 ng of salmon sperm DNA) was used in real-time
qPCR using primers specific for SVV ORF61 generate a standard curve [16]. The number of
copies of SVV DNA in the unknown samples were determined by comparing the Ct values.
The CT values for real-time PCR ranged from 33.8 (min) to 37.6 (max). The standard curve
was linear between 1–5000 copies of SVV bacmid which was used in real-time qPCR. We
performed 3 different PCR assays on each DNA extraction. A sample is considered positive
only if two out of three independent PCRs are positive for SVV DNA.

2.8. Harvesting and Processing of Skin Samples for Immunohistochemistry

Typical papular/vesicular lesion of varicella or zoster rash in each monkey was
identified. A 4-mm punch biopsy was obtained from an area different from the one used
for DNA extraction. The tissues were fixed in 10% Zinc-formalin (Z-fix) (Analtech, Battle
Creek, MI, USA), processed, and paraffin-embedded.

2.9. Immunohistochemistry

Formalin-fixed, paraffin-embedded (FFPE) skin sections (5 µm) were deparaffinized
in xylene and ethanol for 15 min each. The sections were then rhydrated using graded
ethanol washes and washed once with water. They were then subjected to antigen retrieval
in citrate buffer (10 mM Sodium Citrate pH 6.0 and 0.05% Tween20). The citrate buffer
was pre-heated in a steamer for 10 min, and the slides were submerged in the hot buffer
and incubated on the benchtop for 5 min. The sections were then imunostained using the
ImmPRESS kit along with Vector NovaRED substrate kit (Vector Laboratories, Burlingame,
CA, USA) per the manufacturer’s instructions. The primary antibody was either rabbit
polyclonal antibody raised against SVV IE63 protein (1:7000 dilution), Rabbit polyclonal
antibody raised against SVV nucleocapsid (1:25,000 dilution), or Rabbit polyclonal antibody
raised against SVV glycoproteins H and L (gH + L; 1:5000) (a generous gift from Dr. Wayne
Gray). Normal rabbit serum (at the same dilution as the primary antibody) was used as
a control. Following the first staining, some of the sections were washed with PBS for
5 min and processed using ImmPRESS Horse Anti-Rabbit IgG polymer kit, peroxidase
along with Vector Blue substrate Kit, Alkaline phosphatase (Vector Laboratories) as per
the manufacturer’s instructions. The primary antibody was a Mouse anti-β-III tubulin
antibody (STEM CELL Technologies, Kent, WA, USA) at 1:500 dilution. Mouse IgG2a (BD
Biosciences, Franklin Lakes, NJ, USA) at a dilution of 1:500 was used an isotype control.
Positive controls consisted of skin sections from an acutely infected immunosuppressed
rhesus macaque (B321) immunostained for SVV and β-III tubulin, which were observed
under a microscope during substrate color reactions. Some of the sections were counter-
stained using hematoxylin (1:10 dilution of stock) for 2 min. The slides were then mounted
using glass coverslips with ProLong Gold Antifade Mountant (Life Technologies, Eugene,
OR, USA) and imaged using an Olympus BX46 light mircoscope and CellSens Software
(Olympus, Center Valley, PA, USA). Each staining was repeated at least three times to
ensure reproducibility.
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3. Results
3.1. Primary SVV Infection in Rhesus Macaques, Establishment of Latency,
and Immunosuppression

Three groups of SVV-seronegative Indian rhesus macaques were used in this study
(Table 1 and Figure 1). They were inoculated intratracheally with wild-type SVV as de-
scribed in the methods. All 10 monkeys developed varicella rash between 7–9 dpi and
resolved thereafter. Monkeys in group 1 were inoculated with 5 × 105 pfu/monkey whereas
monkeys in groups 2 and 3 were inoculated with 2.4 × 105 pfu/monkey. The difficulty in
using consistent amounts of virus in the inoculum is due to challenges in growing SVV at
high titers and batch-to-batch variation. Thus, it is possible that the differences in infection
are associated with differences in the quantity of virus inoculated, but this is unlikely given
that all infected monkeys developed rash.

Earlier we demonstrated that in rhesus macaques [11,17], lack of viremia is a consistent
marker for the establishment of latency. Eight month’s post infection (mpi), establishment
of latency was confirmed in the two monkeys in group 1 (KI92 and KG58). They were then
immunosuppressed with a single dose of X-irradiation and a combination of tacrolimus and
prednisone administered daily for the duration of the experiment and were monitored for
reactivation. Two months after primary infection, establishment of latency was confirmed in
the six monkeys in group 2 (LB56, LT26, LK67, LR16, LR42, and LR70) and the two monkeys
in group 3 (LT27 and LE91). Group 2 monkeys were treated with tacrolimus daily for the
duration of the experiment. Two monkeys in group 3 (LT27 and LE91) were not treated
with immunosuppressants (Figure 1). All ten monkeys were monitored for reactivation.

3.2. Skin Rash during Varicella and Zoster

The extent of varicella rash was mild in three monkeys (KI92, LR42 and LE91), moder-
ate in two monkeys (LB56, LR16) and extensive in five monkeys (KG58, LT26, LK67, LR70,
and LT27) (Table 2). At different times following immunosuppression, monkeys in all three
groups developed zoster. A representative image of skin rash during varicella and zoster
in LR42 (group 2) is presented in Figure 2. In all SVV-infected monkeys, the extent of rash
during varicella was more pronounced with multiple lesions spread throughout the body
compared to zoster, which was minimal and more localized. Unlike zoster in humans,
which occurs as a dermatomal rash, both immunosuppressed and non-immunosuppressed
monkeys developed zoster rash in multiple regions of the body.

Table 2. Severity of varicella (7–9 dpi) rash and detection of SVV DNA in skin scrapings.

Group Monkey
ID Severity a SVV ORF 61 DNA

(Copy #/100 ng)

1
KI92 2+ NA b

KG58 4+ NA

2

LB56 3+ 50
LT26 4+ 5 × 105

LK67 4+ 1 × 106

LR16 3+ 310
LR42 2+ 6 × 104

LR70 4+ 2 × 103

3
LT27 4+ 1 × 107

LE91 2+ 4 × 105

a The type and severity of the rash is graded as macular, papular, vesicular, and hemorrhagic. Scoring parameters
are based on number of lesions with 2+ = 6–10; 3+ = 11–20; 4+ = >21. b Not available.
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Figure 2. Skin rash after varicella and zoster in monkey LR42 (group 2). Varicella skin rash was seen
in the torso nine days after SVV inoculation (dpi; left image). Zoster skin rash was seen on the torso
63 days after immunosuppression (dpx) with tacrolimus treatment (right image). The location of the
vesicles is indicated by blue arrowheads.

In group 1, KI92 and KG58 developed zoster 91 and 63 dpx, respectively (Figure 1).
In group 2, all monkeys developed zoster between 10–66 dpx. In group 3, LT27, one of
two non-immunosuppressed monkeys also developed zoster 3.8 mpi, possibly due to unre-
lated reduction in SVV-specific cell mediated immunity, which has been documented [13].
The other control monkey (LE91) did not develop zoster. In several of our studies, we
have observed that besides immunosuppression there is a possibility that transportation,
single-cage housing, and repeated removal from cages for sample collection triggered SVV
reactivation [12,13,15]. One of the two monkeys in group 1 (KG58) and four (LB56, LK67,
LR16 and LR42) of the six monkeys in group 2 had recurrent zoster (rash appearing one
week or more after initial zoster rash had cleared). Recurrent zoster in KG58 occurred at
the time of necropsy (107 dpx).

3.3. Detection of SVV DNA in Skin Scrapings during Varicella

DNA extracted from skin scrapings obtained during varicella in groups 2 and 3 were
analyzed using real-time qPCR for the presence of SVV DNA (Table 2). During varicella,
SVV DNA copy numbers in skin scrapings ranged from 50 to 1 × 107 copies/100 ng.
Although substantial amounts of SVV DNA were detected in most of the monkeys, the
quantity of SVV DNA in skin, in general, did not always correlate with the extent of
varicella rash.

3.4. Detection of SVV DNA in PBMCs during Varicella and Immunosuppression

DNA extracted from sequential blood samples obtained from monkeys in all 3 groups
during primary infection and later during immunosuppression, were analyzed for viremia
using real-time qPCR for SVV DNA. We performed three different PCR assays on each
DNA sample. Any DNA sample is considered positive only if two out of three PCRs are
positive for SVV DNA During varicella, viremia peaked at 7 dpi in all monkeys, except
KI92 where 26 copies of SVV DNA/100 ng) were detected at 4 dpi (Table 3). In group 1,
low level viremia was detected up to 64 dpi and was not detectable at later times after the
establishment of latency (data not shown). In groups 2 and 3, viremia was absent in all by
42 dpi, confirming the establishment of latency. The highest quantity of SVV DNA among
all 10 monkeys was detected in both skin scraping and PBMCs of LT27 (group 3) during
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varicella (Tables 2 and 3). It is possible that the detection of SVV DNA at 4 dpi could be
due to input virus.

Table 3. Viremia during varicella.

Group Monkey
ID

SVV ORF 61 DNA Copy #/100 ng a

Days Post-Inoculation

4 7 9/10 11 14 21 29/30 42 64

1
KI92 26 4 6 20 0 0 0 NA b 1
KG58 78 161 20 12 2 1 0 NA 3

2

LB56 0 95 0 NA 0 0 0 0 0
LT26 21 103 9 NA 0 0 0 0 0
LK67 0 103 31 NA 9 17 6 0 0
LR16 7 36 8 NA 0 0 0 0 0
LR42 7 282 40 NA 7 3 0 0 0
LR70 21 128 16 NA 0 0 0 0 0

3
LT27 0 414 47 NA 0 0 0 0 0
LE91 0 23 0 NA 0 0 0 0 0

a All samples done in triplicates and averaged. b Not available.

Unlike primary infection, detection of SVV DNA in PBMCs from groups 1 and 2 after
treatment and immunosuppression was very sparse (Table 4). Low levels (2–10 copies/100 ng)
of SVV DNA were detected three weeks after immunosuppression in five of the eight
immunosuppressed monkeys (groups 1 and 2). In monkeys LK67 and LR42 (group 2),
3/12 and 3/13 sequential samples, respectively revealed low levels (3–10 copies/100 ng) of
SVV DNA.

Table 4. Viremia during SVV reactivation.

Group Monkey
ID

SVV ORF 61 DNA Copy #/100 ng a

Days Post-Immunosuppression Treatment (dpx)

Pre 5/7 12/14 19/21 28 35 42 49 56 63 70 84 112

1
KI92 0 0 0 2 0 3 0 0 0 0 0 0 NA b

KG58 0 0 0 0 0 0 0 0 0 0 0 0 NA

2

LB56 0 0 0 0 0 0 0 0 0 NA 0 0 0
LT26 0 0 0 0 0 0 0 0 0 0 0 0 0
LK67 0 0 0 8 3 0 0 6 0 NA 0 0 0
LR16 0 0 0 3 0 0 0 0 0 NA 0 0 NA
LR42 0 0 0 10 0 0 0 0 5 0 0 0 3
LR70 0 0 0 0 0 0 0 0 0 NA 0 2 3

Months post infection (mpi)

2 2.2 2.4 2.6 3 3.2 3.4 3.6 3.8 4.1 4.3 4.8 5.7

3
LT27 c 0 0 0 0 0 0 0 7 0 0 0 4 0
LE91 c 0 0 0 6 0 0 0 0 0 0 0 0 6

a All samples done in triplicates and averaged. b Not available. c Not immunosuppressed.

3.5. SVV-Specific Antibody Response during Varicella and Zoster

Humoral response to SVV was measured using a plaque reduction (number of plaques)
neutralization assay in all 3 groups of monkeys at multiple times following SVV inoculation
and immunosuppression (Table 5). Anti-SVV antibody titers are expressed as the serum
dilution that neutralized at least 80% of the SVV plaques compared to control cultures. In
group 1, SVV-specific antibodies were detected 2 weeks post-inoculation and remained high
during the establishment of latency until 70 dpi, when immunosuppression was initiated.
At 14 dpx, both KI92 and KG58 showed decreases in their antibody levels that remained
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low even following zoster (KI92, 91 dpx and in KG58, 63 and 107 dpx; Figure 1). In group 2,
all six monkeys had high antibody responses during acute infection (1:160 and 1:320) by
14 dpi that remained ≥1:80 at the start of immunosuppression. After immunosuppression,
four of the monkeys (LB56, LT26, LK67, LR16) showed increased antibody levels around
the time of zoster while two (LR42, LR70) remained stable (Table 5 and Figure 1). In group
3 after inoculation, LT27 had stable antibody titers (1:160–1:320) until they decreased to
1:80 at 3.8 mpi, when this monkey developed zoster and increased to 1:1280 at the time of
euthanasia. In LE91, the SVV-specific antibody levels peaked at 1:80 at 14 dpi but declined,
and without any zoster occurance, remained low through the course of the experiment.

Table 5. Neutralizing antibody titers during varicella and zoster.

Group Monkey
ID

Anti-SVV Antibody Titer a

PRE
Dpi b Dpx c

Necropsy
14 28 70 14 42 56 70

1
KI92 <1:10 1:160 1:160 1:320 1:40 1:80 NA d 1:40 1:40
KG58 <1:10 1:160 1:160 1:320 1:160 1:160 NA 1:40 1:80

2

LB56 <1:10 1:160 1:160 1:160 1:160 1:80 1:320 1:160 1:320
LT26 <1:10 1:160 1:160 1:640 1:320 1:320 1:640 1:320 1:640
LK67 <1:10 1:160 1:80 1:80 1:80 1:160 1:160 1:80 1:160
LR16 <1:10 1:160 1:80 1:160 1:80 1:80 1:160 1:80 1:160
LR42 <1:10 1:320 1:320 1:160 1:320 1:320 1:320 1:160 1:320
LR70 <1:10 1:160 1:80 1:160 1:160 1:160 1:160 1:160 1:320

Months post inoculation (mpi)

PRE 0.5 1.0 2.3 2.5 3.4 3.8 4.3 8.0

3
LT27 e <1:10 1:320 1:320 1:160 1:320 1:160 1:80 f 1:80 1:1280
LE91 e <1:10 1:80 1:40 1:20 1:40 1:20 1:40 1:20 1:40

a Anti-SVV antibody titers are expressed as the serum dilution that neutralized at least 80% of the SVV plaques.
compared to control cultures. b Days post-inoculation. c Days post-immunosuppression. d Not available. e Not
immunosuppressed. f Time of zoster.

3.6. Detection of SVV DNA in Skin Scrapings during Zoster

Typical zoster lesions were carefully observed, photographed, scraped, DNA extracted,
and analyzed by qPCR for the presence of SVV DNA. The samples were analyzed in tripli-
cate and scored as positive only if two out of three PCRs contained SVV DNA. Details about
the SVV DNA-positive skin scrapings obtained during immunosuppression are presented
in Table 6. Seventeen skin scrapings collected from eight monkeys during zoster contained
SVV DNA. Monkey KI92 (group 1) had the highest number copies (127 copies/100 ng) in
skin scrapings obtained at 91 dpx. Copies of SVV DNA in the rest of the monkeys ranged
from 2–38 copies/100 ng. Skin scraping from the non-immunosuppressed monkey LT27
(group 3) with zoster contained 10 copies/100 ng. While LR42 had SVV DNA-positive skin
scrapings, as well as PBMCs at 56 dpx, and LT27 was viremic at 49 dpx and had positive
SVV DNA-positive skin scrapings soon after. During the reactivation phase, only 2 out
of 11 blood samples that contained SVV DNA correlated with the occurrence of skin rash,
suggesting subclinical reaction.

3.7. Detection of SVV Antigens in Skin and Colocalization of SVV Antigens with a Neuronal
Marker during Varicella and Zoster

Sections of zinc-formalin-fixed paraffin-embedded skin biopsies obtained before SVV
inoculation, during varicella, during and zoster were analyzed by immunohistochemistry
using rabbit polyclonal antibodies specific for SVV IE63 protein or SVV nucleocapsids and
a mouse monoclonal antibody specific for βIII-tubulin (neuronal marker). Representative
analysis of biopsied skin from monkey LK67 (group 2) before inoculation, nine dpi and
42 dpx are presented in Figure 3. Skin biopsy from monkey LK67 pre-inoculation did
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not show positive staining with rabbit anti SVV63 or mouse anti-βIII-tubulin antibodies
(Figure 3A). SVV IE63 protein was detected in hair follicles (Figure 3B,C, arrows) in skin
biopsies from LK67 at both nine dpi and 42 dpx. SVV IE63 protein was also detected in the
epidermis and colocalized with βIII-tubulin in skin biopsy from LK67 at 42 dpx (Figure 3C,
arrowhead). The concentrated βIII-tubulin colocalizing with SVV IE63 protein suggested
hyperinnervation at the site of rash. Mixture of normal rabbit serum and isotype mouse
IgG2a control antibodies did not show any positive staining with skin biopsies from LK67
at pre-inoculation, nine dpi, and 42 dpx (Figure 3D,E,F).

Table 6. Detection of SVV DNA in skin scrapings during zoster.

Group Monkey
ID

SVV ORF 61 DNA Copy #/100 ng a

Days Post-Reactivation (dpx)

10 42 45 49 56 b 63 66 b 70 91 107

1 KI92 127

2

LB56 1 6 16, 9
LT26 1, 6
LK67 2 3 5
LR16 6 4
LR42 2 12 38
LR70 3

Months post inoculation (mpi)

3.8

3 LT27 c 10
a All samples done in triplicates and averaged. b Samples from two locations were analyzed. c Not immunosuppressed.
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Figure 3. Immunohistochemical analysis of varicella and zoster skin rash from the same rhe-
sus macaque. Sections of biopsied, zinc formalin-fixed, paraffin-embedded skin samples before
inoculation with SVV (pre-inoculation), 9 dpi (days post-inoculation) and 42 dpx (days post-
immunosuppression) from rhesus macaque LK67 (group 2) was analyzed using dual-color staining.
Rabbit polyclonal antibodies against SVV IE63 protein (red) and mouse monoclonal antibody directed
against human β-III tubulin (blue) were used as described in methods to identify the presence of
virus antigen and its proximity to nerve endings. Normal rabbit serum and mouse anti IgG2a were
used as negative controls (D–F). SVV IE63 protein was not detected in the pre-inoculation biopsy (A),
but was found in hair follicles during varicella and zoster and in the epidermis during zoster
(B, arrows). β-III tubulin was found to colocalize with SVV IE63 protein (C, arrowhead) in the
epidermis during zoster. (Magnification, ×100).
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A section of fixed skin obtained at necropsy from a rhesus macaque (B321) with acute
SVV infection and generalized, fulminent varicella rash, after irradiation served as a positive
control. The skin was analyzed using rabbit anti-SVV IE63 antibody and mouse monoclonal
antibody specific for βIII-tubulin. SVV IE63 protein and βIII-tubulin were found to be
colocalized in the epidermis (Figure 4A, inset), suggesting axonal spread of virus during
varicella. Analysis of skin from monkey KI92 (group 1) at 91 dpx revealed colocalization of
SVV and neuron-specific marker in sweat glands (Figure 4B, inset), also suggesting axonal
transport of SVV to sweat glands and hair follicles during SVV reactivation. Analysis of an
adjacent section of the same skin samples with rash from monkey KI92 using a mixture
of rabbit polyclonal antibodies specific for SVV gH + L revealed the presence of the SVV
antigens in the same sweat glands and hair follicle (Figure 4C). SVV gH + L were also seen
in other areas of the skin including the epidermis. A mixture of normal rabbit serum and
isotype mouse IgG2a did not show positive staining in another adjacent section of skin from
monkey KI92 (Figure 4D). While SVV IE63 protein was absent in biopsied skin from the
uninfected control rhesus macaque (R110368), hair follicles were positive for the neuronal
marker βIII-tubulin (Figure 4E). SVV gH + L-specific antibodies did not show any positive
staining in the skin section from the uninfected control monkey R110368 (Figure 4F).
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Figure 4. Colocalization of SVV antigen and βIII-tubulin in skin sweat glands during zoster. Sections
of biopsied, zinc-formalion-fixed, paraffin-embedded skin samples from (A) an acutely infected
immunosuppressed rhesus macaque (B321; SVV-positive control), (B–D) from rhesus macaque KI92
(group 1) 91 dpx (days post-immunosuppression), and (E,F) an uninfected SVV-seronegative rhesus
macaque (R110368) were analyzed by immunohistochemistry. Rabbit polyclonal antibodies against
SVV IE63 protein (red) (A,B,E), SVV gH + L, and (C) mouse monoclonal antibody directed against
human β-III tubulin (blue; A,B,E) were used as described in methods. Nerve bundles containing
βIII-tubulin are identified by arrowheads in panel B. Normal rabbit serum by itself (F) or with mouse
anti IgG2a antibody (D) were used as negative controls. Colocalization of SVV IE63 protein with
β-III tubulin can be seen in epidermis during acute infection (A, inset) and in sweat glands and hair
follicles during reactivation (B, inset). SVV gH + L antigens can also be seen in sweat glands in
an adjacent section (C, thin arrows). β-III tubulin, but not SVV IE63, protein can be seen in sweat
glands and hair follicle in skin from an uninfected monkey (E, inset). Normal rabbit serum along
with mouse anti IgG2a antibody on skin from zoster in monkey KI92 (D) or using rabbit anti SVV
gH + L on skin section from the uninfected monkey (F) did not show any staining. Section in panel F
was counterstained with hematoxylin. (Magnification, ×100, inset ×600).
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Table 7. Detection of SVV DNA and antigens in skin of rhesus macaques during varicella and zoster.

Monkey
ID Uninfected

Pre-
infection

Acute
Infection

(dpi)

Reactivation
(dpx/mpi a)

Antiserum

Group SVV
IE 63

SVV
Nucleo-
Capsid

ß-III
Tubulin

R110368 SVV- b NR c NR - - +

1
KI92 NA d 91 + + +

KG58 NA 107 + + +

2

LB56

SVV- - e - +

9 + - +

45 + + +

49 + - +

56 + - +

LK67

SVV- - - +

9 + - +

42 + + +

49 NA NA NA

70 NA NA NA

LR16

SVV- - - +

9 + - +

10 + + +

45 NA NA NA

LR42

SVV- - - +

9 + + +

56 + - +

63 + + +

70 + + +

LR70

SVV- - - +

9 + - +

45 + + +

3
LT27

SVV- - - +

9 + + -

3.8 a + + +
a Months post primary infection. b SVV- denotes sero-negative animal. c Not relevant. d Not available. e

Background staining seen. +, denotes a positive antibody reaction.

Results of immunohistochemical analyses of skin sections from all three groups of
monkeys before SVV inoculation, during varicella, and zoster using antibodies specific for
SVV IE63, SVV nucleocapsid, and βIII-tubulin are presented in Table 7. Overall, the SVV
IE-63 protein was detected more readily than the virus proteins within the nucleocapsid. As
expected, the neuronal marker (βIII-tubulin), but not SVV-specific antigens, was detected
in skin sections from the uninfected control monkey (R110368). The neuronal marker was
found and colocalized with SVV IE63 protein in skin in 7/8 monkeys during varicella,
and 7/8 monkeys during zoster, further confirming the neuronal route of virus transport
during varicella, as well as zoster. Supplementary results (Figure S1) show the presence of
SVVIE63 protein in close proximity to nerve bundles and colocalizing with βIII-positive
cells in epidermis in skin from monkeys during varicella as well as zoster. Some of the
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robust staining in the epidermis may be due to cross-reactivity with beta tubulin class II
which is present in epidermal keratinocytes.

In monkeys KI92 and KG58 (group 1), skin samples during varicella were not available,
but zoster skin sections contained both SVV IE63 protein and proteins associated with SVV
nucleocapsid. Detection of both SVV proteins (Table 7) and DNA (Table 6) in skin from
KI92 during zoster suggested the presence of replicating virus, although skin samples for
immunohistochemistry and SVV DNA qPCR were obtained from different areas of the skin.
Biopsied skin during varicella rash (nine dpi) was obtained from five monkeys in group 2
(LB56, LK67, LR16, LR42, and LR70) and LT27 in group 3. SVV IE63 (an immediate-early
gene) protein was detected in all six monkeys, whereas SVV nucleocapsid-specific antigens
were found only in two (LR42 and LT27) of the six monkeys, likely due to higher level
of expression of immediate-early genes. In two of the monkeys (LK67 (49 and 70 dpx)
and LR16 (45 dpx)), biopsies were not available, but skin scrapings were found to contain
SVV DNA (Table 6). During zoster, both SVV IE63 protein and proteins associated with
nucleocapsids were detected in in 9/12 skin biopsies obtained from eight monkeys across
all three groups. Taken together, our detection of SVV DNA in skin scrapings and SVV
antigens in biopsies from all monkeys at various times, including during recurrent zoster,
provided convincing evidence that SVV is associated with both varicella and zoster rash.

4. Discussion

Like VZV infection in humans, SVV causes varicella becomes latent, and reactivates to
produce zoster in NHPs. Key findings in the report are summarized in Figure 5. Viremia and
the extent of rash varied among the 10 monkeys (Table 2), probably due to the differences in
their antiviral response. Peak viremia and varicella rash occurred at the same time (7–9 dpi)
in all monkeys except one (KI92), in which peak viremia occurred at four dpi (Table 3).
Extensive rash was seen during varicella (Figure 2), due to the hematogenous virus spread
as indicated by high viremia (Table 3) [18]. There was not a complete correlation between
the severity of varicella rash and SVV DNA in skin scrapings (Table 2). However, this
observation was likley due to differences in sampling as scrapings and biopsies were
obtained from from distinct single lesions, mostly from different areas of the body. Once
establishment of latency is confirmed by the absence of detectable virus DNA in blood
for two consecutive weeks, immunosuppression was initated. A limitation of this study
is that animals were immunosuppressed with a combination of tacrolimus, irradiation,
and steroids to trigger reactivation. In humans, reactivation occurs with a decline in cell
mediated immunity (CMI) associated with aging and in the setting of immunosuppression
such as seen in cancer and transplant patients treated with similar therapies (tacrolimus,
irradiation, steroids). Because we could not indefinitely age the animals and wait for
reactivation, our model immune suppresses to decrease VZV-specific CMI.

Monkeys in groups 1 and 2 were immunosuppressed at eight and two mpi, respec-
tively, after viremia was absent for two weeks. Viremia following immunosuppression and
during zoster was intermittent and much lower than viremia during primary infection,
probably due to reduced hematogenous spread of virus and increased axonal spread follow-
ing reactivation from individual ganglia (Table 4). Skin rash during zoster was also much
less extensive compared to varicella (Figure 2). Lack of detectable viremia during zoster
compared to varicella despite the presence of virus DNA in skin rash vesicles in humans
have been documented [2]. As observed before, no significant changes in SVV-specific
antibodies were observed in immunosuppressed monkeys during zoster, suggesting that
humoral response is unlikely to play an important role in virus reactivation [12,13,15,19].
However, in one monkey (LT27, group 3) that was not immunosuppressed, we noticed a
reduction in the virus-specific antibodies at the time of zoster, the reason for which remains
unclear (Table 5). In the other non-immunosuppressed monkey (LE91-group 3), the anti-
body response after inoculation was low likely due to the relatively low-level viremia seen
at seven dpi (Table 3).
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All of them developed varicella 7–9 dpi. SVV DNA (4–414 copies/100 ng) was detected in blood,
4–64 days post infection (dpi) in all 10 monkeys. SVV DNA (50–1 × 107 copies/100 ng) was detected
in skin scrapings in 8 of 10 monkeys, 7–9 dpi. Analysis of biopsied skin samples, during varicella,
revealed colocalization of SVV antigens with nerve endings in all 10 monkeys. Establishment of
latency was confirmed by the absence of SVV DNA in blood. Eight of latently infected monkeys were
immunosuppressed. Zoster rash developed in all monkeys 10–91 days post immunosuppression
(dpx). SVV DNA (2–10 copies/100 ng) was detected in blood, 20–112 dpx, in 5 of 8 monkeys. During
zoster (10–91 dpx), 1–127 copies of SVV DNA (per 100 ng) were detected in skin scrapings. In the
affected skin, SVV antigens were found to be colocalized with nerve endings. In two monkeys were
not immunosuppressed, SVV DNA (4–7 copies/100 ng) was detected 60–172 dpi. One of the two
non-immunosuppressed monkey developed zoster, 4.5 mpi (months post infection). SVV DNA
(10 copies/100 ng) and antigens was detected in skin scrapings during zoster (86 dpi). SVV antigen
was found to be colocalized with nerve endings. Abundance of SVV DNA and antigens in skin was
substantially higher during varicella compared to zoster. SVV infection and reactivation in rhesus
macaques serves as an extremely useful model to study varicella and zoster in humans.

Our detection of SVV DNA in skin scrapings from all eight immunosuppressed
monkeys at various times provided convincing evidence that presence of SVV corrlates
with zoster rash. Recurrent zoster seen in seven out of eight immunosuppressed monkeys
from groups 1 and 2 confirmed our earlier observation and what has been found in humans
during VZV reactivation [13,20,21]. Monkey KI92 (group 1) had substantially higher copies
of SVV DNA in skin scraping at 91 dpx (127 copies/100 ng) possibly due to the

Multiple modes of immunosuppression used, compared to only tacrolimus-treated
monkeys in group 2 (Table 6). Detection of higher quantities of SVV DNA in zoster skin
(91 dpx in KI92 and 70 dpx in LR42; Table 6) in the absence of viremia at these times
(Table 4) further supports the notion of axonal spread of SVV during reactivation. Earlier,
we documented that during varicella, SVV enters the ganglia before the appearance of
skin rash [22]. Colocalization of SVV antigens with the neuronal marker in skin, along
with high level of viremia, suggests either simultaneous hematogenous spread and axonal
transport of virus to skin or spread of infection between keratinocytes during varicella. On
the other hand, detection of minimal viremia, as well as SVV DNA in skin rash combined
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with colocalization of SVV antigen with the neuronal marker, supports the idea of virus
being transported preferentially via the axonal route from the ganglia to the skin during
reactivation and zoster.

While we detected SVV IE63 protein in all the varicella and zoster skin biopsies,
proteins associated with SVV nucleocapsids were not detectable in two varicella and three
zoster skin biopsies. Detection of some, but not other, VZV proteins in skin biopsies
from varicella and zoster in humans has been reported [9]. Selective detection of VZV
IE63 protein compared to glycoproteins in early zoster lesions has also been attributed
to the reduced abundance of glycoproteins and preferential resistance of IE63 protein to
proteolysis [23]. During zoster in humans, VZV gC has been found in axons and Schwann
cells in skin biopsies [9], and VZV IE63 protein and glycoproteins have been seen in dermal
nerves and perineurial dendrocytes [23]. SVV antigens were found to be colocalized with
the neuronal marker in most, if not all, of the skin samples analyzed. Our detection of
SVV antigens associated primarily with sweat glands and hair follicles was very similar
to VZV antigens in human skin during zoster [6–8,23–25]. Together, our results show that
compared to primary SVV infection (varicella), SVV causes a milder skin rash and less
viremia during zoster. In addition, SVV DNA and antigens can be detected in both skin
scrapings and biopsies. Huch et al. [26] showed that during zoster in humans, Langerhans
and plasmacytoid dendritic cells are strongly associated with VZV antigen-positive cells in
skin. The lack of availability of rhesus specific reagents have hampered the progress in this
area. Our future studies will include identification of antibodies that cross react with NHP
skin to understand the role of immune cells in controlling zoster rash, as well as neuronal
subtypes that are involved in pathological manifestations, such as postherpetic neuralgia.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v14061167/s1, Figure S1: Detection of SVV IE63 protein and
βIII-tubulin in epidermis and nerve bundles in skin during varicella and zoster in rhesus macaques.
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