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Intratumoral and peritumoral radiomics combined with computed 
tomography features for predicting the invasiveness of lung 
adenocarcinoma presenting as a subpleural ground-glass nodule 
with a consolidation-to-tumor ratio ≤50% 
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Background: Preoperative accurate judgment of the degree of invasiveness in subpleural ground-glass 
lung adenocarcinoma (LUAD) with a consolidation-to-tumor ratio (CTR) ≤50% is very important for the 
choice of surgical timing and planning. This study aims to investigate the performance of intratumoral and 
peritumoral radiomics combined with computed tomography (CT) features for predicting the invasiveness of 
LUAD presenting as a subpleural ground-glass nodule (GGN) with a CTR ≤50%.
Methods: A total of 247 patients with LUAD from our hospital were randomly divided into two groups, 
i.e., the training cohort (n=173) and the internal validation cohort (n=74) (7:3 ratio). Furthermore, 47 
patients from three other hospitals were collected as the external validation cohort. In the training cohort, 
the differences in clinical-radiological features were compared using univariate and multivariate analyses. 
The gross tumor volume (GTV) and gross peritumoral tumor volume (GPTV5, GPTV10, and GPTV15) 
radiomics models were constructed based on intratumoral and peritumoral (5, 10, and 15 mm) radiomics 
features. Additionally, the radscore of the best radiomics model and clinical risk factors were used to 
construct a combined model and the predictive efficacy of the model was evaluated in the validation cohorts. 
Finally, the receiver operating characteristics (ROC) curve and area under the curve (AUC) value were used 
to evaluate the discriminative ability of the model. 
Results: Tumor size and CTR were independent risk factors for predicting the invasiveness of LUAD. The 
GPTV10 model outperformed the other radiomics models, with AUC values of 0.910, 0.870, and 0.887 in 
the three cohorts. The AUC values of the combined model were 0.912, 0.874, and 0.892. 
Conclusions: A nomogram based on GPTV10-radscore, tumor size, and CTR exhibited high predictive 
efficiency for predicting the invasiveness of LUAD.
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Introduction

With the wide application of conventional computed 
tomography (CT) and the vigorous development of low-
dose CT screening programs for lung cancer, numerous 
ground-glass nodules (GGNs) have been detected (1,2). 
GGNs refer to the nodules that increase lung density on 
continuous thin CT without obscuring the original vessels 
and bronchus that frame the area (3). GGNs can be divided 
into pure ground glass nodules (pGGNs) and mixed ground 
glass nodules (mGGNs) based on the presence or absence 
of solid components on the mediastinal window of CT (4). 
The pathological characteristics of GGNs lasting more 
than three months are mostly precursor glandular lesions or 
lung adenocarcinoma (LUAD) (5). The linear relationship 
of its occurrence and development follows three stages: 
precursor glandular lesions, including atypical adenomatous 
hyperplasia (AAH) and adenocarcinoma in situ (AIS), 
followed by minimally invasive adenocarcinoma (MIA) and 
finally invasive adenocarcinoma (IAC) (6). 

Recent studies have showed that, for patients with non-
small cell lung cancer (NSCLC) clinically staged as T1aN0 

(tumor size, ≤2 cm), sublobar resection and lobectomy 
were associated with similar survival outcomes (7,8). At  
6 months postoperatively, a between-group difference of 2 
percentage points was measured in the median percentage 
of predicted forced expiratory volume in 1 second, favoring 
the sublobar-resection group (8). The domestic consensus 
on the management of GGNs suspected as LUAD 
suggests that the appropriate surgical strategy should be 
selected according to the pathological subtype of lung 
cancer predicted by imaging, including wedge resection, 
segmentectomy or lobectomy (9). 

Several previous studies have shown that GGNs with 
a consolidation-to-tumor ratio (CTR) of >50% and the 
presence of pleural indentation sign are important CT 
features for predicting the invasiveness of GGN-type 
LUAD (10-13). For pGGNs and mGGNs with CTR 
≤50%, the pathological types are mostly AAH, AIS, and 
MIA, the growth rate is slow, and the prognosis is excellent. 
The current study referred to such lesions as “low-risk 
GGNs”. However, IAC also accounts for a considerable 
proportion of these “low-risk GGNs” especially those in 
contact with the pleura (12-14). Due to the concern that 
it is more likely to invade the visceral pleura during the 
growth process and cause poor prognosis compared to non-
touching-pleura GGNs, which may trigger more intensive 
surveillance and more active treatment. Therefore, accurate 
identification of MIA and IAC from the “low-risk GGNs” 
in contact with the pleura is very important for the choice 
of surgical timing and planning.

Zhao et al. (13) explored the risk factors related to the 
invasiveness of LUAD presenting as pGGN in contact with 
the pleura on CT, the result showed that the sensitivity 
and specificity of tumor relative density in differential 
diagnosis of IAC were 72.3% and 64.7%, respectively, with 
a relatively low diagnostic performance. However, Zhao and 
coworkers only evaluated the risk factors and did not build 
and validate the prediction model. Radiomics can extract 
multi-dimensional features that cannot be recognized by 
naked eyes, which can not only maximize the use of image 
information but also avoid the subjective differences of 
traditional CT feature evaluation. Jiang et al. (14) explored 
the ability of intratumoral radiomics features to differentiate 
IAC from MIA. They found that the AUC values were 
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0.892 and 0.862 for the training and validation cohorts, 
respectively. However, their study only analyzed the 
predictive efficacy of the intratumoral radiomics model but 
did not further explore the predictive value of peritumoral 
radiomics or externally validate their findings, and thus the 
repeatability and reproducibility of the predictive model 
were not verified.

Herein, the intratumoral region of “low-risk GGNs” 
was expanded externally by 5, 10, and 15 mm respectively 
to obtain the intratumoral and peritumoral fusion region, 
which was used as a whole volume of interest (VOI) 
for feature extraction and modeling and was verified in 
independent internal and external validation cohorts. 
Compared with the intratumoral radiomics model, the 
prediction value of the intratumoral and peritumoral 
radiomics model for predicting the degree of invasiveness of 
“low-risk GGNs” in contact with the pleura was evaluated, 
and a combined model was constructed in combination with 
CT features to explore whether its diagnostic efficiency 
could be further improved. We present this article in 
accordance with the TRIPOD reporting checklist (available 
at https://jtd.amegroups.com/article/view/10.21037/jtd-24-
243/rc).

Methods

Patients

The clinico-radiologic data of patients with peripheral 
LUAD confirmed by pathology after chest CT examination 
in four hospitals from July 2014 to December 2021 
were retrospectively analyzed. The inclusion criteria 
were as follows: (I) clinical stage IA LUAD (cT1N0M0, 
i.e., maximum tumor diameter ≤3 cm); (II) pathological 
diagnosis of MIA or IAC; (III) CT showed pGGNs or 
mGGNs, 0%≤ CTR ≤50%; (IV) preoperative CT showed 
that the tumor was subpleural and in contact with the 
pleura; (V) thin-layer chest CT data within 2 weeks before 
surgery (layer thickness ≤1 mm). The detailed patient 
inclusion procedure is shown in Figure 1. 

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study was 
approved by the institutional review board of the Second 
Affiliated Hospital of Navy Medical University (No. CZ-
20210528-01) and individual consent for this retrospective 
analysis was waived.

Equipment and parameters

Patients in the internal cohort underwent preoperative 
chest CT examinations with four types of CT machines 
from three vendors, including the Toshiba Aquilion16 row, 
GE Light Speed VCT 64 row, Philips Ingenuity 64 row, 
and Brilliance iCT 128 row CT machines. In the external 
cohort, the 19 patients from hospital one were scanned 
with Toshiba Aquilion 16 row, GE Revolution 256 row, GE 
Discovery 750HD 64 row, Siemens SOMATOM Sensation 
64 row and Definition Flash dual-source CT, Dutch Philips 
Brilliance 16 row and iCT 128 row, and Dutch Philips 
IQon Spectral CT machines. SOMATOM Definition AS 
and AS+ 64 row and Philips Brilliance 16 row CT machines 
were used to scan the 14 patients from Hospital two, 
whereas GE Discovery 750HD and Optima CT670 64 row 
CT machines were used to scan the other 14 patients from 
Hospital three. The patients were instructed to lie in the 
supine position during the scan, which covered the entire 
lung field. The parameters were set as follows: tube voltage 
was set to 120 kVp, with a tube current of 150-250 mAs or 
automatic tube current regulation, scanning slice thickness 
and slice increment were 5 mm, and a reconstruction slice 
thickness and slice increment were 0.625, 1, and 1.5 mm. 
The lung algorithm or standard algorithm reconstruction 
was selected, and non-contrast enhanced images were used 
for analysis.

Clinicopathological and radiological data collection

Patient data were collected, including gender, age, surgical 
type, pathological type, and visceral pleural invasion (VPI) 
status. The DICOM images of patients were imported 
into software (RadiAnt DICOM Viewer 4.2.1, Medixant, 
Poland) and analyzed by two independent radiologists 
with 7 years and 10 years of experience who were blinded 
to the pathological information. The lung window (width: 
1,500 HU, level: −500 HU), mediastinal window (width: 
300 HU, level: 50 HU), multiplanar reformation (MPR), 
and maximal intensity projection (MIP) were used to 
analyze the lesion. For quantitative measures, the average 
measurements of two independent radiologists were used as 
the final data. For qualitative indicators, disagreements were 
discussed until a consensus was reached.

First, the longest diameter of the whole tumor and the 
consolidation part were measured at the lung window on 

https://jtd.amegroups.com/article/view/10.21037/jtd-24-243/rc
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Patients with LUAD who underwent surgical 

treatment between July 2014 and December 2021 

in our hospital 

(n=982)

Patients with LUAD who underwent surgical treatment 

between April 2020 and November 2020 in hospital 2 (n=64)  

between October 2020 and  July 2021 in hospital 3 (n=84)

between June 2021 and  September 2021 in hospital 4 (n=36)

Inclusion criteria:

(I) Clinical stage IA LUAD (cT1N0M0, i.e., 

maximum tumor diameter ≤3 cm)

(II) Pathological diagnosis of MIA or IAC 

(III) PGGNs or mGGNs, 0% ≤CTR ≤50%

(IV) Contact with the pleura

(V) Thin-slice chest CT with slice thickness  

≤1.5 mm and no artifacts within 2 weeks 

before surgery 

Exclusion criteria:

(I) Maximum diameter of tumor >3 cm

(II) Pathologically confirmed precursor glandular lesions (AAH, 

AIS) or non-LUAD

(III) MGGNs with CTR >50% or solid nodules 

(IV) No contact with the pleura 

(V) Preoperative neoadjuvant and chemotherapy or biopsy 

puncture

(VI) Poor image quality

Hospital 1 (n=247) Hospital 2 (n=19) Hospital 3 (n=14) Hospital 4 (n=14)

Training cohort

(n=173)

Internal validation cohort

(n=74)

MIA

(n=72)

IAC

(n=101)

MIA

(n=36)

IAC

(n=38)

External validation cohort

(n=47)

MIA

(n=14)

IAC

(n=33)

Figure 1 The flow chart for patient selection. Hospital 1, Second Affiliated Hospital of Navy Medical University; Hospital 2, The First 
Affiliated Hospital of Soochow University; Hospital 3, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou 
Medical College; Hospital 4, The Second People's Hospital of Deyang. LUAD, lung adenocarcinoma; MIA, minimally invasive 
adenocarcinoma; IAC, invasive adenocarcinoma; PGGNs, pure ground glass nodules; mGGNs, mixed ground glass nodules; CTR, 
consolidation-to-tumor ratio; CT, computed tomography; AAH, atypical adenomatous hyperplasia; AIS, adenocarcinoma in situ. 

the MPR images, and the CTR was calculated. Second, 
we assessed the following qualitative CT morphologic 
features: tumor location, density type (pGGN, mGGN), 
shape (round, irregular), tumor-lung interface (well-defined, 
ill-defined), margin (lobulation, spiculation), internal 
characteristics (vacuole, cavity/cystic airspace), adjacent 
structure (vascular convergence, pleural indentation, 
pleural thickening, bronchial change), background of the 
lobe (normal, emphysema), pleural contact type (indirect 
contact, direct contact). The definitions of CT features are 
described in Table S1, Figure S1.

Image segmentation

Standardized image resampling and grayscale discretization 

were performed on the CT images. ITK-SNAP 3.8.0 
software (www.itksnap.org) was used to outline the 
total volume of the tumor slice by slice along the tumor 
boundaries, and the gross tumor volume (GTV) was 
determined, which was used as VOI. GTV was defined as 
the whole tumor area that was identified within the visible 
tumor boundary. During segmentation, blood vessels, 
bronchi, surrounding pleura and atelectatic lung tissue were 
avoided as much as feasible. Differences in opinion were 
resolved by discussion and reaching a consensus. Thirty 
lesions were randomly selected, and two radiologists with 
7 years and 10 years of experience who were blinded to the 
pathological information independently segmented the 
tumor to evaluate inter-observer repeatability. One month 
later, the radiologist with 10 years of working experience 

https://cdn.amegroups.cn/static/public/JTD-24-243-Supplementary.pdf
https://cdn.amegroups.cn/static/public/JTD-24-243-Supplementary.pdf
http://www.itksnap.org
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performed secondary segmentation on thirty lesions to 
evaluate intra-observer repeatability. The remaining lesions 
were segmented by a radiologist with 10 years of working 
experience. For patients with multiple tumors in the lung, 
we selected a representative lesion with the largest tumor 
size for analysis referring to Dercle et al. (15). Python 3.1.1 
(https://www.python.org) was used to write the expansion 
algorithm program to capture the range of 5, 10, and  
15 mm peritumoral areas based on the segmented GTV to 
get the VOIs of gross peritumoral tumor volume (GPTV) 
(labled as GPTV5, GPTV10, and GPTV15, respectively), 
and pixel filtering was performed on peritumoral non-lung 
tissues (blood vessels, chest wall, ribs, neck, mediastinum, 
abdomen) according to the pixel value threshold. 

Feature extraction and data preprocessing

The open-source software Pyradiomics (version 3.0.1; 
https://pyradiomics.readthedocs.io/en/latest/changes.
html) was used to extract radiomics features. Overall, 
100 original features were extracted, including 14 shape 
features, 18 first-order statistical features, and 68 texture 
features [22 gray co-occurrence matrix gray-level co-
occurrence matrix (GLCM), 14 gray dependence matrix 
gray-level dependence matrix (GLDM), 16 gray size area 
matrix gray-level size zone matrix (GLSZM), and 16 gray 
run matrix gray-level run length matrix (GLRLM)] ( 
Tables S2, available online: https://cdn.amegroups.cn/static/
public/jtd-24-243-1.docx). To obtain high-throughput 
features, nonlinear intensity transformations (square, square 
root, logarithmic, and exponential) were applied to image 
voxels. The Laplacian of Gaussian (LoG) transformation 
was filtered using sigma values of 1, 2, 3, 4, and 5 mm. Eight 
wavelet transforms (LLL, LLH, LHL, LHH, HLL, HLH, 
HHL, and HHH; H stands for a high-pass filter and L for 
a low-pass filter) were performed for first-order statistical 
features and texture features, and 1,218 radiomics features 
were finally obtained (Table S3). Considering that the CT 
images of the cases included in this study were collected by 
multiple hospitals and various CT scanners, to reduce the 
impact of different CT scanners on the images, ComBat 
(R language SVA package) was used for data preprocessing. 
Subsequently, the extracted feature values were standardized 
by Z-score (Z = x−μ/σ).

Feature selection and radiomics model construction

Intra-class correlation coefficient (ICC) was used to evaluate 

the intra-observer and inter-observer consistency of the 
segmented intratumoral and peritumoral radiomics features, 
and the “psych” package in R language was used to test the 
consistency of the radiomics features. Firstly, to mitigate 
overfitting, the maximal redundancy minimal relevance 
(mRMR) algorithm and the least absolute shrinkage and 
selection operator (LASSO) logistic regression method were 
applied to features with a good consistency (ICC >0.75) in 
the training cohort to limit the dimension of the features. 
Secondly, 10-fold cross-validation was used to select the 
optimal regularization parameter λ value. Under the optimal 
λ value, features whose coefficients were not equal to 0 were 
used to construct the radiomics model. Finally, the radscore 
was calculated based on the linear model by selecting the 
optimal radiomics features, and the Wilcoxon test was used 
to compare differences between the MIA group and the IAC 
group. Overall, GTV, GPTV5, GPTV10, and GPTV15 
radiomics models were constructed, and their diagnostic 
efficiency was evaluated. The model with the highest AUC 
value in the internal and external validation cohorts was 
considered the best radiomics model.

Construction of clinical and combined models

The clinico-radiologic features with P<0.1 in the univariate 
logistic regression analysis were used for multivariate logistic 
regression analysis, with the criterion of minimization of 
the Akaike information criterion (16). The clinical model 
was constructed using the likelihood ratio test to perform 
backward stepwise feature screening to determine the best 
combination of risk factors. Next, the radscore of the best 
radiomics model and clinical risk factors were utilized to 
construct a combined model and design a nomogram, and 
its predictive efficacy was evaluated centrally in internal and 
external validation, as illustrated in Figure 2.

Pathological diagnosis

The assessment of VPI status was jointly completed by 
two experienced pathologists according to the tumor-
node-metastasis (TNM) staging standard of lung cancer 
(8th edition) (17). VPI positive was defined as the tumor 
invading beyond the elastic fiber layer (PL1) or the tumor 
invading the visceral pleural surface (PL2). In addition, 
the growth pattern of tumor cells, the size of invasive 
components, the presence or absence of vascular invasion, 
and the spread through air spaces were observed. The 
pathological grading of the tumors was divided into MIA 

https://www.python.org
https://pyradiomics.readthedocs.io/en/latest/changes.html
https://cdn.amegroups.cn/static/public/JTD-24-243-Supplementary.pdf
https://cdn.amegroups.cn/static/public/jtd-24-243-1.docx
https://cdn.amegroups.cn/static/public/jtd-24-243-1.docx
https://cdn.amegroups.cn/static/public/JTD-24-243-Supplementary.pdf
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Figure 2 Overall design flow chart of this study. GTV, gross tumor volume; GPTV, gross peritumoral tumor volume.

and IAC. All pathological diagnoses were conducted using 
pathological reports from our hospital and other hospitals.

Statistical analysis

SPSS 20.0 software and R statistical software (R version 
4.2.2) were used for statistical analysis. The Shapiro-Wilk 
test was used to analyze the normality of measurement data. 
Measurement data with normal distribution were expressed 
as mean ± standard deviation (x±s), and differences between 
two groups were compared using an independent sample 
t-test. Measurement data with skewed distribution were 
expressed as median [interquartile range (IQR)], and 
differences between two groups were compared using a 
Mann-Whitney U test. Categorical data were expressed as 
the number of cases, and comparison between two groups 
was performed using Pearson’s chi-square test, Yate’s 
correction for continuity, or Fisher’s exact test. Regarding 
the clinical-radiological features screened by univariate 
and multivariate logistic regression analysis, P<0.05 was 
considered statistically significant. The receiver operating 
characteristics curve (ROC) and area under the curve (AUC) 

value were used to evaluate the diagnostic performance 
of the model, the Delong test was used to analyze the 
difference in the AUC value between the models, the 
Hosmer-Lemeshow test and calibration curve were used to 
examine the goodness of fit of the model, and decision curve 
analysis (DCA) was used to assess the clinical applicability 
of the model. Inter-observer and intra-observer consistency 
tests were performed using the “psych” package of R 
language, the “rms” package of R software was employed 
for multivariate logistic regression analysis and constructing 
the nomogram and calibration curves, the “pROC” software 
package was used for ROC curve analysis, and the “rms” 
package was applied for internal and external validation. 
The “dca.R” package was used to analyze the decision 
curve. The kappa coefficient and ICC were used to evaluate 
the consistency of qualitative and quantitative parameters 
among observers, respectively.

Results

Patients enrollment

A total of 247 patients with LUAD (247 lesions) from our 

① Image segmentation ② Feature extraction

Tumor features Logistic regression

mRMR + LASSO

Radiological features

Radiomics features

GTV

GPTV5 GPTV10 GPTV15

Best radiomics 
model

Combined model

Clinical model

Clinical application

Calibration

Discrimination

Clinical characteristics

③ Model construction ④ Evaluation

Intensity

Shape

GLCM

GLDM

GLSZM

GLRLM

100

80

60

40

20

0

AUC (95% CI) 

Clinical model: 0.882 (0.824–0.926) 

GPTV10-Radiomics: 0.910 (0.857–0.948) 

Nomogram: 0.912 (0.860–0.950)

S
en

si
tiv

ity
, %

Specificity, %
100      80        60        40         20         0

100

75

50

25

0O
bs

er
ve

d 
ev

en
t p

ro
ba

bi
lit

y,
 %

0 25 50 75 100

0.3

0.2

0.1

0.0

Clinics
Radiomics
Nomogram
All 
None

N
et

 b
en

ef
it

0.0 0.2 0.4 0.6 0.8
High risk threshold

Points 

Tumor size 

CTR 

GPTV10-radscore 

Total points 

IAC risk

0 10 20 30 40 50 60 70 80 90 

0 10 20 30 40 50 60 70 80 90 

–8 –7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6

6 12 20 28

0.001 0.01 0.05 0.1 0.2     0.3   0.4  0.5 0.6 0.7 0.8 0.9 0.95 0.99 0.999

0 20 50

100

100 110 120

 −8 −6 −4 −2
Log lambda

0 .0139695910612866

 −8 −6 −4 −2
Log (λ)

A
U

C

2

1

0

−1

0.85

0.75

0.65

 19 18 8 4

C
oe

ffi
ci

en
ts

19 19 18 18 18 18 15 11 9 8 7 6 7 8 5 4 218

Predicted event probability, %



Wang et al. Radiomics predict invasiveness of LUAD5128

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2024;16(8):5122-5137 | https://dx.doi.org/10.21037/jtd-24-243

hospital were randomly divided into two groups, i.e., the 
training cohort (n=173) and the internal validation cohort 
(n=74) (7:3 ratio). Furthermore, 47 patients with LUAD 
(47 lesions) from three hospitals were used as the external 
validation cohort, including 19 patients from hospital one, 
14 patients from hospital two and 14 patients from hospital 
three.

Clinicopathological characteristics 

Of the 294 patients with LUAD, 122 were MIA group and 
172 were IAC group. There was a statistically significant 
difference in age between the training cohort and the 
internal validation cohort (P<0.05), and the IAC group was 
older. VPI positive was only observed in the IAC group 
but VPI significantly differed between the two groups 
in the training cohort (P<0.05). VPI negative was more 
predominant in the MIA group than in the IAC group. 
There were significant differences in surgery types between 

the two groups in the three cohorts (P<0.05), and lobectomy 
was the most common type of surgery in the IAC group 
(Table 1).

Construction and efficacy evaluation of clinical model

For CT features, good consistency between two observers 
was observed in terms of quantitative parameters (ICC 
=0.957–0.972), with strong consistency in qualitative 
indicators (Kappa value =0.830–1.000) (Table S4). In the 
training cohort, univariate logistic regression analysis results 
showed that age, density type, tumor size, solid portion 
size, CTR, bronchial changes, and pleural indentation 
statistically differed between MIA and IAC groups (P<0.05) 
(Table 2). Due to the collinearity between solid portion 
size and CTR, only CTR was included in the multivariate 
logistic regression analysis (Table S5). The results showed 
that tumor size [odds ratio (OR) =1.23] and CTR (OR 
=1.06) were independent risk factors for predicting the 

Table 1 Clinicopathology characteristics of patients in the training and two validation cohorts

Characteristics
Training cohort (n=173) Internal validation cohort (n=74) External validation cohort (n=47)

MIA (n=72) IAC (n=101) P value MIA (n=36) IAC (n=38) P value MIA (n=14) IAC (n=33) P value

Gender 0.054a 0.87a 0.12a

Female 49 (68.1) 54 (53.5) 24 (66.7) 26 (68.4) 11 (78.6) 18 (54.5)

Male 23 (31.9) 47 (46.5) 12 (33.3) 12 (31.6) 3 (21.4) 15 (45.5)

Age (years) 52.8±11.9 58.0±8.2 0.002d 49.6±12.3 59.5±12.0 0.001d 55.7±14.2 60.4±8.4 0.17d

Location 0.80a 0.058a 0.80c

RUL 29 (40.3) 43 (42.6) 6 (16.7) 10 (26.3) 5 (35.8) 16 (48.4)

RML 4 (5.6) 4 (4.0) 1 (2.8) 6 (15.8) 3 (21.4) 3 (9.1)

RLL 17 (23.6) 18 (17.8) 6 (16.7) 10 (26.3) 4 (28.6) 9 (27.3)

LUL 14 (19.4) 26 (25.7) 15 (41.6) 7 (18.4) 1 (7.1) 3 (9.1)

LLL 8 (11.1) 10 (9.9) 8 (22.2) 5 (13.2) 1 (7.1) 2 (6.1)

VPI <0.001a 0.14b 0.31b

Absent 72 (100.0) 81 (80.2) 36 (100.0) 34 (89.5) 14 (100.0) 28 (84.8)

Present 0 (0.0) 20 (19.8) 0 (0.0) 4 (10.5) 0 (0.0) 5 (15.2)

Surgery type <0.001a 0.002a <0.001a

Sublobectomy 50 (69.4) 32 (31.7) 26 (72.2) 14 (36.8) 11 (78.6) 6 (18.2)

Lobectomy 22 (30.6) 69 (68.3) 10 (27.8) 24 (63.2) 3 (21.4) 27 (81.8)

The P value represents the univariate analysis. Data are presented as n (%) or mean ± SD. a, Pearson’s chi-square; b, Yate’s correction 
for continuity; c, Fisher’s exact test; d, two independent sample t-test. MIA, minimally invasive adenocarcinoma; IAC, invasive 
adenocarcinoma; RUL, right upper lobe; RML, right middle lobe; RLL, right lower lobe; LUL, left upper lobe; LLL, left lower lobe; VPI, 
visceral pleural invasion; SD, standard deviation.
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Table 2 CT features of tumor in the training and two validation cohorts

Features
Training cohort (n=173) Internal validation cohort (n=74) External validation cohort (n=47)

MIA (n=72) IAC (n=101) P value MIA (n=36) IAC (n=38) P value MIA (n=14) IAC (n=33) P value

Tumor size (mm) 12.2 (9.7, 15.4) 20.6 (16.1, 25.7) <0.001e 11.3 (9.2, 14.1) 18.0 (14.8, 22.1) <0.001e 14.4±5.4 19.1±5.1 0.007d

Solid portion size (mm) 0.0 (0.0, 1.7) 6.3 (2.0, 8.8) <0.001e 0.0 (0.0, 2.2) 2.8 (0.0, 8.0) 0.003e 3.1±1.8 5.0±3.3 0.02d

CTR (%) 0.0 (0.0, 12.4) 31.5 (13.1, 42.0) <0.001e 0.0 (0.0, 14.8) 15.7 (0.0, 38.5) 0.002e 27.3 (12.9, 34.4) 27.9 (12.8, 40.1) 0.42e

Density type <0.001a 0.009a >0.99b

PGGN 51 (70.8) 23 (22.8) 26 (72.2) 16 (42.1) 2 (14.3) 5 (15.2)

MGGN 21 (29.2) 78 (77.2) 10 (27.8) 22 (57.9) 12 (85.7) 28 (84.8)

Shape 0.77a 0.38a 0.88b

Irregular 13 (18.1) 20 (19.8) 4 (11.1) 7 (18.4) 2 (14.3) 7 (21.2)

Round/oval 59 (81.9) 81 (80.2) 32 (88.9) 31 (81.6) 12 (85.7) 26 (78.8)

Lobulation 0.35a 0.49c 0.08c

Absent 7 (9.7) 6 (5.9) 1 (2.8) 0 (0.0) 2 (14.3) 0 (0.0)

Present 65 (90.3) 95 (94.1) 35 (97.2) 38 (100.0) 12 (85.7) 33 (100.0)

Spiculation 0.42c N/A N/A

Absent 71 (98.6) 101 (100.0) 36 (100.0) 38 (100.0) 14 (100.0) 33 (100.0)

Present 1 (1.4) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

Tumor-lung interface >0.99c >0.99c N/A

Ill-defined 0 (0.0) 1 (1.0) 0 (0.0) 1 (2.6) 0 (0.0) 0 (0.0)

Well-defined 72 (100.0) 100 (99.0) 36 (100.0) 37 (97.4) 14 (100.0) 33 (100.0)

Bronchial change <0.001a 0.18a 0.13b

Absent 67 (93.1) 61 (60.4) 31 (86.1) 28 (73.7) 13 (92.9) 22 (66.7)

Present 5 (6.9) 40 (39.6) 5 (13.9) 10 (26.3) 1 (7.1) 11 (33.3)

Vacuole 0.41a 0.48a 0.35b

Absent 56 (77.8) 73 (72.3) 29 (80.6) 28 (73.7) 8 (57.1) 25 (75.8)

Present 16 (22.2) 28 (27.7) 7 (19.4) 10 (26.3) 6 (42.9) 8 (24.2)

Cavity/cystic airspace 0.21a >0.99b 0.43b

Absent 67 (93.1) 88 (87.1) 34 (94.4) 35 (92.1) 14 (100.0) 29 (87.9)

Present 5 (6.9) 13 (12.9) 2 (5.6) 3 (7.9) 0 (0.0) 4 (12.1)

Vascular convergence 0.59b N/A N/A

Absent 71 (98.6) 97 (96.0) 36 (100.0) 38 (100.0) 14 (100.0) 33 (100.0)

Present 1 (1.4) 4 (4.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

Emphysema 0.15b 0.49c N/A

Absent 72 (100.0) 96 (95.0) 35 (97.2) 38 (100.0) 14 (100.0) 33 (100.0)

Present 0 (0.0) 5 (5.0) 1 (2.8) 0 (0.0) 0 (0.0) 0 (0.0)

Pleural indentation 0.04a 0.66a 0.63a

Absent 43 (59.7) 44 (43.6) 17 (47.2) 16 (42.1) 7 (50.0) 19 (57.6)

Table 2 (continued)
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invasiveness of LUAD (Table 3). The AUC values of the 
clinical model were 0.882, 0.840, and 0.745 in the three 
cohorts.

Construction and efficacy evaluation of the radiomics 
model

In total, 1,218 radiomics features were extracted from 
the VOI of GTV, GPTV5, GPTV10, and GPTV15, 
respectively. Among them, 73.9% (900/1,218) of GTV 
features, 91.5% (1,114/1,218) of GPTV5 features, 96.7% 
(1,178/1,218) of GPTV10 features, and 97.5% (1,187/1,218) 
of GPTV15 features had good repeatability, the inter-

observer and intra-observer ICC values were greater 
than 0.75. For the features with ICC >0.75, the mRMR 
algorithm was used to eliminate redundant and irrelevant 
features, and 30 features were retained in each group. Then 
LASSO logistic regression algorithm was used to select 
the optimized feature subset to establish the final model. 
Next, 10-fold cross-validation was used to select the value 
of the optimal hyperparameter λ, in which the optimal λ 
values of GTV, GPTV5, GPTV10, and GPTV15 radiomics 
models were 0.017, 0.007, 0.014, and 0.020, respectively  
(Figure S2). Based on the optimal λ value, 12, 11, 8, 
and 10 features were selected respectively to construct 
the radiomics models of GTV, GPTV5, GPTV10, and 

Table 2 (continued)

Features
Training cohort (n=173) Internal validation cohort (n=74) External validation cohort (n=47)

MIA (n=72) IAC (n=101) P value MIA (n=36) IAC (n=38) P value MIA (n=14) IAC (n=33) P value

Present 29 (40.3) 57 (56.4) 19 (52.8) 22 (57.9) 7 (50.0) 14 (42.4)

Contact type 0.11a 0.02a 0.08a

Indirect contact 15 (20.8) 32 (31.7) 4 (11.1) 13 (34.2) 3 (21.4) 16 (48.5)

Direct contact 57 (79.2) 69 (68.3) 32 (88.9) 25 (65.8) 11 (78.6) 17 (51.5)

Pleural thickening 0.005a 0.92a >0.99b

Absent 10 (13.9) 33 (32.7) 25 (69.4) 26 (68.4) 12 (85.7) 27 (81.8)

Present 62 (86.1) 68 (67.3) 11 (30.6) 12 (31.6) 2 (14.3) 6 (18.2)

The P value represents the univariate analysis. Data are presented as n (%), mean ± SD, or median (IQR). a, Pearson’s chi-square; b, Yate’s 
correction for continuity; c, Fisher’s exact test; d, two independent sample t-test; e, Mann-Whitney U test. CT, computed tomography; MIA, minimally 
invasive adenocarcinoma; IAC, invasive adenocarcinoma; CTR, consolidation-to-tumor ratio; PGGN, pure ground glass nodule; MGGN, mixed 

ground glass nodule; SD, standard deviation; IQR, interquartile range.

Table 3 Univariate and multivariate logistic regression analysis of factors in the training cohort

Variables
Univariate logistic regression analysis Multivariate logistic regression analysis

OR (95% CI) P value OR (95% CI) P value

Gender 1.85 (0.99–3.49) 0.055

Age (years) 1.05 (1.02–1.09) 0.001

Density type 8.24 (4.21–16.74) <0.001

Tumor size (mm) 1.31 (1.21–1.42) <0.001 1.23 (1.13–1.34) <0.001

Solid portion size (mm) 1.42 (1.28–1.60) <0.001

CTR (%) 1.08 (1.06–1.11) <0.001 1.06 (1.03–1.08) <0.001

Bronchial change 8.79 (3.26–23.70) <0.001

Pleural indentation 1.92 (1.04–3.57) 0.04

OR, odds ratio; CI, confidence interval; CTR, consolidation-to-tumor ratio.
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GPTV15, respectively (Figure S3). The features used for 
model construction and their ICC details are provided in 
Table S6. The radscore formulas for the four radiomics 
models can be found in Table S7. The radscore of the 
IAC group was higher than that of the MIA group, and 
the differences were statistically significant (P<0.05)  
(Figure S4). The group with the highest AUC value in 
the internal validation and external validation cohorts 
was selected as the best radiomics model, and the results 
showed that the GPTV10 radiomics model had the best 
performance, with AUC values of 0.910, 0.870, and 0.887 
in the three cohorts (Table 4, Figure S5). The Delong test 
showed that GPTV10 radiomics models were superior to 
those of GPTV15 in the training cohort (P=0.01) and those 
of GTV in the internal validation cohort (P=0.04).

Construction and efficacy evaluation of the combined model

A combined model was constructed and a nomogram 
was developed based on GPTV10-radscore and clinical 
risk factors (Figure 3). The combined model formula was 
as follows: Nomoscore = (Intercept) × −0.886 + tumor 
size × 0.045 + CTR × 0.011 + radscore × 1.041, and its 
AUC values were 0.912, 0.874, and 0.892 in the three 
cohorts (Table 5). An example of the nomogram in clinical 
application can be found in Figure S6. ROC curves of the 
clinical model, GPTV10 radiomics model, and combined 

model in the three cohorts are presented in Figure 4. 
The Delong test showed that the performance of the 
combined model was better than that of the clinical model 
in the training cohort and the external validation cohort 
(P=0.03 and 0.01, respectively), and the performance of 
the GPTV10 radiomics model was better than that of the 
clinical model in the external validation cohort (P=0.02). 
The Hosmer-Lemeshow test showed that the combined 
model fitted well in the three cohorts (P=0.32, 0.08, and 
0.72, respectively), and the calibration curve showed that 
the predicted probability value of the combined model was 
in good agreement with the real situation (Figure 5). The 
DCA curve revealed that the combined model had a better 
benefit than the clinical model and the GPTV10 radiomics 
model in predicting the invasiveness of LUAD (Figure 6).

Discussion

The study established a combined model based on 
GPTV10-radscore and CT features, and the AUC of the 
internal validation and the external validation cohort were 
0.874 and 0.892, respectively. This model can effectively 
improve the prediction efficiency of accurately judging the 
degree of invasiveness of “low-risk GGNs” with pleural 
contact before surgery and provide valuable information 
for the formulation of reasonable follow-up and treatment 
strategy.

Table 4 The predictive efficacy of GTV, GPTV5, GPTV10, GPTV15 model in three cohorts

Model Cohort AUC (95% CI) Cut-off Accuracy (%) Sensitivity (%) Specificity (%)

GTV Training 0.905 (0.851–0.944) 0.311 82.66 84.16 80.56

Internal validation 0.817 (0.710–0.898) 71.62 65.79 77.78

External validation 0.855 (0.722–0.941) 78.72 87.88 57.14

GPTV5 Training 0.910 (0.858–0.948) −0.115 84.39 87.13 80.56

Internal validation 0.834 (0.730–0.910) 77.03 76.32 77.78

External validation 0.861 (0.729–0.945) 82.98 84.85 78.57

GPTV10 Training 0.910 (0.857–0.948) −0.405 85.55 93.07 75.00

Internal validation 0.870 (0.771–0.937) 79.73 81.58 77.78

External validation 0.887 (0.761–0.961) 85.11 87.88 78.57

GPTV15 Training 0.889 (0.832–0.931) −0.096 82.66 86.14 77.78

Internal validation 0.845 (0.742–0.919) 77.03 71.05 83.33

External validation 0.870 (0.740–0.950) 82.98 81.82 85.71

GTV, gross tumor volume; GPTV, gross peritumoral tumor volume; AUC, area under the curve; CI, confidence interval.
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Compared with previous studies (13,14), our study has 
some innovative points in patient enrollment and research 
methods. Firstly, according to the latest pathological 
classification of LUAD released in 2021, AAH and AIS are 
classified as precursor glandular lesions and are removed 
from the classification of malignant tumors (6). In other 
words, GGNs at this stage belong to the category of benign 
nodules; thus, GGNs with pathologic classification of AAH 
and AIS were not included as research objects in the present 
study, which is different from Zhao’s study (13). Secondly, 
our study explored the value of radiomics models based 
on GTV and GPTV with different peritumoral areas for 
predicting VPI status, no similar research has been reported 

before. Thirdly, based on the TRIPOD statement, different 
prediction models were established, and a multi-center 
dataset was included for internal and external validation of 
the model to verify the generalization of the models, which 
was lacking in previous studies.

In the previous case collection process of this study, it 
was found that no pathological VPI occurred regardless 
of the size and shape of the pGGNs, whether the adjacent 
pleura was indentation or thickened, and if the mediastinal 
window showed no solid components inside, which is 
consistent with previous reports (18,19). This finding helps 
to eliminate preoperative concerns about VPI in pGGN 
patients with pleural contact, adding evidence for clinical 

Figure 3 Nomogram for preoperative prediction of the degree of invasiveness based on intratumoral and peritumoral radiomics and CT 
features in the low-risk GGNs. CT, computed tomography; GGNs, ground glass nodules; CTR, consolidation-to-tumor ratio; IAC, invasive 
adenocarcinoma; GPTV, gross peritumoral tumor volume.

Table 5 The predictive efficacy of clinical model, GPTV10 model and combined model in three cohorts

Model Cohort Cut-off AUC (95% CI) Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%)

Clinical Training 0.634 0.882 (0.824–0.926) 81.50 76.24 88.89 90.59 72.73

Internal validation 0.840 (0.737–0.915) 67.57 47.37 88.89 81.82 61.54

External validation 0.745 (0.596–0.860) 63.83 66.67 57.14 78.57 42.11

GPTV10 Training −0.405 0.910 (0.857–0.948) 85.55 93.07 75.00 83.93 88.52

Internal validation 0.870 (0.771–0.937) 79.73 81.58 77.78 79.49 80.00

External validation 0.887 (0.761–0.961) 85.11 87.88 78.57 90.63 73.33

Combined Training −0.441 0.912 (0.860–0.950) 84.97 91.09 76.39 84.40 85.94

Internal validation 0.874 (0.777–0.940) 77.03 78.38 75.68 76.32 77.78

External validation 0.892 (0.767–0.963) 78.72 42.86 93.94 75.00 79.49

GPTV, gross peritumoral tumor volume; AUC, area under the curve; CI, confidence interval; PPV, positive predictive value; NPV, negative 
predictive value.
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Figure 4 ROC curve analysis of the clinical model, GPTV10 radiomics model, combined model in three cohorts. (A) The training cohort; (B) 
the internal validation cohort; (C) the external validation cohort. ROC, receiver operating characteristics; GPTV, gross peritumoral tumor 
volume; AUC, area under the ROC curve; CI, confidence interval.

Figure 5 The calibration curves of combined model in the three cohorts. (A) the training cohort; (B) the internal validation cohort; (C) the 
external validation cohort.

decision-making.
Pathologically, it was found that AAH, AIS, and MIA 

consist of type II alveolar epithelial cells or Clara cells 
with the same morphology and anastomosis along the 
alveolar wall and the respiratory bronchiole wall, with the 
maximum diameter of the infiltrating lesion ≤5 mm, which 
do not invade the visceral pleura. On CT, most of these 
lesions are pGGN or mGGN with less solid components 
(5,6). Further tumor cell proliferation and accumulation 
increase cell density, decreased alveolar ventilation, and lead 
to the occurrence of reactive fibroplasia. The maximum 
diameter of the infiltrating lesion >5 mm is considered as 
IAC, and CT shows increased GGN density and increased 
proportion of solid components (5,6). Therefore, this 
study found that for GGN with subpleural CTR ≤50%, 
the proportion of mGGN in the IAC group was higher, 

the tumor and solid portion sizes were larger, and the 
CTR was higher, which is consistent with previous reports 
(20,21). In addition, regarding qualitative indicators, it has 
been found that the pleural indentation sign and bronchial 
changes were more common in the IAC group because the 
intratumoral infiltration was higher in the IAC group than 
in the MIA group and the degree of reactive fibroplasia was 
more severe, which invaded and pulled the local bronchial 
wall and pleura, resulting in morphological changes, 
corresponding to previous studies (13).

Furthermore, it was found that spiculation and vascular 
convergence accounted for 0.34% and 1.70% of the 
total data cohort, respectively. The reason may be that 
the pathological tumor cells of GGNs with CTR ≤50% 
were strongly adherent, and the probability of spreading 
and infiltrating into surrounding tissues was low; hence, 
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spiculation was rare. Meanwhile, there was less reactive 
fiber hyperplasia in the tumor, which was insufficient to 
pull the adjacent vascular bundles to converge to the tumor; 
therefore, vascular convergence was rare. It was previously 
reported that solid nodules are more common in lung 
cancer complicated with emphysema and the pathological 
grade of the tumor is higher (22). Therefore, the sign 
complicated with emphysema in this group was also rare, 
accounting for only 2.04% of the total data cohort.

Multivariate logistic regression analysis showed that 
only two quantitative variables, tumor size and CTR, were 
independent risk factors, which may be caused by the large 
subjectivity in the evaluation of qualitative CT features and 
the overlap of CT features between IAC and MIA. The 
diagnostic efficacy of the clinical prediction model built 
based on these two factors was the highest in the training 
cohort than in the internal validation and external validation 
cohorts (AUC =0.882 vs. 0.840 and 0.745), and there was 
an overfitting phenomenon, which may be explained by 
two reasons. Firstly, the solid portions inside the GGN not 
only represent the infiltrating part of the tumor but may 
also be caused by fibroblast proliferation, alveolar collapse, 

inflammatory cell infiltration, and mucous secreted by the 
tumor (23). Secondly, a considerable proportion of IAC are 
pGGNs with no internal solid portions (13,14).

Multiple studies have been conducted to investigate 
the value of intratumoral and peritumoral radiomics in 
predicting the degree of invasiveness of subsolid nodules 
or pGGNs (14,24,25), including the identification 
of AIS+MIA and IAC (24), MIA and IAC (14,25). 
Because of the different types and outcome factors in 
the cases, the radiomics feature extraction method, and 
the differences in the modeling algorithm, studies on 
the radiomics feature modeling are endless and similar 
but have made a more satisfactory prediction (internal 
validation cohort AUC range of 0.813–0.888). This 
fully demonstrates that intratumoral heterogeneity and 
peritumoral microenvironment differences of lung nodules 
can be quantified by radiomics features, which is also the 
theoretical basis for further exploration of intratumoral and 
peritumoral radiomics features to predict the invasiveness of 
“low-risk GGNS” in contact with the pleura in the current 
study. Based on the precise tumor segmentation, this study 
automatically expanded the peritumoral regions with three 

Figure 6 The decision curve shows that the combined model has better clinical application value than the clinical model and GPTV10 
radiomics model in the three cohorts. (A) The training cohort; (B) the internal validation cohort; (C) the external validation cohort. GPTV, 
gross peritumoral tumor volume.
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different gradient ranges to obtain four radiomics models, 
namely GTV, GPTV5, GPTV10, and GPTV15, to explore 
the most efficient radiomics model, and a multicenter study 
was conducted to evaluate the generalization of the model. 

The results showed that GPTV10 radiomics model 
exhibited the best performance. Based on the VOI of 
GPTV10, eight best radiomics features were selected, 
including the Major Axis Length of 1 shape features, the 
10 Percentile of 1 first-order features, 6 texture features, 
namely Zone Entropy, Small Area Low Gray Level 
Emphasis, Cluster Tendency, Cluster Prominence, Imc2, 
Correlation. Zone Entropy and Small Area Low Gray Level 
Emphasis are parameters of GLSZM and principally provide 
information on the uniform area size of each gray level 
on the 3D image. Cluster Tendency, Cluster Prominence, 
Imc2 and Correlation are parameters of GLCM mainly 
used to evaluate the spatial relationship between pixels 
and describe the frequency of appearance of specific pixel 
combinations in the image. These eight radiomics features 
comprise information related to tumor maximum diameter, 
CT value, and the distribution of image texture. Some of 
these radiomics features demonstrate close associations 
with the semantic features outlined in this study. Together, 
they provide a comprehensive representation of tumor size, 
density, and internal heterogeneity, offering insights into 
the biological behavior of tumors. The AUC of GPTV10 
radiomics model in the three cohorts were 0.910, 0.870 and 
0.887, respectively. The model was robust and effective, 
and was superior to previous models for predicting pGGN 
invasiveness in contact with pleuras based on intratumoral 
radiomics features (14,25). The model can provide a basis 
for preoperative non-invasive diagnosis of subpleural GGN 
invasiveness.

In this study, a combined model was constructed 
comprising the radscore of GPTV10 radiomics model 
and clinical risk factors. Results of the Delong test showed 
that the prediction performance of the combined model 
was better than that of the clinical model in the training 
cohort and the external validation cohort (P<0.05), and 
it was attributed to the excellent prediction performance 
of the GPTV10 radiomics model. The calibration curve 
analysis revealed that the predicted probability values of 
the combined model were in good agreement with the 
real situation in the three cohorts, and the P values of the 
Hosmer-Lemeshow test were all more than 0.05, indicating 
that the model had a good goodness of fit. DCA results 
showed that the combined model achieved good effects 
relative to the clinical model and the radiomics model.

There are some limitations in this study. Firstly, given 
that this is a retrospective study, there may be some bias in 
the selection of samples. Secondly, the external validation 
cohort had a relatively small sample size, which inevitably 
led to a degree of overfitting in the model. Thirdly, CT 
images from multiple hospitals were included, and there 
were large differences in images due to use of different 
CT models and scanning protocols. However, we adopted 
a standard radiomics analysis process and standardized 
resampling of CT images to minimize the influence of 
image discrepancies. Fourthly, it is difficult to explain the 
biological significance of some of the radiomics features, 
so relevant image-genomics studies can be carried out in 
the future to improve the biological interpretability of the 
radiomics model.

Conclusions

In conclusion, our results show that pGGNs do not invade 
the visceral pleura. The combined model based on GPTV10 
radiomics features, tumor size and CTR exhibited good 
performance in predicting the invasiveness of ground-glass 
LUAD with subpleural CTR ≤50% before surgery, and it 
provides valuable information for selecting an appropriate 
diagnosis and treatment plan.
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