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INTRODUCTION 
 
Renal cell carcinoma (RCC) is one of the most common 
urological malignant tumors, accounting for appro-
ximately 400,000 new cases and 175,000 deaths 
worldwide in 2018 [1], which is a heavy burden on health 
care systems. Clear cell renal cell carcinoma (ccRCC) 
comprises the most common RCC histological subtype 
[2]. ccRCC initially presents as metastasis in 30% 
patients, and up to 40% patients undergoing surgical 
excision develop local recurrence or metastatic disease 
[3]. Although immunotherapy has shown remarkable 
success in ccRCC, a part of patients experience drug 
resistance and disease progression after treatment, for  

 

which individual variation at the genetic level may be 
responsible [4–6]. Additionally, tumor-infiltrating 
immune cells and the tumor microenvironment are 
thought to be relevant to this [7, 8]. 
 
Regulatory T (Treg) cells characterized by expression 
of the master regulatory transcription factor FOXP3 are 
a highly immune-suppressive subset of CD4+ T cells 
that maintain immune homeostasis [9]. They act as a 
gatekeeper of almost any type of immune reaction. On 
one hand, they can suppress unwanted immune 
responses such as autoimmunity, allergy, or transplant 
rejection. On the other hand, they can also prevent 
protective immune responses against invading patho-
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ABSTRACT 
 
Background: Numerous patients with clear cell renal cell carcinoma (ccRCC) experience drug resistance after 
immunotherapy. Regulatory T (Treg) cells may work as a suppressor for anti-tumor immune response. 
Purpose: We performed bioinformatics analysis to better understand the role of Treg cells in ccRCC. 
Results: Module 10 revealed the most relevance with Treg cells. Functional annotation showed that biological 
processes and pathways were mainly related to activation of the immune system and the processes of 
immunoreaction. Four hub genes were selected: LCK, MAP4K1, SLAMF6, and RHOH. Further validation showed that 
the four hub genes well-distinguished tumor and normal tissues and were good prognostic biomarkers for ccRCC. 
Conclusion: The identified hub genes facilitate our knowledge of the underlying molecular mechanism of how 
Treg cells affect ccRCC in anti-tumor immune therapy. 
Methods: The CIBERSORT algorithm was performed to evaluate tumor-infiltrating immune cells based on the 
Cancer Genome Atlas cohort. Weighted gene co-expression network analysis was conducted to explore the 
modules related to Treg cells. Gene Ontology analysis and pathway enrichment analysis were performed for 
functional annotation and a protein–protein interaction network was built. Samples from the International Cancer 
Genomics Consortium database was used as a validation set. 

mailto:drxun@fjmu.edu.cn
mailto:huangjinbei@fjmu.edu.cn


www.aging-us.com 9479 AGING 

gens or tumors, and exert unproductive immuno-
suppression leading to unwanted reactions or even 
promote disease progression [10]. Kamada et al. 
reported that proliferation of Treg cells induced by PD-
1 blockade results in the inhibition of antitumor 
immunity, which reduces the effect of anti-PD-1 [11]. 
Liotta et al. reported that Treg cells are associated with 
poor prognosis in renal cancer [12]. Therefore, targeting 
Treg cells should be crucial to improving the treatment 
outcomes of cancer immunotherapy. Previous studies 
have reported several genetic biomarkers for the 
prognosis of ccRCC, however, relationships between 
Treg cells and these biomarkers, and how Treg cells 
cause drug resistance and poor prognosis still remain 
unknown [13–15]. 
 
Development of microarray and sequencing technology 
provides an excellent tool and platform for cancer 
research. By associating clinical data with molecular 
mechanisms, new biomarkers for diagnosis, treatment, 
and prognosis may be discovered. Weighted gene co-
expression network analysis (WGCNA) is an algorithm 
for weighted correlation network analysis and can be 
used as a data exploratory tool or a gene screening 
method to identify clusters of highly correlated genes 
[16]. It is has been widely used to determine hub genes 
in various cancers. To further explore the mechanism 
through which Treg cells cause poor prognosis in 
ccRCC, we used this algorithm to identify relevant 
modules and hub genes. 
 
RESULTS 
 
Tumor-infiltrating Treg cells in ccRCC 
 
Using the CIBERSORT algorithm, we investigated the 
22 subpopulations of infiltrating immune cells. Figure 
1A summarizes the results obtained from 539 ccRCC 
samples. Data relating to age, gender, pathological 
grade, American Joint Committee on Cancer (AJCC) 
stage, and survival state were collected and are 
summarized in Table 1. The results showed that a 
higher proportion of Treg cells was associated with a 
higher pathological grade and a more advanced AJCC 
stage (Figure 1B and 1C). Additionally, patients with a 
high proportion of infiltrating Treg cells had a poorer 
prognosis than those with a low proportion (Figure 1D). 
 
DEGs screening 
 
After conducting the CIBERSORT analysis, we 
obtained the proportion of Treg cells and the expression 
data of 432 ccRCC samples. Cases were divided into 
two groups (114 cases with a high proportion of Treg 
cells and 425 cases with a low proportion of Treg cells) 
with a cut-off value that was the mean value of the 

proportion of Treg cells. Under the threshold of 
adjusted P-value <0.05 and |logFC|≥2, a total of 4,921 
DEGs (2,348 upregulated and 2,573 downregulated) 
were chosen for subsequent analysis. 
 
Weighted co-expression network construction and 
key module identification 
 
“WGCNA” R package was used to categorize the DEGs 
with similar expression patterns into modules by 
average linkage clustering, based on the 432 cases with 
eligible CIBERSORT data. Firstly, we selected the 
power of β=9 (scale free R2=0.91) as the soft-
thresholding parameter (Figure 2A, 2B); Figure 2C and 
2D shows the positive result of the rationality test. After 
that, a sample dendrogram was constructed based on the 
similarity between the samples and the clinical 
characteristics of each sample are shown (Figure 3A). 
Finally, fourteen modules were identified (Figure 3B). 
We used two methods to test the relevance between 
each module and the fraction of Treg cells. Modules 
with a greater MS were considered to have more 
connection with Treg cells, and we found that the MS of 
module 10 was higher than any other module (Figure 
4A). Afterwards, the ME of module 10 showed a higher 
correlation with the fraction of Treg cells than other 
modules (Figure 4C). Based on the two methods, we 
finally identified module 10 was the module most 
relevant to Treg cells in ccRCC (Figure 4B). 
 
GO and pathway enrichment analysis 
 
We performed a functional enrichment analysis to 
search for the biological processes and pathways 
relevant to the module 10 using Metascape. The results 
showed that the biological processes and pathways were 
mainly related to activation of the immune system and 
the processes of immunoreactions (Figure 5A and 5B). 
 
Identification of hub genes and analysis of modules 
from PPI networks 
 
A PPI network was constructed using STRING (Figure 
5C). The top four hub genes were selected according to 
the degree of connectivity. They were LCK (LCK proto-
oncogene, Src family tyrosine kinase), MAP4K1 
(mitogen-activated protein kinase kinase kinase kinase 1), 
SLAMF6 (SLAM family member 6), and RHOH (Ras 
homolog family member H). 
 
Validation and efficacy evaluation of hub genes 
 
A dataset including 231 cases of ccRCC samples and 70 
normal tissues from the ICGC database was used for 
validation. Compared with normal tissues, all four hub 
genes revealed higher expression levels in ccRCC 
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samples (Figure 6A–6D). Survival analyses were 
performed grouped by the differential expression of the 
four hub genes. Table 2 shows the clinicopathological 
characteristics in patients with ccRCC from the ICGC 
cohort. It was found that increased expression levels of 
LCK (HR 0.59 [0.46–0.76], P<0.001) were associated 
with poor overall survival of ccRCC patients, as well as 

MAP4K1 (HR 0.44 [0.34–0.58], P<0.001), SLAMF6 
(HR 0.54 [0.41–0.70], P<0.001), and RHOH (HR 0.57 
[0.44–0.74], P<0.001) (Figure 6E–6H). In addition, 
ROC curve analyses were performed to evaluate the 
capability of the hub genes to distinguish tumor and 
normal tissues. AUC values for the four genes were 
greater than 0.5 (Figure 6I–6L). 

 

 
 

Figure 1. CIBERSORT analysis and clinical significance of Treg cells in ccRCC. (A) Relative percentage of each type of immune cell in 
539 ccRCC samples from TCGA cohort. (B) Proportion of Treg cells in different pathological grades. (C) Proportion of Treg cells in different 
AJCC stages. (D) Overall survival between patients with high and low proportions of infiltrating Treg cells. 
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Table 1. Clinicopathological characteristics of 539 patients with ccRCC from TCGA. 

Variables 
 Fraction of Tregs  

N Low High P-value 
Total, n(%) 539 425 114  
Age    0.857 

<60y 256 201 55  

≥60y 283 224 59  

Gender    0.584 
Male 350 273 77  

Female 189 152 37  

AJCC stage    0.001* 
I 258 219 39  

II 68 49 19  

III 132 104 28  

IV 81 53 28  

Pathological grade   0.011* 
G1 12 10 2  

G2 216 182 34  

G3 220 172 48  

G4 91 61 30  

Survival    0.001* 
Yes 360 302 58  

No 179 123 56  

* P <0.05. 
 

 

 

Figure 2. Determination of soft-thresholding parameter in WGCNA. (A) Analysis of the scale-free fit index for various soft-
thresholding parameters. (B) Analysis of the mean connectivity for various soft-thresholding parameters. (C) Histogram of connectivity 
distribution when β=9. (D) Check of scale-free topology when β=9. 
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DISCUSSION 
 
Unlike other cancers, advanced ccRCC responds poorly 
to chemotherapy and radiotherapy [17]. This has 
sparked further research on alternative therapies, most 
notably immunotherapy. In recent years, the landscape 
of management of advanced ccRCC has dramatically 
shifted with the development of immunotherapeutic 
agents, which are designed to repair, stimulate, and 
enhance the response of the immune system in attacking 
cancer cells [17].  
 
Immune checkpoint blockade has shown remarkable 
efficacy and clinical application prospects in ccRCC; 
however, some patients have no response to the therapy, 
which can be explained by tumor immune escape [4–6]. 
Treg cells, a double-edged sword in human immune 
reactions, may play an important role in this. Takahiro 
et al. reported that proliferation of Treg cells induced by 

PD-1 blockade results in inhibition of antitumor 
immunity, which reduces the effect of anti-PD-1 [11]. 
Nevertheless, how Treg cells decrease anti-tumor 
immunity and the related targets and pathways remain 
unclear. To explore how Treg cells affect ccRCC, we 
employed bioinformatics methods to identify relevant 
modules and hub genes. These findings could help to 
improve knowledge about the mechanism of immune 
escape and in the exploration of potential candidate 
genes or molecules for diagnosis, treatment, and 
prognosis. 
 
In the present study, WCGNA was conducted to explore 
the modules and genes related to tumor-infiltrating Treg 
cells. The results showed that module 10 was the most 
relevant module. Additionally, functional annotation 
revealed that biological processes and pathways were 
mainly related to the activation of the immune system 
and the processes of immunoreactions, which was

 

 
 

Figure 3. Sample dendrogram and clustering dendrogram of WGCNA. (A) Sample dendrogram and corresponding clinical 
characteristics. (B) Cluster dendrogram of 432 samples with eligible data. 
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plausible and supported the result of WGCNA. 
Consequently, we explored the hub genes in module 10. 
Finally, LCK, MAP4K1, SLAMF6, and RHOH were 
selected from the PPI network according to the degree 

of connectivity. Follow-up validation showed that the 
four hub genes could well-distinguish tumor and normal 
tissues and were good prognostic biomarkers related to 
tumor-infiltrating Treg cells for ccRCC. 

 

 
 

Figure 4. Identification of modules associated with clinical characteristics. (A) Distribution of average gene significance and errors in 
the modules associated with the proportion of Treg cells in ccRCC. (B) Scatter plot of module eigengenes in module 10. (C) Heatmap of the 
correlation between module eigengenes and different clinical characteristics of ccRCC. 
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LCK, also known as lymphocyte-specific protein tyrosine 
kinase. is a member of the Src family of non-receptor 
protein tyrosine kinases [18]. It plays a vital role in 
various cellular processes such as cell cycle control, cell 
adhesion, motility, proliferation, and differentiation [18]. 
Physiologically, LCK is involved in the development, 

function, and differentiation of T cells. Existing evidence 
suggested that high expression of LCK was connected to 
the development and progression of tumors [19, 20]. A 
recent study reported that mutated and overexpressed 
LCK promoted the proliferation of acute myeloid 
leukemia cell lines [19]. Furthermore, LCK participates 

 

 
 

Figure 5. Functional enrichment analysis and construction of PPI network. (A) GO and pathway enrichment analysis of genes in the 
module 10. (B) P-value of each gene in the network. (C) PPI network constructed using STRING. 
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in many malignant biological processes in glioma, 
such as migration, tumor growth, and regulation of 
cancer stemness [20]. Qayyum et al reported that LCK 
is a potential prognostic marker for renal cancer, 
which was consistent with this study, however, they 
did not explore the mechanism [21]. In castration-
resistant prostate cancer (CRPC) mouse models, LCK 
nitrated and inactivated by myeloid-derived 
suppressor cell sensitizes CRPC mice to immune 
checkpoint blockade, which suggested that LCK acted 

as a potential target to improve the efficacy of 
immune checkpoint blockade [22]. Moreover, another 
study revealed that sorafenib could induce apoptosis, 
suppress cell activation, and cause cell cycle arrest in 
human peripheral blood T cells by targeting LCK 
phosphorylation, thus, supressing the immune reaction 
[23]. This presents a good approach for suppressing 
unwanted immune responses. Therefore, LCK is a 
promising therapeutic target for increasing response 
rates to immunotherapy. 

 

 
 
Figure 6. Validation of the four hub genes based on the ICGC cohort. (A–D) Expression levels of the four hub genes between ccRCC 
samples and normal tissues. (E–H) Overall survival between patients with high and low expression of the four hub genes. (I–L) ROC curves of 
the four genes to evaluate their capability in distinguishing tumor tissue and normal kidney tissue. 
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Table 2. Clinicopathological characteristics of 231 
patients with ccRCC from ICGC. 

Clinicopathological characteristics  Value 
Age, y   

Mean±SD  60.05±12.22 
Range  26-90 

Gender, n(%)   

Male  137(59.3) 
Female  94(40.7) 

AJCC stage, n(%)   

I  92(39.8) 
II  60(26.0) 
III  46(19.9) 
IV  33(14.3) 

Survival, n(%)   

Yes  107(46.3) 
No  124(53.7) 

 

MAP4K1, a member of the MAP4K family, is a 
hematopoietic-specific protein serine-threonine kinase. 
With its primary expression in hematopoietic cells, a 
potential regulatory role of MAP4K1 was suggested in 
mediating signaling of hematopoietic lineages [24]. 
Studies revealed the essential role of MAP4K1 in 
negatively regulating T cell activation with involvement 
of the linker of activated T cells and associated 
downstream signaling molecules [25, 26]. Consistently, 
studies also demonstrated that mice that received 
adoptive transfer of MAP4K1 knockout T cells became 
resistant to lung cancer growth via mounting effective 
anti-tumor immune responses, suggesting that inhibition 
of MAP4K1 could be a viable approach for cancer 
immune therapy by promoting the effector functions of T 
cells [27]. Liu et al. reported that inhibition of MAP4K1 
will synergize with immune checkpoint modulator 
blockade as well as targets related to the prostaglandin E2 
and adenosine pathways [26]. Accordingly, selective 
MAP4K1 inhibition was considered a means to enhance 
anti-tumor immunity. Sunitinib, a multi-receptor tyrosine 
kinase inhibitor approved for the targeted treatment of 
RCC, has recently been reported to inhibit the activation 
of the MAP4K1 protein in vitro [28]. Therefore, these 
findings may indicate a new target for sunitinib if 
confirmed by further studies. 
 
SLAMF6 is a member of the SLAM family of 
receptors. SLAMF6 is usually expressed on a wide 
variety of immune cells including T cells, B cells, NK 
cells, double-positive thymocytes, eosinophils, and 
neutrophils. Previous studies revealed that SLAMF6 
functions as an inhibitory receptor that controls 

autoimmunity in systemic lupus erythematosus [29]. 
Existing evidence suggested that this autoimmune 
suppression might also occur in anti-tumor immunity, 
which would reduce response rates to immune 
checkpoint blockade [30, 31]. However, further studies 
are required to confirm this. 
 
RHOH is a hematopoietic-specific and GTPase-deficient 
member of the RHO-GTPase family. Its protein product 
is essential in the development of T lymphocytes. It plays 
an important role in many types of cancers, especially in 
cancers of myeloid [32]. Tajadura et al. reported that 
RHOH stimulated PC3 cell migration by promoting 
RAC1-driven membrane protrusion, resulting in a bad 
prognosis in prostate cancer [33]. Moreover, it was found 
that RHOH promoted the development of B cell chronic 
lymphocytic leukemia [34]. Furthermore, RHOH 
participates in a multi-protein complex with the zinc 
finger protein kaiso that regulates both cytoskeletal 
structures and chemokine-induced T cells [35]. Wang et 
al. reported that RHOH is a critical adapter protein, 
contributing to the regulation of both T cell receptor 
(TCR) and pre-TCR signalling during T cell development 
[36]. RHOH therefore acts as a crucial point in the 
regulatory pathways of immunoreactions and is a 
promising target for increasing the effectiveness of anti-
tumor immune therapy. However, more studies are 
needed to confirm its value. 
 
In summary, using a series of bioinformatics analyses, 
we identified four hub genes that were closely 
associated with the fraction of Treg cells in ccRCC. Our 
findings contribute more knowledge to the under-
standing of the underlying molecular mechanisms of 
how Treg cells affect ccRCC in anti-tumor immune 
therapy. However, further study is required to determine 
the exact mechanism in detail. 
 
MATERIALS AND METHODS 
 
Data collection and preprocessing  
 
A workflow of this study is shown in Figure 7. We 
downloaded mRNA expression profiles, including 539 
cases of ccRCC samples, from the Cancer Genome 
Atlas (TCGA) database (https://portal.gdc.cancer.gov/) 
and cases without adequate clinical data were excluded. 
We used the CIBERSORT algorithm to evaluate tumor-
infiltrating immune cells based on TGCA cohort. 
Meanwhile, survival analyses and correlation analyses 
with clinical features were conducted to evaluate the 
clinical significance of each type of immune cell. After 
screening the differentially expressed genes (DEGs) 
between samples with high and low proportions of Treg 
cells, WGCNA was conducted to determine the module 
relative to Treg cells. Gene Ontology (GO) analysis and 

https://portal.gdc.cancer.gov/
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pathway enrichment analysis were performed for 
functional annotation of selected modules. A protein–
protein interaction (PPI) network was built and hub 
genes were selected according to the degree of 
connectivity. Meanwhile, an additional independent 
dataset of 231 cases of ccRCC samples and 70 normal 
kidney samples from the International Cancer Genomics 
Consortium (ICGC) database (https://dcc.icgc.org/) was 
used as a validation set. 
 
Evaluation of tumor-infiltrating immune cells 
 
CIBERSORT is a deconvolution algorithm that uses a set 
of reference gene expression values (a “signature matrix” 
of 547 genes) considered a minimal representation for 

each cell type and, based on those values, infers cell type 
proportions in data from bulk tumor samples of mixed cell 
types using support vector regression [37]. Normalized 
gene expression data were used to infer the relative 
proportions of 22 types of infiltrating immune cells using 
the CIBERSORT algorithm. Briefly, gene expression 
datasets were prepared using standard annotation files and 
data uploaded to the CIBERSORT web portal 
(https://cibersort.stanford.edu/), with the algorithm run 
using the default signature matrix at 1,000 permutations. 
CIBERSORT derives a P-value for the deconvolution of 
each sample using Monte Carlo sampling, providing a 
measure of confidence in the results. From 539 cases of 
ccRCC samples analyzed, we selected 432 samples that 
met the requirements of CIBERSORT P-value <0.05. 

 

 
 

Figure 7. Flowchart detailing the study design and samples at each stage of the analysis. 

https://dcc.icgc.org/
https://cibersort.stanford.edu/
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Differentially-expressed gene screening 
 
The “limma” R package was used to screen the DEGs 
between samples with high and low proportions of Treg 
cells in TCGA cohort. Adjusted P-value<0.05 was 
considered significant statistically and |logFC|≥2 was 
set as the cut-off criterion for better accuracy and 
significance, as described previously [38, 39]. 
 
Co-expression network construction 
 
The expression profile data of DEGs was tested to check 
if they were good samples and genes. Then, we used the 
“WGCNA” R package to construct a scale-free co-
expression network for the DEGs. The Pearson’s 
correlation matrices and average linkage method were 
both performed for all pair-wise genes. Then, a weighted 
adjacency matrix was constructed using a power function 
amn = |cmn|β (cmn = Pearson’s correlation between gene m 
and gene n; amn = adjacency between gene m and gene n). 
β was a soft-thresholding parameter that could emphasize 
strong correlations between genes and penalize weak 
correlations. After choosing the power of β, the 
adjacency was transformed into a topological overlap 
matrix (TOM), which could measure the network 
connectivity of a gene defined as the sum of its adjacency 
with all other genes for network generation, and the 
corresponding dissimilarity (1-TOM) was calculated 
[40]. To classify genes with similar expression profiles 
into gene modules, average linkage hierarchical 
clustering was conducted according to the TOM-based 
dissimilarity measure with a minimum size (gene group) 
of 50 for the genes dendrogram. 
 
Identification of modules associated with the 
proportion of Treg cells 
 
Two approaches were used to identify modules related 
to clinical traits of ccRCC. Firstly, gene significance 
(GS) was defined as the log10 transformation of the P 
value (GS = lgP) in the linear regression between gene 
expression and the clinical traits. In addition, module 
significance (MS) was defined as the average GS for all 
the genes in a module. Then, the module with the 
absolute MS ranked first among all the selected 
modules was considered as the one related to clinical 
traits. The module eigengene (ME) was considered as 
the major component in the principal component 
analysis for each gene module, and the expression 
patterns of all genes could be summarized into a single 
characteristic expression profile within a given module. 
In addition, we calculated the correlation between each 
ME and clinical traits to identify the relevant module. 
The module with the maximal absolute MS among all 
the selected modules was usually considered as the one 
related to clinical traits. Finally, the module highly 

correlated with certain clinical traits was selected for 
further analysis. 
 
GO and pathway enrichment analysis 
 
Metascape (http://metascape.org/) is an online program 
providing a comprehensive set of functional annotation 
tools for investigators to understand the biological 
meaning of large lists of genes [41]. We uploaded genes 
into the selected module for GO analysis and pathway 
enrichment analysis. P <0.05 was considered statistically 
significant. 
 
PPI network and hub genes selection 
 
Search Tool for the Retrieval of Interacting Genes 
(STRING) is a biological database for building PPI 
networks, providing a system-wide view of interactions 
between each member [42]. Genes from selected 
module were mapped to STRING to analyze their 
relationships with each other, and a combined score of 
>0.4 was set as the cut-off criterion, as described 
previously [43]. A PPI network was then established 
using Cytoscape software, which visually explores 
biomolecular interaction networks composed of 
proteins, genes, and other molecules. The plug-in 
Centiscape was used to search for the most important 
nodes in a network by calculating centrality parameters 
for each node [43]. Hub genes were selected from the 
PPI network according to the degree of connectivity. 
 
Survival analyses and ROC curve analyses of hub 
genes  
 
A dataset including 231 cases of ccRCC samples and 70 
normal kidney samples from the ICGC database was 
used to validate the different expression levels of the 
hub genes between ccRCC tissues and normal kidney 
tissues. Additionally, survival analyses for hub genes 
were performed. The hazard ratios (HRs) with 95% 
confidence intervals as well as log-rank P-values were 
calculated and displayed. Moreover, receiver operating 
characteristic (ROC) curves of hub genes were plotted 
and area under the curves (AUC) was calculated with 
the “ROC” R package to evaluate their capability to 
distinguish tumor and normal kidney tissue. 
 
Statistical analysis 
 
Statistical analyses were conducted using SPSS version 
22.0 software (SPSS, Chicago, IL, USA) and GraphPad 
Prism 5.0 (GraphPad Software, San Diego, CA, USA). 
The chi-square test for proportion was used to analyze 
the relationship between the fraction of Treg cells and 
clinicopathological parameters. Survival curves were 
plotted by the Kaplan-Meier method and compared with 

http://metascape.org/
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the log-rank test. Cox proportional hazard regression 
model was used to evaluate the influence of variables 
for overall survival. P<0.05 was considered statistically 
significant. 
 
Abbreviation 
 
RCC: renal cell carcinoma; ccRCC: clear cell renal cell 
carcinoma; Treg: regulatory T; WGCNA: weighted 
gene co-expression network analysis; TCGA: the cancer 
genome atlas; DEGs: differentially expressed genes; 
GO: gene ontology; PPI: protein-protein interaction; 
ICGC: international cancer genomics consortium; GS: 
gene significance; MS: module significance; ME: 
module eigengene; STRING: Search Tool for the 
Retrieval of Interacting Genes; HR: hazard ratio; ROC: 
receiver operating characteristic; AUC: area under the 
curve; LCK: LCK proto-oncogene, Src family tyrosine 
kinase; MAP4K1: Mitogen-Activated Protein Kinase 
Kinase Kinase Kinase 1; SLAMF6: SLAM Family 
Member 6; RHOH: Ras Homolog Family Member H; 
CRPC: castration-resistant prostate cancer; TCR: T cell 
receptor. 
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