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Noise-induced population bursting has been widely identified to play important roles in information processes. 
We construct a mathematical model for a random and sparse heterogeneous neural network where bursting 
can be induced from a resting state by a global stochastic stimulus. Importantly, the noise-induced bursting 
dynamics of this network are mediated by calcium conductance. We use two spectral measures to evaluate 
network coherence in the context of the network bursts, the spike trains of all neurons, and the individual bursts 
of all neurons. Our results show that the coherence of the network is optimized by an optimal level of the 
stochastic stimulus, which is known as coherence resonance (CR). We also demonstrate that the interplay of the 
calcium conductance and noise intensity can modify the degree of CR.
1. Introduction

Bursting is one of the fundamental coding strategies for neuronal 
information processing and transmission in the brain [1, 2, 3, 4]. Its 
temporal pattern is characterized by the repetitive switch between a 
silent phase (with almost no spike emission) and an active phase (with 
two or more spikes with high firing rates). Network bursts (or pop-

ulation bursts) refer to synchronous or near-synchronous burst firing 
across a neural network [5]. The generation of burst firing is regulated 
by low-threshold calcium channels in various neuronal populations [6, 
7]. Many calcium imaging studies have reported that such neuronal 
populations are relatively random, dispersed networks [8]. The synap-

tic connectivity between neurons is anti-correlated with their lateral 
distance [9, 10], thus, bursting networks mediated by calcium channels 
have a rather low connection probability.

Coherence is one of the most common measures used to quantify the 
correlation or synchronicity of the oscillatory patterns of neurons across 
a neural network [11]. The collective activities of neural networks are 
often influenced by a ubiquitous and often significant component—

noise [12]. Generally, noise can be either local (independent and un-

correlated for each neuron in the network), or global (identical across 
the network) [13, 14]. It has long been shown that noise can play 
a constructive role to improve the performance of a dynamical sys-
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tem through, for example, coherence resonance (CR). CR is a resonant 
mechanism where an appropriate amount of noise alone (i.e. without 
external periodic stimulus) drives a quiescent but excitable system to 
produce the most coherent oscillations [15, 16]. In neuronal dynamics, 
oscillations represent the neuronal spikes or bursts and the system rep-

resents a neuron or a network. CR has been observed in neural networks 
such as globally coupled networks [17, 18, 19, 20, 21, 22], randomly 
connected neural networks exhibiting single oscillations [23, 24], small-

world networks [25, 26], ring networks [27, 28], multiplex networks 
[29, 30, 31], and the influencer network of phase oscillators [32]. How-

ever, the stochastic dynamics of a calcium-mediated random and sparse 
heterogeneous bursting network have not been extensively investigated 
and the effect of CR in such a network remains elusive.

In this work, we consider a quiescent but excitable network me-

diated by calcium currents, where the synaptic connections between 
neurons are random and sparse. In order to reproduce the collective 
activities of such a network more realistically, spike-timing-dependent 
plasticity (STDP) is integrated into our network model. STDP is used to 
simulate the dynamic synapse between two communicating neurons, 
where the spike timing information of presynaptic and postsynaptic 
neurons is used to adjust the synaptic strength over time [33]. As a 
result, temporal information conveyed by spike timing is spatially dis-

tributed across a network [34]. Hence, three heterogeneous elements 
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are incorporated into the proposed network model: diverse calcium con-

ductance, dynamic synaptic currents due to random connectivity and 
STDP, and distinct local noise.

This study focuses on the influences of the first heterogeneous com-

partment, calcium conductance, on network dynamics. We first consider 
constant calcium conductance and show that a global stochastic stimu-

lus can induce network bursts and increase coherence. In particular, 
our analysis demonstrates that at an optimal intensity of the global 
noise, the similarity relations between neurons are maximized, indi-

cating the occurrence of CR. Secondly, by altering the values of the 
constant calcium conductance, we find that CR is robust and that the 
maximum degree of coherence increases when the calcium conductance 
approaches the excitation threshold. Finally, we explore the impact of 
heterogeneous calcium conductance on network coherence.

The remainder of this paper is organized as follows: Section 2 con-

tains the description of the network model. Section 3.1 introduces the 
noise-induced bursting generated by this network. Sections 3.2–3.4

focus on the CR of the network bursts, all spikes, and all bursts, 
respectively. Section 3.5 examines the effect of heterogeneous cal-

cium conductance on network coherence. Discussion is given in Sec-

tion 4.

2. Mathematical model

We model a network of 𝑁 = 100 neurons with random synaptic con-

nections, which adapts the form of the reduced Morris-Lecar model with 
a linear slow subsystem [35].

𝐶
𝑑𝑣𝑖

𝑑𝑡
= 𝐼𝑖 − 𝐼𝐶𝑎,𝑖 − 𝐼𝐾,𝑖 − 𝐼𝐿,𝑖 + 𝐼𝑙𝑜𝑐,𝑖 − 𝐼𝑠𝑦𝑛,𝑖 + 𝐼𝑔𝑙𝑜 (1)

𝑑𝑤𝑖

𝑑𝑡
= 𝜙𝜆𝑤(𝑣𝑖)(𝑤∞(𝑣𝑖) −𝑤𝑖) (2)

𝑑𝐼𝑖

𝑑𝑡
= 𝜖(𝑣0 − 𝑣𝑖) (3)

𝑑𝑔𝑖

𝑑𝑡
= −

𝑔𝑖

𝜏𝑒
(4)

where 𝑣𝑖 is the membrane potential of the 𝑖th neuron for 𝑖 = 1, 2, 3, … , 𝑁 . 
𝐼𝐶𝑎,𝑖 = 𝑔𝐶𝑎𝑚∞(𝑣𝑖)(𝑣𝑖 − 𝑣𝐶𝑎), 𝐼𝐾,𝑖 = 𝑔𝑘𝑤𝑖(𝑣𝑖 − 𝑣𝑘), and 𝐼𝐿,𝑖 = 𝑔𝑙(𝑣𝑖 − 𝑣𝑙) are 
the calcium, potassium, and leakage currents, respectively, with gating 
functions

𝑚∞(𝑣𝑖) =
1
2

(
1 + tanh

𝑣𝑖 − 𝑣1
𝑣2

)
,

𝑤∞(𝑣𝑖) =
1
2

(
1 + tanh

𝑣𝑖 − 𝑣3
𝑣4

)
,

𝜆𝑤(𝑣𝑖) =
1
3
cosh

𝑣𝑖 − 𝑣3
2𝑣4

.

𝑤𝑖 is a gating variable of 𝐼𝐾,𝑖 with 𝜙 as the scaling rate of channel 
opening. 𝐼𝑖 is the linear feedback input current with feedback coeffi-

cient 𝜖. 𝑔𝑖 is the time-varying conductance of the synaptic current with 
time constant 𝜏𝑒. 𝑔𝐶𝑎, 𝑔𝑘, and 𝑔𝑙 are the maximum conductance of the 
calcium, potassium, and leakage currents, with corresponding reversal 
potentials 𝑣𝐶𝑎, 𝑣𝑘, and 𝑣𝑙 . 𝐼𝑙𝑜𝑐,𝑖 =𝐷1𝜉𝑖 and 𝐼𝑔𝑙𝑜 =𝐷2𝜂 represent the local 
intrinsic noise (unique for each neuron) and global external stochas-

tic stimulus (same for all neurons), respectively, where 𝜉𝑖 and 𝜂 are 
independent Gaussian white noise with mean 0 and variance 1, and 
𝐷1 and 𝐷2 are scaling parameters for the local and global noise in-

tensities, respectively. The parameter values of this model are listed in 
Table 1.

This network is randomly connected with a probability of 15%. 
That is, the connection of each pair of neurons is randomly and in-

dependently realized with a probability of 15%, which is a realistic 
assumption for a calcium-sensitive neural network based on experimen-

tal study in [10]. An example synaptic connectivity map is presented 
in Fig. 1A. The synaptic current for the 𝑖th neuron, 𝐼𝑠𝑦𝑛,𝑖, in Equ. (1), 
is averaged by the number of incoming connections from pre-synaptic 
2

Table 1. Parameter values.

Parameter Value Unit Parameter Value Unit

𝑣0 -20 mV 𝑣𝑙 -50 mV

𝑣1 -1 mV 𝑔𝑘 1.2 mS

𝑣2 15 mV 𝑔𝑙 0.6 mS

𝑣3 10 mV 𝜙 1 1/ms

𝑣4 5 mV 𝜖 0.001 mS/ms

𝑣𝐶𝑎 90 mV 𝐶 1 μF

𝑣𝑘 -100 mV 𝑤𝑒 0.03 mS

Ω𝑑 4 1/s 𝑣𝑒 20 mV

Ω𝑓 4 1/s 𝑔𝐶𝑎 0.63 ∼ 0.646 mS

𝜏𝑒 0.55 ms

neurons. Namely, 𝐼𝑠𝑦𝑛,𝑖 =
1

𝑁𝑝𝑟𝑒

∑𝑁

𝑗=1
𝑗≠𝑖

𝑝𝑗𝑖𝑔𝑖(𝑣𝑗 − 𝑣𝑒) where 𝑁𝑝𝑟𝑒 represents 

the number of incoming synapses to neuron 𝑖; 𝑝𝑗𝑖 = 1 if the 𝑗th neu-

ron (pre-synaptic) and 𝑖th neuron (post-synaptic) are connected and 0 
otherwise; and ∑𝑁

𝑖=1
∑𝑁

𝑗=1 𝑝𝑗𝑖 = 15% ×𝑁 ×𝑁 = 1500. The synapses are 
modeled by a phenomenological model with a STDP mechanism [36, 
37], which is an important feature for synaptic memory formation and 
removal. In particular, synapse release is defined by the product of the 
two variables, 𝑥𝑠 and 𝑢𝑠, which represent the fractions of neurotrans-

mitter available and docked for release, respectively. Between action 
potentials, 𝑢𝑠 and 𝑥𝑠 follow the dynamics

𝑑𝑢𝑠

𝑑𝑡
= −Ω𝑓 𝑢𝑠,

𝑑𝑥𝑠

𝑑𝑡
=Ω𝑑 (1 − 𝑥𝑠).

Whenever a pre-synaptic action potential arrives at a post-synaptic 
cell, the excitatory conductance increases according to 𝑔𝑖 ← 𝑔𝑖 +𝑤𝑒𝑢𝑠𝑥𝑠, 
where 𝑤𝑒 is the synaptic weight.

To simulate our network model, we used the Brian2 package in 
Python and the Euler-Maruyama method. We then exported the sim-

ulation results (i.e., the spike times, global stochastic stimuli, and mem-

brane potentials) and proceeded with our analysis using MATLAB. For 
example, MATLAB was used to compute the peri-stimulus time his-

togram (PSTH), power spectrum density (PSD), and signal to noise 
ratios (SNRs). 50 trials were used to average the PSDs and SNRs in 
Figs. 2–8. The network connectivity is different in different trials but 
with a constant connection probability of 15%. In Fig. 8, a different set 
of uniformly distributed random numbers was generated and used to 
model different 𝑔𝐶𝑎 values in the network in different trials.

3. Results

3.1. Noise-induced bursting

This study examines the stochastic dynamics of an excitable neu-

ral network, whose population activity is characterized by bursts when 
a global stochastic stimulus is applied. Its corresponding deterministic 
network (where 𝐷1 = 𝐷2 = 0) is quiescent for 𝑔𝐶𝑎 < 0.648 and exhibits 
periodic bursts of three or more spikes when 𝑔𝐶𝑎 ≥ 0.648. The pro-

posed network rests in the excitable regime (i.e. 𝑔𝐶𝑎 < 0.648), where 
bursting spikes are stimulated by local intrinsic noise, 𝐷1𝜉𝑖, or external 
stochastic input, 𝐷2𝜂. Here the network has two heterogeneous compo-

nents: the local noise (𝐼𝑙𝑜𝑐,𝑖) and synaptic currents (𝐼𝑠𝑦𝑛,𝑖, due to random 
connections between neurons and STDP). When 𝑔𝐶𝑎 is slightly lower 
than the excitation threshold (0.648), bursting spikes can be evoked 
by local noise alone, as shown by one voltage segment in Fig. 1B with 
𝑔𝐶𝑎 = 0.646, 𝐷1 = 0.007, and 𝐷2 = 0. Our simulation shows, by taking 
𝑔𝐶𝑎 = 0.646, 𝐷1 = 0.007, and 𝐷2 = 0, bursts occur for all 50 trials with a 
low average occurrence rate of population bursts (0.64 bursts/second). 
When 𝑔𝐶𝑎 is much lower than 0.648, local noise alone can not evoke 
bursting behavior (see the voltage segment with 𝑔𝐶𝑎 = 0.642, 𝐷1 = 0.007, 
and 𝐷2 = 0 in Fig. 1B).

The addition of a global stochastic stimulus, 𝐷2𝜂, increases both 
the burst-generation probability and the occurrence rate of population 
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Fig. 1. (A) An example synaptic connectivity map for a network of 𝑁 = 100 neurons with a random connection probability of 15%. The connectivity varies for 
different trials. (B) Example voltage traces of one neuron in this network in response to a global stochastic stimulus, 𝐷2𝜂. This global stochastic stimulus (top row) 
has three different intensities 𝐷2 = 0, 0.03, and 0.15 for every 1500 ms segment. The intensity of local intrinsic noise, 𝐷1, is constant over the three 1500 ms segments 
(𝐷1 = 0.007). Note, 𝑔𝐶𝑎 = 0.648 is the excitation threshold between the quiescent and bursting regimes of the deterministic state of this network (where 𝐷1 =𝐷2 = 0). 
Thus, two calcium conductance values are taken (middle row: 𝑔𝐶𝑎 = 0.646 and bottom row: 𝑔𝐶𝑎 = 0.642) to illustrate the dynamical change of voltage traces.
bursts. As seen in the voltage traces of Fig. 1B, when the stochastic stim-

ulus changes from a weak level (𝐷2 = 0.03) to a relatively higher level 
(𝐷2 = 0.15), the burst rate increases. Meanwhile, for a larger 𝐷2, the 
number of spikes in a single burst event becomes more random. For ex-

ample, Fig. 2B (middle row) shows that most bursts have 3 spikes when 
𝐷2=0.03, whereas the number of spikes within one burst ranges from 
2 to 5 when 𝐷2 = 0.15. Another observation is that an increase in 𝐷2
causes a higher voltage fluctuation on the slow silent phase in between 
consecutive burst events (i.e., the hyperpolarization stage of action po-

tentials where voltage is around -27 mV to -16 mV), as illustrated in 
Fig. 1B, where 𝐷2=0.15. The fluctuations in the slow silent phase can 
be used to determine the intensity level of global stochastic input, for 
example, 𝐷2=0.03 and 0.15 correspond to weak and intermediate lev-

els, respectively.

3.2. Coherence resonance (CR) of network bursts

To study network dynamics—and by extension network coherence—

we subject our network to weak, intermediate, and strong levels of the 
global stochastic stimulus, 𝐷2𝜂. The change in network bursting can 
be visualized by raster plots and peri-stimulus time histograms (PSTH), 
as shown in Fig. 2A-2C. A raster plot is a collection of the spike times 
of individual neurons in a network, where each black dot in the raster 
plot represents a spike. The PSTH (blue curves in Fig. 2A-2C) summa-

rizes the number of spikes from all neurons across the network at a 
certain time. Therefore, it records the timing of network bursts, and 
the height and width of the PSTH peaks indicate the synchrony of in-

dividual spikes within a burst. When a rather weak stimulus is applied, 
the network produces fewer population bursts. For example, there are 
4 population bursts over a 1600 ms period with 𝐷2=0.1, as shown 
in Fig. 2A. The height and the width of some of the PSTH peaks are 
relatively short and wide, respectively, which reflects a relatively low 
spike-to-spike synchronization within such burst events (see the 2nd 
burst in Fig. 2A). When the stimulus is increased to an intermediate 
level (e.g. 𝐷2 = 0.225 in Fig. 2B), bursting activity becomes more fre-

quent and the PSTH has higher and narrower peaks; spiking events are 
tightly contained in bursts and the network becomes highly synchro-

nized. Note, 𝐷2 = 0.225 is chosen because it is the optimal stimulus 
intensity of CR (as in Fig. 4A). However, when the stimulus is further 
increased to stronger levels (e.g. 𝐷2 = 0.4 in Fig. 2C), network bursts 
become more frequent but get less synchronized. The sharp peaks of 
the PSTH become broader, indicating that noise starts to dictate the 
dynamics of the network.

Such temporal changes in network dynamics may also be viewed 
by the power spectral density (PSD) in the frequency domain. PSTHs 
are used to calculate the PSD and the average PSD over 50 trials is 
shown in the inset of Fig. 2D. The black, red, and green PSD curves are 
3

labeled by letters A, B, and C, and correspond to Fig. 2A (weak stim-

ulus case), Fig. 2B (intermediate/optimal stimulus case), and Fig. 2C 
(strong stimulus case), respectively. Three major features of a PSD are 
often considered. The first is the central frequency (or called the res-

onant frequency), which is the frequency location of the highest PSD 
point and the reciprocal of the average inter-burst interval (IBI). The 
central frequency increases with 𝐷2, which agrees with the network dy-

namics in the time domain (Fig. 2A-2C) where the IBI is smaller with 
the increment of 𝐷2. The central frequency is also positively corre-

lated with the burst rate because a shorter IBI implies a higher burst 
rate. The second and third PSD features considered are the height and 
half-width of PSD peaks. As expected, the optimal stochastic stimulus 
results in the most pronounced PSD peak (red curve in Fig. 2D inset, 
with the largest height and the smallest half-width) as opposed to the 
cases of weak and strong stochastic stimulus (black and green curves in 
Fig. 2D). This is caused by higher and narrower PSTH peaks as shown 
in Fig. 2B.

The collective activities observed in Fig. 2A-2C and the inset of 
Fig. 2D indicate that the intensity of the global stochastic stimulus plays 
an important role in modifying the coherence of our network. To mea-

sure coherence more concretely, we use the signal-to-noise ratio (SNR) 
measure [15, 16],

𝛼 = ℎ𝑝(Δ𝜔∕𝜔𝑝)−1, (5)

where ℎ𝑝 and 𝜔𝑝 denote the height and central frequency of the PSD 
peak, respectively, and Δ𝜔 denotes the width of the PSD peak at half-

maximal power. For this network, 𝜔𝑝 has a rather slight change as 𝐷2
increases (see Fig. 2D inset), so the ratio between ℎ𝑝 and Δ𝜔 dominates 
𝛼. As discussed, the PSD peaks are most pronounced (i.e., large ℎ𝑝 and 
small Δ𝜔) at the intermediate stimulus values as opposed to the weak 
and strong stimulus values. Therefore the SNR-𝛼 should peak at inter-

mediate levels of the stochastic stimulus. The SNR-𝛼 curve is presented 
in Fig. 2D. One sees that for a weak stimulus, the SNR rapidly increases, 
reaches a maximum at intermediate stimulus values, and then decreases 
and tends toward zero for strong stimulus values. This is the characteris-

tic pattern of CR [15, 16] and the peak of the SNR curve corresponds to 
the maximum degree of network coherence. The intensity of a stochas-

tic stimulus that maximizes SNR is called the optimal intensity, and for 
𝑔𝐶𝑎 = 0.64 in Fig. 2D, the optimal intensity is 𝐷2 = 0.225.

3.3. The network coherence in terms of all spikes

PSTH is a collective quantity describing population bursts and does 
not accurately capture the fast dynamics of intra-burst spikes (i.e., in-

dividual spikes within a burst), and as a result, its PSD (and coherence 
measure SNR-𝛼) covers only the low-frequency range of 0-15 Hz. To 
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Fig. 2. (A)-(C) The spike raster plots (black dots) and the peri-stimulus time histogram (PSTH, blue curves) for 𝐷2=0.1, 0.225 and 0.4 (representing weak, 
intermediate, and strong stimulus levels, respectively) when 𝑔𝐶𝑎 = 0.64. The vertical axis corresponds to the index of a neuron in the network. Each dot indicates 
that one neuron generates a spike at the time corresponding to the horizontal (time) axis. The bin-width of the PSTH is 20 ms. (D) Signal-to-noise ratio (SNR) 𝛼 v.s. 
the intensity of stochastic stimulus 𝐷2 . SNR-𝛼 is defined in Equ. (5). Letters A, B and C correspond to 𝐷2 values as in panels (A)-(C), which represent three noise 
intensities of global stimulus: weak; optimal; and strong. Inset of (D): the power spectral density (PSD) of PSTH v.s. frequency for 𝐷2 = 0.1, 0.225 and 0.4. PSDs 
are computed based on PSTH and averaged over 50 trials. Letters A-C beside the PSD curves indicate their corresponding example raster plots and PSTHs in panels 
(A)-(C).
study network coherence, we must consider larger bandwidths of fre-

quency to account for both bursts and intra-burst dynamics (i.e., both 
fast and slow dynamics). Therefore, we analyzed the spike trains of in-

dividual neurons in the network. The histogram of inter-spike intervals 
(ISIs) of spike trains shows a bimodal distribution (two separate and in-

dependent peaks): one peak is located at shorter ISIs corresponding to 
the fast intra-burst dynamics, and the other one is at longer ISIs due to 
the slow dynamics of burst events. As shown in Fig. 3A, with 𝑔𝐶𝑎 = 0.64
and 𝐷2 = 0.05, the majority of intra-burst ISIs are concentrated around 
10 ms and inter-burst ISIs are located on the interval from 345 ms to 
415 ms. 𝐷2=0.05 is chosen because it is the optimal stimulus intensity 
of CR as shown later in Fig. 4A. This temporal feature of spike trains 
can also be illustrated by the PSD as shown in Fig. 3B. The PSD peak at 
the low frequency (around 2.5 Hz) corresponds to the longer inter-burst 
ISIs, and the PSD peak at the high-frequency (around 100 Hz) results 
from the shorter intra-burst ISIs, whereas the PSDs of PSTH in the in-

set of Fig. 2D do not have a peak at a frequency range higher than 
15 Hz.

To get a more precise insight on the coherence of all spikes (from 
both low- and high-frequency ranges) in one network, we use an input-

output SNR measure [38]: the ratio between the power of spike trains 
(output) and the power of the global stochastic stimulus (input). This 
SNR measure is commonly used to select the best recording location 
through spike sorting, and also to assess the reliability of neural infor-

mation transmission [39]. To distinguish from the first SNR measure in 
Equ. (5), we denote the second SNR measure as 𝛽. That is,
4

𝛽 =
𝑃𝑜𝑢𝑡𝑝𝑢𝑡

𝑃𝑖𝑛𝑝𝑢𝑡

= 1
𝑁

𝑁∑
𝑖=1

𝑃𝑆𝑇 , 𝑖

𝑃𝑁

, (6)

where 𝑃𝑆𝑇 , 𝑖 is the power of the spike train of the 𝑖th neuron, and 𝑃𝑁

is the power of global stochastic stimulus, 𝐷2𝜂. 𝐷2𝜂 is identical for all 
neurons in the network, and thus (6) can be equivalently written as

𝛽 =
1
𝑁

∑𝑁

𝑖=1 𝑃𝑆𝑇 , 𝑖

𝑃𝑁

.

We then introduce the re-scaled PSD which helps us to understand how 
𝑃𝑆𝑇 , 𝑖 and 𝑃𝑁 affect SNR-𝛽. The re-scaled PSD of spike trains is defined 
by the averaged PSD over 𝑁 spike trains in a network divided by 𝑃𝑁 , 
i.e.

�̃�(𝑓 ) =
1
𝑁

∑𝑁

𝑖=1 𝑆𝑖(𝑓 )
𝑃𝑁

, (7)

where 𝑓 is the frequency, 𝑆𝑖(𝑓 ) is the PSD of the spike train generated 
by the 𝑖th neuron, and �̃�(𝑓 ) is the re-scaled PSD. 𝑃𝑁 is proportional 
to 𝐷2 because 𝜂 takes the form of white noise, which has a constant 
PSD. The re-scaled PSDs for three 𝐷2 values (0.03, 0.05, and 0.08) are 
demonstrated in the inset of Fig. 4A. Similar to the PSD in Fig. 3B, the 
re-scaled PSDs have peaks at both low- and high-frequency ranges. In 
particular, the re-scaled PSD corresponding to 𝐷2 = 0.05 (red curve in 
Fig. 4A inset) is higher than the other two PSD curves; consequently, 
SNR-𝛽 is expected to be larger at 𝐷2 = 0.05.

The SNR-𝛽 as a function of 𝐷2 is illustrated in Fig. 4A for 𝑔𝐶𝑎 = 0.64
and it also shows a characteristic pattern of CR, with a maximum at 
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Fig. 3. (A) The inter-spike interval histogram (ISIH) when 𝑔𝐶𝑎 = 0.64 and 𝐷2 = 0.05. In order to clearly show both intraburst spikes and burst events, different 
horizontal- and vertical- scales are used on the left and right parts of (A). (B) PSD v.s. frequency when 𝑔𝐶𝑎 = 0.64 and 𝐷2 = 0.05. Note, a logarithmic scale on the 
horizontal axis is used to show both intraburst spike and burst events clearly. Panel (B) is the representation of panel (A) in the frequency domain.

Fig. 4. (A) SNR-𝛽 calculated by the power spectra of spike trains v.s. 𝐷2 with 𝑔𝐶𝑎 = 0.64. The SNR curve reaches a peak (red solid circle) at 𝐷2 = 0.05. Inset of (A): 
The re-scaled PSDs of spike trains in the frequency domain. The re-scaled PSD is defined in Equ. (7). (B)-(D) show three example spike raster plots for the three 𝐷2
values as labeled in (A), and other parameter values are as same as in Fig. 2.
5
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Fig. 5. (A) Average burst rate produced by each neuron in a network v.s. 𝐷2 for 𝑔𝐶𝑎 = 0.64. Inset of (A): an example binary burst train, where the burst onset is 
defined by the firing time of the first spike of a burst event in the corresponding voltage trace. (B) SNR-𝛽 curve calculated by the power spectra of the burst trains 
for 𝑔𝐶𝑎 = 0.64, and other parameter values are the same as in Fig. 2. The largest SNR is marked by a solid dot and corresponds to 𝐷2 = 0.05.
𝐷2 = 0.05. Comparing these two coherence measures (SNR-𝛼 in Fig. 2D 
and SNR-𝛽 in Fig. 4A), two major differences are observed: (a) the noise 
intensity range is [0.03, 1] for SNR-𝛼, but CR measured by SNR-𝛽 occurs 
over the weak intensity range of [0.001, 0.3]; and (b) the optimal inten-

sity is 0.225 in Fig. 2D but it is 0.05 in Fig. 4A. The differences above 
are due to the contrasting focuses of the two SNR functions, SNR-𝛼 in 
Equ. (5) and SNR-𝛽 in Equ. (6). Although they both evaluate CR, SNR-𝛼

characterizes the similarity of the frequency content of neuronal oscil-

lations (i.e. bursts across the network here), while SNR-𝛽 focus on the 
reliability of the neuronal responses (i.e. all spikes across network here) 
to the input (stochastic stimulus) over time.

The example raster plots presented in Fig. 4B-4D demonstrate the 
spatio-temporal patterns of firing for this neural network with respect 
to the increment of 𝐷2 from 0.03 to 0.08. When subjected to a very 
weak level of stimulus (e.g. 𝐷2 = 0.03 in Fig. 4B) bursting is induced at 
a very low rate (around 0.6 bursts/second) with very low synchroniza-

tion. When the stimulus is increased slightly (e.g. 𝐷2 = 0.05 in Fig. 4C), 
both population bursts and individual spikes become more frequent. 
The network becomes synchronized, spiking events are tightly grouped 
in bursts, and the SNR-𝛽 reaches its peak as predicted by the anal-

ysis of re-scaled PSDs. This also correlates with the sharp peaks in 
the histogram of the ISIs (Fig. 3A). When the network is subjected to 
higher—but still relatively weak—levels of stimulus (e.g. 𝐷2 = 0.08 in 
Fig. 4D) the stochastic stimulus becomes overpowering, and some net-

work bursts start to lose synchrony. The observations above are in line 
with the observations for SNR-𝛼 in Fig. 2, despite the difference in 𝐷2
values.

3.4. The network coherence in terms of individual bursts

The PSTH estimates the timing of population bursts across a net-

work. In order to accurately record the onset (i.e. the occurrence times) 
of the bursts produced by individual neurons, we mark a burst event by 
its initial spike time. Thus, a burst train can be formed for each neuron. 
A burst train is a binary sequence, which takes the value 1 at the initial 
spike of all bursting events and 0 otherwise, as demonstrated in the in-

set of Fig. 5A. The occurrence of bursts is identified using the dynamic 
burst threshold method in [40].

As shown in Fig. 5A, the average burst rate produced by each neu-

ron in a network increases with respect to 𝐷2, which is in line with the 
voltage time series of a single neuron (Fig. 1B). To quantify the coher-

ence of the burst trains, we use the input-output SNR measure similar 
to Equ. (6), that is,

𝛽 = 1
𝑁

𝑁∑
𝑖=1

𝑃𝐵𝑇 , 𝑖

𝑃𝑁

, (8)

where 𝑃𝐵𝑇 , 𝑖 denotes the power of the burst train generated by the 
𝑖th neuron. Fig. 5B illustrates the change of SNR on different 𝐷2 for 
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𝑔𝐶𝑎 = 0.64 (i.e. the same parameter values as Fig. 4A). The SNR-𝛽 curve 
in Fig. 5B shows the characteristics of CR: it rapidly increases for very 
weak levels of the global stochastic stimulus (𝐷2 < 0.05 in Fig. 5B), 
reaches a peak value at 𝐷2 = 0.05 in Fig. 5B, and then decreases for 
larger stimulus intensities (𝐷2 > 0.05 in Fig. 5B). The SNR-𝛽 curves 
calculated from burst trains and spikes trains share the same optimal 
noise intensity, but it is different from the optimal intensity presented 
in SNR-𝛼 calculated from PSTH (Fig. 2D) because a higher 𝐷2 leads to 
a lower re-scaled PSD curve (Fig. 4A inset) and consequently SNR-𝛽 is 
continuously decreasing for 𝐷2 > 0.05.

3.5. The effect of calcium conductance on CR

As demonstrated in subsection 3.1, neural dynamics change with the 
calcium conductance, 𝑔𝐶𝑎. In the preceding subsections we have consid-

ered 𝑔𝐶𝑎 = 0.64. To study the effects of 𝑔𝐶𝑎 on the network coherence, 
we take various 𝑔𝐶𝑎 values in the excitable regime (i.e. 𝑔𝐶𝑎 < 0.648) 
and use SNR-𝛽 measure calculated from both spike trains (Equ. (6)) 
and burst trains (Equ. (8)). A series of SNR-𝛽 optimization curves, cor-

responding to four parameter values of 𝑔𝐶𝑎 (0.638, 0.64, 0.642, and 
0.645), are plotted for both the spike trains (Fig. 6A) and burst trains 
(Fig. 6B). All of the SNR curves display the characteristic pattern of CR, 
that is, they increase, reach a peak value, and then decrease towards 
zero. The SNR curve corresponding to a larger 𝑔𝐶𝑎 is above the SNR 
curve corresponding to a smaller 𝑔𝐶𝑎 for 𝐷2 ∈ [0.005, 0.15], indicat-

ing that the coherence degree is enhanced by increasing the 𝑔𝐶𝑎 value 
over the weak noise intensity range. Moreover, the maximum degree 
of coherence (i.e. the height of the SNR peaks) and the corresponding 
optimal intensities (𝐷2) vary across different 𝑔𝐶𝑎 values.

To capture 𝑔𝐶𝑎-dependent change in the height of SNRs, we com-

puted the maximum SNR values for seven 𝑔𝐶𝑎 values in the excitable 
regime, ranging from 0.63 to 0.645, and plotted them in Fig. 7A for 
spike trains and Fig. 7B for burst trains. Four 𝑔𝐶𝑎 values in Fig. 6A are 
part of these seven values. As would be expected, when 𝑔𝐶𝑎 is increased 
(i.e., closer to the excitation threshold), the peak value of SNR increases 
nearly exponentially. This implies that a higher network coherence is 
expected at the optimal intensity as the excitable system approaches 
the excitation threshold.

We also computed the optimal intensities of the global stochastic 
stimulus, 𝐷2, for these seven 𝑔𝐶𝑎 values. We found that the SNRs cal-

culated from the power spectra of spike trains and burst trains share 
the same optimal intensity for one 𝑔𝐶𝑎; they are plotted as a function 
of 𝑔𝐶𝑎 in Fig. 7C. With increased 𝑔𝐶𝑎, the optimal intensity of the SNR 
decreases. This suggests that when the excitable system is closer to the 
excitation threshold, a smaller noise intensity is enough to drive the 
network to its best possible coherence.

As CR degree is sensitive to a slight change of 𝑔𝐶𝑎, in order to further 
study the effects of 𝑔𝐶𝑎 on network coherence, we add a third hetero-

geneous component to this network. We let 𝑔𝐶𝑎 be a uniform random 
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Fig. 6. (A) SNR-𝛽 calculated by the power spectra of the spike trains v.s. the intensity of stochastic stimulus, 𝐷2 . (B) SNR-𝛽 calculated from the burst trains v.s. 𝐷2 . 
For both panels, 𝑔𝐶𝑎 = 0.638, 0.64, 0.642 and 0.645, and they are in the excitable regime. In order to clearly show all SNR curves the y-axis has different scales on 
the top and bottom in both panels.

Fig. 7. (A) The maximum degree of SNR-𝛽 calculated by the power spectra of the spike trains v.s. 𝑔𝐶𝑎. (B) The maximum degree of SNR-𝛽 from the burst trains v.s. 
𝑔𝐶𝑎 . (C) The optimal intensities of global stochastic stimulus (𝐷2) v.s. 𝑔𝐶𝑎 . For all three panels, 𝑔𝐶𝑎 = 0.63, 0.632, 0.635, 0.638, 0.64, 0.642, and 0.645; all of which 
are in the excitable regime.
variable ranging from 0.63 to 0.645 (i.e. 𝑔𝐶𝑎 ∼ 𝑈 (0.63, 0.645)), so that 
each neuron in our network may have a different 𝑔𝐶𝑎 value. SNR-𝛽 mea-

sure is used to evaluate the network coherence, and we calculate the 
SNR-𝛽 using the power spectra of both spike and burst trains (see Eqs.

(6) and (8)). In Fig. 8, one sees that the SNR—for both spike and burst 
trains—sharply increases from 𝐷2 = 0.005 to 𝐷2 = 0.03, reaching a peak 
at approximately 𝐷2 = 0.03 and then for larger 𝐷2 tends towards 0. In 
other words, the network displays a resonant behavior and the optimal 
stimulus intensity (e.g. 𝐷2 = 0.03 here) would induce the best coherence 
(with maximal SNR ≈ 0.028 for spike trains and 0.008 for burst trains). 
Compared to the results in Figs. 6–7, this 𝑔𝐶𝑎-varied network has similar 
peak SNR values and optimal intensities to the 𝑔𝐶𝑎-fixed network with 
𝑔𝐶𝑎 = 0.0642 where SNR ≈ 0.0253 for spike trains and 0.0077 for burst 
trains, and 𝐷2 = 0.04, although the mean 𝑔𝐶𝑎 value here is 0.6375. This 
is because the CR degree increases nearly exponentially with increased 
𝑔𝐶𝑎 as shown in Fig. 7A-7B.

4. Discussion

Many numerical studies on the stochastic dynamics of neural net-

works employ homogeneous networks [20, 22, 41], globally connected 
networks [17, 18, 19, 21, 22]. We consider a heterogeneous network 
mediated by calcium channels; also, it has random and sparse synap-
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tic connections and produces bursts when stimulated by external input. 
This study provides different views to evaluate the coherence of such 
a network. In terms of the regularity of the network output, the coher-

ence information extracted from the population bursts indicates that the 
resonant coherence occurs at the intermediate noise intensity, which 
agrees with previous studies of globally connected bursting networks 
(e.g., [19, 20]). This coherence information is helpful for understanding 
the influences of global noise on collective dynamics (e.g., population 
bursts) and the potential physiological functions of a neural network. 
If network performance is evaluated based on the efficiency of the 
network response to the stochastic input, a weak stochastic input can 
stimulate both the coherence of all spikes across the network and the 
correlation of neuronal bursts to reach the optimal level. This implies 
that the improvement of neuronal communication within a network can 
be achieved using weak noise.

The impact of the noise intensity, coupling strength, or the network 
topology on CR is often discussed (e.g. [28, 42]). Our study broadens 
the understanding of network coherence from a new viewpoint, i.e., 
how the interplay between calcium conductance and noise intensity af-

fects CR. Calcium current has been found to regulate the excitation and 
resonance of individual neurons [43]. Our work demonstrates that the 
calcium current can also enhance network response to the stochastic 
stimuli: when the calcium conductance is closer to its excitation thresh-
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Fig. 8. SNR-𝛽 calculated by the power spectra of spike trains (solid line) and 
burst trains (dashed line) of a 𝑔𝐶𝑎-varied network of 100 neurons. A set of 100 
uniformly distributed random numbers ranging from 0.63 to 0.645 was used to 
model different 𝑔𝐶𝑎 values in this network. The largest SNR value for both the 
spike- and burst- trains occurs at 𝐷2 = 0.03.

old, a smaller intensity of the stochastic stimulus is needed to induce 
the best coherence where a higher CR degree is achieved. This gives 
us hope for the experimental discovery of this noise-induced resonance 
effect in analyses of calcium-related brain response near the excitation 
threshold.

A rather small network connectivity probability is used here based 
on the experimental study [10]. A strong coupling usually promotes 
synchrony. This implies that if connection probability increases, the op-

timal 𝐷2 curve in Fig. 7C would shift downward and the optimal 𝐷2
in Fig. 8 would be smaller than 0.03; the maximum degree of SNR-𝛽

in Fig. 7AB could increase. We assume that connection probability is 
constant for the sake of simplicity. However, the probability of connec-

tion can be a function of neuron location because synaptic connectivity 
between neurons is anti-correlated with their lateral distance [9, 10]. 
Therefore, the general effects of the connection probability function are 
an interesting topic requiring further investigation.
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