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Abstract

The microtubule-associated protein tau is implicated in multiple degenerative diseases including 

retinal diseases such as glaucoma; however, the way tau initiates retinopathy is unclear. Previous 

retinal assessments in mouse models of tauopathy suggest that mutations in four-repeat (4R) 

tau are associated with disease-induced retinal dysfunction, while shifting tau isoform ratio to 

favor three-repeat (3R) tau production enhanced photoreceptor function. To further understand 

how alterations in tau expression impact the retina, we analyzed the retinas of transgenic mice 

overexpressing mutant 3R tau (m3R tau-Tg), a model known to exhibit Pick’s Disease pathology 

in the brain. Analysis of retinal cross-sections from young (3 month) and adult (9 month) mice 

detected asymmetric 3R tau immunoreactivity in m3R tau-Tg retina, concentrated in the retinal 

ganglion and amacrine cells of the dorsal retinal periphery. Accumulation of hyperphosphorylated 

tau was detected specifically in the detergent insoluble fraction of the adult m3R tau-Tg retina. 

RNA-seq analysis highlighted biological pathways associated with tauopathy that were uniquely 
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altered in m3R tau-Tg retina. The upregulation of transcript encoding apoptotic protease caspase-2 

coincided with increased immunostaining in predominantly 3R tau positive retinal regions. In 

adult m3R tau-Tg, the dorsal peripheral retina of the adult m3R tau-Tg exhibited decreased cell 

density in the ganglion cell layer (GCL) and reduced thickness of the inner plexiform layer (IPL) 

compared to the ventral peripheral retina. Together, these data indicate that mutant 3R tau may 

mediate toxicity in retinal ganglion cells (RGC) by promoting caspase-2 expression which results 

in RGC degeneration. The m3R tau-Tg line has the potential to be used to assess tau-mediated 

RGC degeneration and test novel therapeutics for degenerative diseases such as glaucoma.
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1. Introduction

The microtubule-associated protein tau is a scaffolding protein implicated in the 

pathophysiology of neurodegenerative diseases related to dementia (Josephs, 2017). 

Alternative splicing of the MAPT gene produces distinct tau isoforms, differing in 

the number of microtubule-binding repeats and amino-terminal inserts (Goedert et al., 

1989). Modifications to tau, including single nucleotide polymorphisms within MAPT 

and hyperphosphorylation, mediate neurofibrillary tangle formation and ultimately lead 

to neurodegeneration (Arendt et al., 2016; Wang and Mandelkow, 2016). Tauopathies are 

neurodegenerative disorders characterized by abnormal cerebral tau aggregates and broadly 

categorized by tau isoform (Josephs, 2017; Kovacs, 2015). Neurofibrillary tangles comprised 

of four-repeat (4R) tau are found in patients diagnosed with progressive supranuclear 

palsy, while three-repeat (3R) intracellular inclusions are a characteristic of Pick’s Disease 

(Goedert et al., 2018). Mutations in MAPT, such as the familial Pick’s Disease mutation 

L266V, are associated with a shift in tau isoform ratio (Hogg et al., 2003).

Hyperphosphorylated tau in the retina is observed in other neurodegenerative diseases such 

as glaucoma and Alzheimer’s Disease (AD) (den Haan et al., 2018; Gupta et al., 2008). 

The retina is a multilayered neural tissue optimized to convert light into neuronal signals 

(Masland, 2012) through stimulation of the photoreceptors. The inner plexiform layer (IPL) 

refines additional visual features through a synaptic network between retinal subpopulations, 

including spatial-temporal information computed by amacrine cells (Diamond, 2017). The 

final retinal visual output is transmitted to the brain via the retinal ganglion cells (RGCs). 

Visual impairment often manifests due to retinal perturbations such as retinal cell death 

(Hoon et al., 2014). Retinal cell loss is mediated by the cysteine aspartate protease family 

known as caspases in cases of ocular injury (Thomas et al., 2017). Tau is cleaved by 

executioner caspases in early state AD, preceding tau hyperphosphorylation (Rissman et al., 

2004), however the mechanisms of retinal tau pathology are unclear. Retinal thinning and 

photoreceptor dysfunction were observed in transgenic mouse models expressing mutant 

hyperphosphorylated tau (Gasparini et al., 2011; Harrison et al., 2019; Ho et al., 2015; 

Mazzaro et al., 2016). However, photoreceptor performance was enhanced in a mouse model 
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expressing human tau (Rodriguez et al., 2018), suggesting that the mutations on tau, rather 

than isoform imbalance, may mediate retinal dysfunction.

Genomic studies have provided insight into the molecular underpinnings of retinopathy such 

as the localization of genetic variants associated with Age-related macular degeneration to 

20 specific chromosomal loci (Fritsche et al., 2014). With the advent of next-generation 

sequencing, additional information has been gleaned from disease models, as the depth of 

coverage along with the large amount of data produced by transcriptomic profiling provide 

a comprehensive global snapshot of a tissue. Studies of the retina through whole-exome and 

single-cell RNA-sequencing highlighted alterations in retinal transcript expression with age 

and disease (Menon et al., 2019; Voigt et al., 2019). Next-generation sequencing technology 

may provide insight into understanding the implications of mutant tau in the retina.

To fully understand the extent of tau pathology on the retina, we characterized the retinas 

of mice overexpressing mutant 3R tau (m3R tau-Tg) shown to confer Pick’s Disease 

pathology (Arner et al., 2018; Rockenstein et al., 2015). Since the promoter driving mutant 

3R tau expression in this strain is the RGC marker Thy-1, (Schmid et al., 1995) we 

hypothesized that mutant 3R tau would exhibit visual impairment due to tau-mediated 

RGC neurodegeneration. To test this hypothesis, we applied a comprehensive analysis 

including behavioral, immunohistochemical and molecular techniques to characterize the 

m3R tau-Tg retina. Retinal mutant 3R tau was restricted to the dorsal periphery, where 

it was associated with structural alterations. Overexpression of 3R tau in the retina over 

time led to the differential expression of genes implicated in neurodegeneration, including 

caspase-2. Increased expression of caspase-2 in m3R tau-Tg retinas coincided with reduction 

of RGCs. In summary, we have demonstrated that mutant 3R tau may alter retinal structure 

through RGC degeneration via apoptotic pathways. These structural changes may alter 

performance in behaviors that rely on vision.

2. Materials and methods

2.1. Animals

All rodent experiments complied with NIH guidelines for good animal care and use, and 

all procedures were reviewed and approved by the University of California San Diego 

Institutional Animal Care and Use Committee. Male and female transgenic mice from Line 

13, a line expressing high levels of human 3R tau with the L266V and G272V mutations 

associated with familial Pick’s Disease and driven by the neuronal mThy-1 promoter, 

(m3R tau-Tg) along with non-transgenic littermates (Non-Tg) were used in all experiments 

(Rockenstein et al., 2015). The m3R tau-Tg line has been previously characterized, 

exhibiting behavioral and pathological characteristics of Pick’s Disease (Arner et al., 2018; 

Rockenstein et al., 2015). Mice were maintained on a standard 12 h on/off light cycle; water 

and food were provided ad libitum.

2.2. Western blot

Mouse retinas and brains from 9 month old m3Rtau-Tg and Non-tg mice were homogenized 

to yield a detergent soluble as well as insoluble cellular fraction. For the retinal samples, 
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6 mouse retinas were pooled and then lysed using 2 μl/mg detergent free RAB buffer 

containing 100 mM 2-(N-morpholino) ethanesulphonic acid (MES; pH 7.0), 1 mM EGTA, 

0.5 mM MgSO4, 750 mM NaCl, 20 mM NaF, 1 mM Na3VO4, 1 mM PMSF, and EDTA-free 

protease and phosphatase inhibitor cocktail (Thermo Scientific). Brain sections containing 

hippocampus and cortex were similarly prepared. Chilled samples were homogenized 

then centrifuged at 40,000 ×g for 30 min at 4 °C. The supernatant from each sample 

was collected, and the remaining pellet was resuspended in RAB buffer on ice. After 

centrifugation at 40,000 ×g for 30 min at 4 °C, the supernatants containing RAB-soluble 

proteins were collected and pooled with the supernatants collected during the previous spin. 

To collect detergent-soluble proteins, pellets from each sample were resuspended in 2 μl/mg 

RIPA buffer containing 50 mM Tris (pH 7.4), 1 mM EDTA, 1 mM EGTA, 150 mM NaCl, 10 

mM NaF, 1 mM Na3VO4, 1 μM okadaic acid, 1% NP40, 1% Triton X-100, 0.25% sodium 

deoxycholate, 0.1% SDS, 1 mM PMSF and protease inhibitor. Samples were centrifuged 

at 40,000 ×g for 30 min at 4 °C, and the supernatant was collected. Protein concentrations 

were determined using a BCA Protein Assay Kit. Proteins were then boiled in sample buffer 

containing SDS, 2-mercaptoethanol, and glycerol at 95 °C for 5 min.

Western blot analysis was performed on RAB and RIPA fractions to assess tau 

expression in the retina. 15 μg of protein from retina and 2 μg from brain were 

loaded and electrophoretically separated on a 10–20% Tris-HCL criterion gel (Bio-Rad, 

Hercules, CA). Proteins were transferred to a 0.45 μm PVDF membrane, blocked in 

5% BSA-TBS-Tween for 30 min at room temperature, and then incubated in primary 

antibodies diluted in 5% TBS-Tween overnight at 4 °C. Primary antibodies were detected 

using horseradish peroxidase-linked (HRP) secondary antibodies and developed with 

an enhanced chemiluminescence Western blot detection kit (Supersignal West Pico, 

Pierce Biotechnology). Gel images were obtained using a BioRad ChemiDoc XRS, 

and quantitative band intensity readings were made using the accompanying BioRad 

Image software. To characterize retinal tau expression, we utilized two well-characterized 

antibodies: RD3 (1:1000) to detect 3R tau and PHF-1 (1:1000) to detect phosphorylated 

tau. Semi-quantitative measurement of immunoblots were conducted through densitometry. 

Complete blots can be found in the Supplementary Data section.

2.3. Behavioral studies

A large cohort of m3R tau-Tg and Non-Tg mice underwent behavioral analysis. A total 

of 12 Non-Tg (male: 6, female: 6) and 15 m3R tau-Tg (male: 7, female: 8) aged at 3 

months were tested for motor, visual and cognitive deficits. A total of 15 Non-Tg (male: 3, 

female: 12) and 26 m3R tau-Tg (male: 12, female:14). To determine visual spatial ability 

and memory retention over time, mice underwent assessment in the Morris Water Maze 

as previously described (Arner et al., 2018; Rockenstein et al., 2015). Briefly, mice were 

placed in a 180 cm diameter pool filled with opaque water at 24 °C and tasked to swim to 

a platform. Entry into the pool for each mouse was randomly selected between two entry 

points equidistant from the platform. Throughout the test, the platform was placed in the 

same quadrant. The test consisted of two phases: the Cued Platform and the Hidden Platform 

phase. Days 1 to 3 are the Cued Platform Phase, where the platform remained visible to 

train the mouse to swim to the platform. For the Hidden Platform Phase, the platform 
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was submerged on day 4 and mice underwent three consecutive trials separated 2–3 min 

apart each day for 4 days. Mice that did not locate the hidden platform within 90 s were 

brought to the platform and placed on top for 30 s. Two additional tests were performed on 

the final trial day to assess memory retention (Probe test) and visual acuity (Visual Probe 

test). In the Probe test, mice were placed into the pool without a platform for 40 s and 

the number of times the mouse entered the quadrant where the platform was located was 

tabulated. The Visual Probe test measured the amount of time a mouse spent swimming to 

a visible platform. Time spent swimming to the platform, distance travelled, and number of 

entries into the correct quadrant were recorded using the AnyMaze video tracking software 

(Stoelting Co, Wood Dale, IL, USA) set to analyze two samples per second.

Overall locomotor activity was measured in a high-density cage placed into a Kinder Smart 

Frame cage rack system (Kinder Scientific, Poway, CA). The system emits photobeams 

across the cage floor in a 7 × 15 beam configuration, allowing for the continuous monitoring 

of the animal’s location in X, Y, Z coordinate space. Data acquisition begins once an 

individual animal is placed into the test chamber, and the test session duration lasted 10 min 

per mouse.

2.4. Immunohistological staining of mouse eye cross-sections

Postmortem mouse eyes were enucleated and stored in Z-Fixative (Excalibur Pathology, 

Norman, OK) at room temperature, then embedded in paraffin. Eye globes were sectioned 

at 10 μm and mounted on charged microslides. Retinal sections used for morphometry 

were processed using a Leica Bond Rx stainer (Leica Biosystems), in the presence of 

3R tau antibody, 1 μg/ml, (1 h at room temperature) then an anti-mouse polymer (Leica 

Biosystems), with DAB (DAKO) visualization and hematoxylin counterstaining. The slides 

were imaged in a Nanozoomer digital slide scanner (Hamamatu, Japan). Representative 

images were post-processed in Adobe Photoshop CC 2020.

2.5. Fluorescent staining of mouse retinal tissue

Both mouse wholemount retinal tissue and eye cross-sections were assessed in our 

colocalization studies. Paraffinized mouse eye cross-sections mounted on charged 

microslides were deparaffinized with Citrisolv (Decon Labs, King of Prussia, PA) and 

treated with 10 mM sodium citrate. Retinal cross-sections were incubated with 0.1% 

Triton-X and 1% H2O2 for 20 min and blocked with 2% normal goat serum for 1 h. The 

cross-sections were then incubated with primary antibody overnight at 4 °C.

For retinal wholemount assessment, postmortem mouse eyes were enucleated and stored in 

RNAlater prior to dissection. The anterior segment was excised, and the resulting posterior 

cup was placed in 4% paraformaldehyde for 20 min at room temperature. The retina was 

separated from the retinal pigmented epithelium (RPE) and washed three times with 1× PBS 

for 5 min. Wholemount retinal tissues were incubated with PBS solution with 0.2% Triton-X 

(PBST) for 20 min and blocked with 2% normal goat serum in PBST for 1 h. After blocking, 

tissues were incubated in primary antibodies diluted in PBST overnight in 4C.

The following primary antibodies were used in this study: 3R tau (MiliporeSigma, RD3, 

clone 8E6/C11, 1:300), ChAT (MiliporeSigma, 1:500), TUJ1 (MiliporeSigma, 1:200), 
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RBPMS (PhosphoSolutions, 1:500) and caspase-2 (Abcam, 1:200). Fluorescent-conjugated 

secondary antibodies Alexa Fluor 568 and Alexa Fluor 488 were used at 1:1000. All retinal 

tissues were visualized on a Leica DMI 4000B microscope (Leica, Germany) equipped with 

a TCS SPE camera and Leica 10, 20 and 40× objectives.

2.6. Retinal quantification

Retinal cross sections were taken at 3.25× magnification and analyzed using ImageJ 

software. Measurements taken 500 μm from the optic nerve were designated center retinal 

measurements while measurements taken 500 μm from the edge were labeled as peripheral 

retinal measurements. A total of 27 cross sections from 3 month mice (m3R tau-Tg n = 17, 

Non-Tg n = 10), and 21 cross sections from 9 month mice (m3R tau-Tg n = 12, Non-Tg n 
= 9) were measured for retinal thickness. Mean intensity of 3R tau immunostaining in the 

IPL was measured in the ventral and dorsal retina, along 500 μm beginning at the peripheral 

tip, using ImageJ. A total of 12 retinal cross sections from 3 month mice (m3R tau-Tg n 
= 6, Non-Tg n = 6) and 11 retinal cross sections from 9 month mice (m3R tau-Tg n = 4, 

Non-Tg n = 7) were assessed for 3R tau immunostaining intensity. Counts of total RGCs in 

the retinal ganglion cell layer along the same 500 μm were also determined. A total of 18 

cross sections from 3 month mice (m3R tau-Tg n = 9, Non-Tg n = 9) and 13 cross sections 

from 9 month mice (m3R tau-Tg n = 9, Non-Tg n = 9) were quantified for total RGCs.

2.7. Retinal wholemount assessment

The right eyes of both Non-Tg and m3Rtau-Tg mice were marked to designate the nasal 

region before enucleation. The retina was dissected and notched to signify nasal and 

temporal regions. Retinal flatmounts were imaged at 20× and analyzed through ImageJ. 

Peripheral retinal measurements were taken 500 μm from the edge of the retina. Dorsal 

regions of the retina contained the regions of the retina that were in the superior area, while 

ventral regions contained segments of the inferior area. Cell counts were taken from three 

150 μm3 measurements from each region. Percent change was calculated to account for 

sample variation. A total of 8 flatmounts from 9 month mice were analyzed (m3R tau-Tg n = 

4, Non-Tg n = 4).

2.8. Transmission electron microscopy

Mouse retinas stored in RNAlater stabilization solution (Invitrogen, AM7020) were 

homogenized in 1× RIPA buffer (Cell Signaling) containing protease inhibitor cocktail and 

PMSF. Formvar-carbon coated copper grid were fixed with 2% PFA and 1% glutaraldehyde 

for 5 min then incubated in 10 μl of retinal homogenate for 20 min at room temperature. 

Grids were washed once with 0.01 M PBS and 50 mM glycine for 3 min, then blocked 

in 1% cold-water fish skin gelatin in PBS for 1 h. The grids were incubated in anti-3RTau 

antibody cocktail in 1% cold-water fish skin gelatin (1:50, Millipore) for 2 h at room 

temperature. After washing six times with PBS for 3 min, the grids were transferred to drops 

of 1% cold-water fish skin gelatin containing anti-mouse gold-conjugated antibodies (1:100, 

Sigma-Aldrich) and incubated for 1 h. Grids were washed six times with PBS for 3 min, 

counterstained with 3% (w/v) uranyl acetate for 5 min, then washed with double distilled 

water and blotted dry. Protein content was visualized using a JEOL 1200 EX II transmission 

electron microscope.
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2.9. Gene expression analysis

Total RNA was isolated from mouse retinas and stored in RNALater stabilization solution 

using the RNeasy Plus Mini Kit (Qiagen, #74134). RNA integrity was measured using 

the Agilent 4200 TapeStation. A RIN number of 7 or above was considered sufficient to 

proceed with mRNA library preparations. The number of retinas per age per genotype 

is as follows: 3 month m3R tau-Tg (n = 5), 3 month Non-Tg (n = 4), 9 month m3R 

tau-Tg (n = 5), 9 month Non-Tg (n = 5). The mRNA libraries were generated by the 

UC San Diego Institute for Genomic Medicine. RNA-seq data (101 bp paired end reads 

with coverage of 25 million) was obtained from RNA extracted from the mouse retina. 

Sequencing was performed using an Illumina HiSeq2500 rapid. The quality of the raw 

FASTQ files were assessed using FASTQC. Adapters and low-quality reads were trimmed 

using a kmer approach as implemented in BBDuk v38.62. Transcripts were quantified 

using quasi-mapping mode of Salmon v0.11.3 (Patro et al., 2017) and summarized to gene 

counts for downstream analysis using the tximport v1.10.0 package (Soneson et al., 2015). 

Genes were retained in the analysis if they achieved counts per million (cpm) > 1 for any 

retinal sample. Effective library sizes were estimated by TMM scale-normalization prior 

to analysis to estimate observational weights (Law et al., 2014; Robinson and Oshlack, 

2010). For the log-transformed expression data with precision weights, linear regression 

models were fit to account for the effects of the interaction between age (3 vs 9 month) 

and genotype (Non-Tg vs m3R tau-Tg). Test for statistical significance was achieved by 

implementation of a Bayesian strategy of Lönnstedt and Speed as implemented in R package 

limma v3.38.3 (Ritchie et al., 2015). Genes are sorted by their posterior error probability 

(PEP) and considered significant at PEP < 0.05.

To identify the underlying biological functions enriched in m3R tau-Tg and Non-Tg retina, 

Gene Set Enrichment Analysis (GSEA) was implemented which identifies the enrichment of 

functionally defined gene sets using a modified Kolmogorov-Smirnov statistic (Subramanian 

et al., 2005) and the Molecular Signature Database (MSigDb v6.0). Statistical significance 

after adjusting for multiple testing is defined at FDR < 0.05. Gene set-based permutation 

test of 1000 permutations was applied. Detailed description of the GSEA algorithm, testing 

metrics and the implementation have been described previously (Subramanian et al., 2005). 

Hypergeometric test was utilized to test the statistical significance of the enriched biological 

process and pathways identified for the unique differential expressed genes for each group 

(Yu et al., 2012). Overrepresentation enrichment analysis was conducted using the full 

set of detected genes as the reference gene set, corrected for multiple testing using the 

Benjamini-Hochberg procedure and a FDR < 0.05 was considered significant. Estimation of 

the relative abundance of the cell types was achieved using marker gene sets as defined for 

each of the different cell classes and first principal component of the marker gene expression 

(Mancarci et al., 2017; Siegert et al., 2012).

2.10. Statistical analysis

All statistical analysis is presented as mean value ± standard error of the mean (SEM). 

Behavioral data and retinal measurements were tested for normality before statistical 

analysis. Analysis of variance (ANOVA) followed with Bonferroni multiple-comparisons 

post hoc analysis was used for all behavioral and retinal measurements. An unpaired 
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Student’s t-test analysis was used to analyze differences between transgenic and non­

transgenic IPL retinal thickness as well as Western blot quantification. All statistical analysis 

was performed using GraphPad Prism (Version 7.0d, GraphPad Software, La Jolla, CA).

2.11. Availability of data and materials

The sequences mentioned in this article will be available in the NCBI Sequence Read 

Archive repository [https://www.ncbi.nlm.nih.gov/sra] under BioSample accession numbers 

SAMN15642524, SAMN15642525, SAMN15642526, SAMN15642527, SAMN15642528, 

SAMN15642529, SAMN15642530, SAMN15642531, SAMN15642532, SAMN15642533, 

SAMN15642534, SAMN15642535, SAMN15642536, SAMN15642537, SAMN15642538, 

SAMN15642539, SAMN15642540, SAMN15642541 and SAMN15642542.

3. Results

3.1. Expression of 3R tau in retina is localized to the peripheral dorsal region

Paraffinized ocular cross-sections from 3 and 9 month old mice from m3R tau-Tg and 

Non-Tg were assayed through immunohistochemistry to detect 3R tau expression in the 

retina. While we found no 3R tau immunoreactivity in 3 month Non-Tg samples (Fig. 

1a), there was abundant 3R tau immunoreactivity in 3 month m3R tau-Tg cross-sections. 

Interestingly, the staining was strongest in the peripheral dorsal region, and gradually 

decreased in intensity to completely disappear in the peripheral ventral region (Fig. 1c). 

Dorsal expression of 3R tau occurred specifically in the intracellular space (Fig. 1b inset) of 

cell bodies within the GCL as well as in the IPL as diffuse staining (Fig. 1b). The staining in 

axons of RGCs occurs throughout the nerve fiber layer and inside the optic nerve (Fig. 1a).

No 3R tau immunoreactivity was observed in 9 month Non-Tg retina cross sections 

(Fig. 1d). Peripheral dorsal 3R tau staining pattern and intensity in 9 month m3R tau-Tg 

cross sections was similar to 3 month samples (Fig. 1f). Again, strong immunoreactivity 

was observed in RGCs and the IPL, and staining in the optic nerve was abundant (Fig. 

1e). Beyond optic structures, intense 3R tau staining was observed in peripheral nerve 

fibers innervating oculomotor muscles in 9 month m3R tau-Tg cross-section (Fig. 1d). 

Immunoreactivity for TUJ1, a marker for RGCs, colocalized to 3R tau positive cells in 9 

month m3R tau-Tg retinas (Fig. 1g). 3R tau immunostaining also colocalized with ChAT, a 

marker for starburst amacrine cells, in both the GCL and the inner nuclear layer (INL) (Fig. 

1h).

Protein extracts from 9 month 3R tau-Tg and Non-Tg retinas were immunolabeled with 

3R tau antibody and assessed by electron microscopy. Non-Tg samples were negative for 

immunogold staining (Fig. 1i, top). The immunopositive structures in 3R tau-Tg lysates 

formed aggregates, which indicates their potential pathogenic nature (Fig. 1i, bottom).

3.2. Increased expression of hyperphosphorylated retinal tau in m3R tau-Tg retina

To determine the pathological state of retinal tau, retinal and brain tissue from 9 month 

Non-Tg and m3R tau-Tg mice were assessed through immunoblot. As previously reported, 

abundant 3R tau was detected in the brain of m3R tau-Tg mice but not Non-Tg (RAB: Fig. 
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2a, p < 0.01; RIPA: Fig. 2e, p = 0.1841) (Rockenstein et al., 2015). Similarly, significant 

levels of 3R tau immunoreactivity were detected in both RAB (Fig. 2b, p < 0.05) and RIPA 

fractions (Fig. 2f, p < 0.0005) of the m3R tau-Tg retina. PHF-1 (Phospho-Ser 396/404) was 

detected in both soluble (Fig. 2c, p = 0.0718) and insoluble fractions of the 3R tau brain 

(Fig. 2g, p = 0.2512). Negligible levels of PHF-1 were detected in the soluble fraction of 

both m3R tau-Tg and Non-Tg retinas (Fig. 2d, p = 0.1504) while significant levels of PHF-1 

were detected predominantly in the detergent insoluble fraction of m3R tau-Tg retinas (Fig. 

2h, p < 0.05), indicating tau aggregation in the m3R tau-Tg retina.

3.3. Prolonged expression of 3R tau induces structural alterations in the peripheral 
dorsal inner retina

To determine if 3R tau overexpression induced thinning of the retina, we measured retinal 

layer thickness from 3R tau-Tg and Non-Tg retinal cross sections stained with hematoxylin 

and eosin (Fig. 3a). Measurements of the ganglion cell layer (GCL), inner plexiform layer 

(IPL), outer nuclear layer (ONL) and photoreceptor layer (PH) were taken from cross­

sections of 3R tau-Tg and Non-Tg eyes at the center and peripheral regions (Fig. 3a). There 

were no significant differences in either 3R tau-Tg nor Non-Tg at the center of the retina 

at any retinal layer (Fig. 3b). Two way ANOVA analysis of the data from the peripheral 

region of 3 month 3R tau-Tg and Non-Tg retinas detected a significant main effect in layers 

(F(3,338) = 32.34, p < 0.0001) but not in genotype (F(3,338) = 2.579, p = 0.0536). There was 

no significant layer x genotype interaction (F(9,334) = 1.026, p = 0.4183). Post hoc analysis 

determined the difference in the PH layer in the ventral regions between Non-Tg and 3R 

tau-Tg to be statistically significant. In the 9 month peripheral cross-sections, two way 

ANOVA also detected a significant main effect in layers (F(3,294) = 247.5, p < 0.0001) but 

not in genotype (F(3,294) = 2.179, p = 0.0910), nor a significant layer x genotype interaction 

(F(9,294) = 0.7183, p = 0.6921). Bonferroni analysis detected a significant difference in IPL 

thickness between the dorsal and ventral peripheral regions of 3R tau-Tg retinas (Fig. 3c). 

Further analysis with t-test determined a significant difference in the IPL between Non-Tg 

and 3R tau-Tg (p < 0.025, Fig. 3c). These data imply that the expression of 3R tau may alter 

different layer thickness over time.

To test if 3R tau expression changes cell distribution in the GCL, total cells were quantified 

in the dorsal and ventral peripheral parts of retinal cross-sections stained with hematoxylin. 

Quantification of GCL cells revealed a significant difference between dorsal and ventral 

regions of the 3R tau-Tg but not Non-Tg retina at both 3 and 9 months of age (F (3, 54) = 

10.49; P < 0.0001) (Fig. 3d). We stained retinal flatmounts with RBPMS, a known retinal 

ganglion cell marker, to understand if peripheral RGCs are uniquely targeted in m3R tau-Tg 

retinas. Peripheral dorsal retinal regions from m3R tau-Tg mice contained fewer RBPMS+ 

cells compared to the ventral regions (Fig. 3e). A significant difference of RBPMS+ cells 

was detected between Non-Tg retinas and the dorsal region of the m3R tau-Tg retinas (F 

(3,12) = 5.197; P < 0.0157) (Fig. 3f).
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3.4. Differential expression of genes implicated in general neurodegeneration in m3R 
tau-Tg mice

To further assess the molecular impact of 3R tau overexpression in the retina, transcriptome 

profiling was performed on RNA extracted from both m3R tau-Tg and Non-Tg mouse 

retinas at 3 months and 9 months. To account for variation in gene expression within 

biological replicates, samples were consolidated by genotype and further analysis was 

conducted to assess the effect of prolonged mutant 3R tau expression on the retinal 

transcriptome. A total of 2230 genes were identified in m3R tau-Tg and Non-Tg retina, 

with 1817 specifically identified in m3R tau-Tg and 413 in Non-Tg (Fig. 4a).

To identify biological pathways altered with 3R tau expression, pathway analysis was 

performed on the dataset of differentially expressed genes from m3R tau-Tg retina and 

Non-Tg using the REACTOME pathway database. The top six unique pathways enriched 

in Non-Tg retina relate to neuron function and receptor signaling (Fig. 4b). Pathways 

enriched in the m3R tau-Tg retinal data set include Complex I biology, metabolism of RNA, 

signaling pathways such as NOD1/2 and NF-kB as well as trafficking processes (Fig. 4b). 

Our data indicates that overexpression of 3R tau over time induces transcriptional changes 

that are distinct from the aging process, particularly in biological pathway implicated in 

neurodegeneration.

3.5. Upregulation of caspase-2 in 3R-tau Tg retina suggests initiation of cell degeneration

The enrichment of transcript encoding components of the NOD and NF-kB signaling 

pathway along with the reduction of RGC in m3R tau-Tg retina lead us to search 

for differentially expressed genes associated with RGC cell death. Transcript levels of 

caspase-2, a protease implicated in RGC neurodegeneration, were upregulated in m3R 

tau-Tg retina relative to non-Tg retina (Table 2). To determine if the upregulation of 

caspase-2 transcript altered protein expression, immunohistochemical analysis for caspase-2 

expression was conducted in Non-Tg and m3R tau-Tg retinal tissue. No caspase-2 

immunostaining was detected in Non-Tg retina throughout the retinal layers (Fig. 5a–b), 

while robust caspase-2 signal was observed in m3R tau-Tg retinas, with a majority of 

caspase-2 signal colocalizing to 3R tau-positive cells (Fig. 5c). Expression of caspase-2 in 

m3R tau-Tg was restricted to the inner retina, specifically the GCL (Fig. 5d).

3.6. Mice overexpressing 3R tau exhibit visual deficits in the Morris Water Maze

The m3R tau-Tg line has previously demonstrated behavioral deficits in the Morris Water 

Maze (MWM), a memory test dependent on visual cues (Arner et al., 2018; Rockenstein 

et al., 2015). To further discern whether alteration of 3R tau in RGCs over time alters 

water maze performance, 3 month old (n = 29 (m3R tau-Tg), 16 (Non-Tg)) and 9 month 

old (n = 25 (m3R tau-Tg), 15 (Non-Tg)) m3R tau-Tg and Non-Tg mice were subjected to 

the MWM. Two-way ANOVA analysis revealed a significant main effect in days (F(6,258) 

= 8.709, p < 0.0001) and genotype (F(1,43) = 18.83, p < 0.0001) but not a significant 

interaction in genotype x days (F(6,258) = 1.411, p = 0.2106) at three months (Fig. 6a). At 

nine months, two-way ANOVA analysis revealed a significant interaction between genotype 

x age (F(6,228) = 6.062, p < 0.0001) and a significant main effect in genotype (F(1,38) = 

18.82, p < 0.0001) and age (F(6,228) = 26.4, p < 0.0001) (Fig. 6B). A decrease in distance 
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travelled over trials in the Cued Platform Phase is an indication of the mice acquiring spatial 

cues to find the platform (Vorhees and Williams, 2006). Linear regression analysis of Cued 

Platform Phase performance indicated that the slopes from the Non-Tg group at both 3 

(p = 0.0107) and 9 months (p = 0.0159) are significantly different from zero, while the 

slopes of the m3R tau-Tg group at 3 (p = 0.0802) and 9 months (p = 0.4330) were not 

significantly different (Table 1). By the end of the third day on the Cued Platform Phase, 

m3R tau-Tg mice travelled significantly longer distances to locate the platform compared 

to their Non-Tg counterparts (Fig. 6a–b). These data suggest that the m3R tau-Tg mice are 

impaired in identifying visual cues. In the Hidden Platform Phase, m3R tau-Tg mice at both 

3 and 9 months travelled significantly longer to the platform compared to Non-Tg mice (Fig. 

6a–b). No significant differences in beam breaks were detected between m3R tau-Tg and 

Non-Tg in the spontaneous locomotor activity test at either age, implying general motor 

function is intact (Fig. 6c). Two way ANOVA analysis determined a significant main effect 

in genotype (F(1,81) = 27.42, p < 0.0001) but not age (F(1,43) = 18.83, p < 0.0001) as well 

as a significant genotype × age interaction (F(1,81) = 4.911, p < 0.0295). Bonferroni post-hoc 

analysis determined that entries into the platform zone were significantly less in 9 month 

old m3R tau-Tg mice in the probe trial, suggesting m3R tau-Tg mice cannot retain spatial 

cues with age (Fig. 6d). Analysis through Two way ANOVA also found a significant main 

effect in age (F(1,81) = 10.22, p < 0.0001) and genotype (F(1,81) = 32.34, p = 0.0020) as 

well as a significant genotype x age interaction (F(1,81) = 5.651, p < 0.0198) in the visible 

probe test. 9 month old m3R tau-Tg mice spent significantly more time locating the visible 

platform compared to Non-Tg, as determined by post hoc analysis (Fig. 6e). No significant 

difference was detected between sexes in the visible probe test (Supplementary Fig. S3). 

Together, these data suggest that m3R tau-Tg mice perform poorly in the MWM due to the 

inability to quickly locate a visible platform.

4. Discussion

Our study contributes to understanding retinal tau pathophysiology by conducting an 

in-depth assessment of the impact of mutant 3R tau in the retina, focusing on RGCs. 

Previous retinal studies in mouse models overexpressing mutant 4R tau demonstrated retinal 

dysfunction or degeneration (Gasparini et al., 2011; Harrison et al., 2019; Ho et al., 2015; 

Mazzaro et al., 2016), while mouse models expressing human tau failed to exhibit any 

retinopathy (Rodriguez et al., 2018), bringing into question how tau may mediate retinal 

pathology. In our present study, we show that expression of aggregate mutant 3R tau, which 

coincided with upregulation of caspase-2 throughout the retina, induced region-specific 

reduction in RGC cell density and visual impairment.

When using mouse models, it is important that the phenotype bears relevance to the 

biology of human disease. Transgene expression in the m3R tau-Tg and P301S mouse 

lines is driven by the promoter of Thy-1, a gene expressed in 60% of RGCs and 90% 

of displaced ACs (Raymond et al., 2008; Schmid et al., 1995). Our immunohistochemical 

analysis confirms expression of mutant 3R tau and hyperphosphorylated tau is restricted to 

the IPL and GCL (Fig. 1, Fig. 2), in line with the P301S mouse line expressing mutant 

4R tau (Gasparini et al., 2011). Selective expression of mutant tau driven by the Thy-1 

promoter may bias our study and not capture the entirety of tau retinopathy. However, 
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elevated levels of phosphorylated tau are observed in both the GCL and IPL in models of 

retinopathy, (Chiasseu et al., 2016; Zhu et al., 2018) as well as in the horizontal cells and 

IPL of glaucoma cases, (Gupta et al., 2008), highlighting the relevance of pathologic tau in 

RGC-related degeneration. Interestingly, 3R tau expression is not homogenous throughout 

the inner retina (Fig. 1), despite previous results of the Thy-1-mediated fluorescent protein 

expression evenly throughout the GCL (Raymond et al., 2008). It is possible that this 

observation is related to unknown interactions with transgene expression and an artefact of 

the system. However, hyperphosphorylated tau in post-mortem retinal tissue from AD cases 

was prominent in the retinal periphery (den Haan et al., 2018). Distribution of RGCs is 

heterogenous throughout the retina, segregated topologically to capture specific aspects of 

the visual field (Bleckert et al., 2014). Topological assessment of RGCs in the dorsal versus 

ventral region of the m3R tau-Tg retina would provide more insight into the region-specific 

expression of 3R tau. Our regional assessment of RBPMS expression suggests that region­

specific selectivity of RGCs may occur in the m3R tau-Tg retina (Fig. 3e–f). Additionally, 

we observed caspase-2 upregulation in 3R tau-positive cells of the m3R tau-Tg retina (Fig. 

5), which further implicates the peripheral region as a susceptible region in protein aggregate 

diseases (Koronyo et al., 2017).

To probe deeper into the mechanisms of mutant 3R tau retinal pathology, we implemented 

an unbiased generalized assessment of the 3R tau-Tg retina transcriptome, which identified 

pathways known to be involved in tau-mediated neuropathy. Pathways implicated in 

inflammation and cell death were enriched in our samples (Fig. 4). Retinal thinning and 

loss of RGCs are observed in the retinas of mice overexpressing human mutant tau PS301L 

(Harrison et al., 2019; Ho et al., 2015) but not P301S mice (Gasparini et al., 2011). While 

this may suggest a difference in severity between the mutations, the retinal studies done 

with the P301S line used young mice, only as old as 5 months. A reduction of RGC axon 

density was observed with increased aggregated tau in 5 month old P301S mice. Formation 

of fibrillary tau deposits in the retina increased with age in mice overexpressing the human 

mutant tau P301S, with the number of deposits peaking at 6.5 months (Schön et al., 2012). 

These data suggest that tau aggregation may impact RGC axons in early tauopathy and 

lead to the upregulation of cell death components such as caspase-2 in later stages of 

tauopathy after the peak of fibrillary formation. Mouse models harboring mutant variants of 

tau specific to human neurodegenerative disorders exhibit retinal disruption, suggesting that 

the mutation rather than the imbalance of tau isoforms mediates retinal pathogenesis.

Mitochondrial dysfunction is common in neurodegenerative diseases, including those 

mediated by tau (Kawamata and Manfredi, 2017; Lin and Beal, 2006; Pérez et al., 2018). 

Our dataset corroborates previous studies that characterized the downregulation of multiple 

subunits in mitochondrial respiratory Complex I (NADH: ubiquinone oxidoreductase) (Fig. 

4b). In line with our molecular observations, irregular mitochondria, an indication of 

mitochondrial distress, were reported in m3R tau-tg brains (Rockenstein et al., 2015). 

Enzymatic activity of Complex I was uniquely decreased in the brains of transgenic mouse 

lines overexpressing tau (David et al., 2005; Rhein et al., 2009). Furthermore, transcript 

reduction of Complex I subunit Ndufa1 in the eye resulted in retinal thinning and RGC loss 

(Qi et al., 2003). In summary, these data suggest mutant 3R tau overexpression leads to the 
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specific reduction of essential Complex I subunit genes, possibly contributing to the retinal 

thinning observed in m3R tau-Tg mice.

Degeneration of RGCs is mediated by the cysteine aspartate proteases known as caspases 

in development, traumatic injury and retinal degenerative events (Thomas et al., 2017). 

Caspases are known for their role in the apoptosis pathway, with caspase-2 implicated in 

stress-induced apoptosis, including cytoskeleton disruption (Ho et al., 2008; Janssens and 

Tinel, 2012; Lassus et al., 2002). In the retina, photoreceptor cell death is mediated by 

caspase-9 while caspase-2 is implicated in RGC degeneration (Thomas et al., 2018). Like 

3R tau, caspase-2 is highly expressed in the murine brain and retina during development and 

downregulated in adulthood (Kojima et al., 1998; Kumar et al., 1992). Multiple caspases 

are upregulated in retina during injury and disease, but downregulation of caspase-2 

transcript through RNA interference and pharmacological inhibition proved to be sufficient 

for RGC survival (Ahmed et al., 2011; Vigneswara et al., 2012). Activated caspase-2 is also 

upregulated in models of glaucoma and optic neuritis, further suggesting that caspase-2 

initiates RGC degeneration (Lidster et al., 2013; Reinehr et al., 2020). Processing of 

tau by caspase-2 leads to impairment of cognitive and synaptic function in a model of 

Huntington’s disease (Zhao et al., 2016). While increased caspase-2 expression was seen in 

m3R tau-Tg retinas, it is unclear how caspase-2 and tau may interact. Further analysis into 

caspase-2 expression and function would elucidate the relationship between mutant 3R tau 

and caspase-2 in tau mediated cell death. Experiments using pharmacological inhibition or 

RNA interference would be ideal to further assess caspase-2 role in m3Rtau-Tg retinas.

There are several limitations in our study. While transcriptomic analysis of m3R tau-Tg 

retinas highlighted pathways supported by existing literature and provided tremendous 

insight (Fig. 4), the high variability within samples limited the breadth of our analysis. 

MDS analysis showed that there was high variance in gene expression within the 3 month 

group regardless of phenotype, while overall gene expression among the 9 month group 

was consistent. Immunohistochemical analysis of 3 month mice established stable 3R tau 

expression in m3R tau-Tg mice (Fig. 1). Retinal neurons reach the correct laminar layer 

and adult morphologies by 2 weeks of age (Reese, 2011), but other environmental variables 

may influence the retinal transcriptome. Therefore, an increase in sample size is necessary 

to mitigate sources of variation. A recent study implementing RNA-seq analysis of retinas 

from transgenic mice overexpressing amyloid precursor protein (APP) and Presenilin 1 

(PSEN1) observed activation of pathways such as the JAK/STAT pathway (Chintapaludi 

et al., 2020). However, differential gene expression occurred prior to plaque formation, 

leading the authors to conclude that the observed changes were artificially driven by the 

overexpression of mutant APP and PSEN1. While we acknowledge that artificial results may 

arise when using transgenic mice, our study focused on the effects of mutant 3R tau isoform 

imbalance, a known mechanism of tauopathy, specifically in the retina.

In accordance with previous studies, m3R tau-Tg mice spent more time completing the 

MWM compared to Non-Tg mice and did not improve in locating the platform in the Cued 

Platform Phase (Fig. 6a–b, Table 1) (Arner et al., 2018; Rockenstein et al., 2015; Spencer 

et al., 2018). Other mouse strains of retinal degeneration exhibited similar latency times in 

the Cued Platform Phase of the MWM, further implying the poor performance of the m3R 
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tau-Tg mice may be due to retinal impairment (Brown and Wong, 2007). Visual processing 

is a multi-organ process, and other brain regions responsible for processing retinal stimuli 

may factor into visual loss seen in m3R tau-Tg mice. Our study focuses on the retina, the 

organ that processes visual light to neural signal. Future studies will look into the role of 

the other regions such as the thalamus and cortex, two regions shown to express high levels 

of 3R tau. In addition, future tests assessing the functionality of the m3R tau-Tg retina 

would provide further evidence that retinal 3R tau expression impairs the retina. However, 

while the test does test overall activity, the majority of the data derived from ERG is from 

photoreceptor activity, a cell type that we did not see any tau pathology. Taken together, 

retinal degeneration may factor into overall behavioral results, and experimental designs 

should consider measurements of visual detection to account for visual impairment.

5. Conclusion

In summary, our data indicate shifting tau isoform expression by overexpressing 

pathological 3R tau renders RGCs susceptible to neurodegeneration through altering 

multiple neurodegenerative pathways. Future studies using inhibitors of caspase-2 and 

kinases associated with tau modification to dissect the relationship between caspase-2 and 

3R tau would greatly illuminate the underlying mechanisms driving RGC degeneration. 

Equipment to measure retinal health and activity in a non-invasive, in vivo manner 

would provide much needed temporal and functional data. Furthermore, our findings, in 

combination with current technology, highlight the value of the m3R tau-Tg mouse line in 

therapeutic development.
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Fig. 1. 
Region and cell-specific expression of 3R Tau in the murine retina. Representative 

micrographs of retinal cross-sections from a) 3 month Non-Tg and b) 3 month m3R tau-Tg 

immunostained for 3R tau and visualized with 3,3’-Diaminobenzidine (DAB). Highlighted 

regions depict the location of insets from the dorsal (top) and ventral (bottom) regions of the 

retina. c) Quantification of 3R tau immunostaining in the dorsal and ventral retina periphery 

of Non-tg mice (outlined white bars, n = 6) and m3R tau-Tg (grey bars, n = 6) at 3 months 

expressed as mean intensity (Arbitrary Units, AU). Measurements are represented as mean ± 

Ngolab et al. Page 19

Neurobiol Dis. Author manuscript; available in PMC 2021 August 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



standard error of the mean. d) 9 month Non-Tg and e) 9 month m3R tau-Tg immunostained 

for 3R tau and visualized with 3,3’-Diaminobenzidine (DAB). Highlighted regions depict 

the location of the dorsal (top) and ventral (bottom) regions of the retina. f) Quantification 

of 3R tau immunostaining in the dorsal and ventral retina periphery of Non-tg (outlined 

white bars, n = 7) and m3R tau-Tg (grey bars, n = 4) mice at 9 months expressed as mean 

intensity (AU). Measurements are represented as mean ± standard error of the mean. g) 

Representative images of cross sections from Non-Tg (top) and m3R tau-Tg retinas stained 

with RD3 (Red), an antibody specific to 3R tau and TUJ1 (green), a retinal ganglion cell 

marker. Scale bar is 25 μm. Total count of 3R tau positive stained cells along the GCL of 

h) 3 and i) 9 month retinal cross-sections. ^^^ p < 0.0002, ^^^^ p < 0.0001 m3R tau-Tg 

dorsal region compared to m3R tau-Tg ventral region. j) Representative images of cross 

sections from Non-Tg (top) and m3R tau-Tg retinas stained with 3R tau tg (Red) and choline 

acetyltransferase (ChAT) (green), a marker for cholinergic amacrine cells. Scale bar is 25 

μm. **** p < 0.0001 m3R tau-Tg dorsal retina compared to Non-Tg dorsal and ventral. ^^^^ 

p < 0.0001 m3R tau-Tg dorsal retina compared to m3R tau-Tg ventral retina. GCL: ganglion 

cell layer, IPL: inner plexiform layer, INL: inner nuclear layer.
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Fig. 2. 
Hyperphosphorylation of 3R tau in the retina is restricted to the detergent insoluble fraction. 

Characterization of the 3R tau isoform in brain (a, c, e, g) and retina (b, d, f, h) from 9 

month m3R tau-Tg and Non-Tg mice. Western blot analysis of brain and retina lysates the 

(a–d) RAB and (e–h) RIPA fraction. Top: Representative blot for (a–b, e–f) RD3, (c–d, g–h) 

PHF-1 and GAPDH. Bottom: Semi-quantitative measure of protein expression in Non-Tg 

(outlined white bars) and m3R tau-Tg tissues (grey bards). N = 2.
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Fig. 3. 
Expression of 3R tau alters the peripheral inner retina over time. a) Representative 

micrograph of a retinal cross-section illustrating orientation and regions measured. Center 

measurements were taken 500 μm from optic nerve and peripheral measurements were 

taken 500 μm from the edge. Right inset highlights the regions of measurement such the 

as ganglion cell layer (GCL), inner plexiform layer (IPL), outer nuclear layer (ONL) and 

photoreceptor layer (PH). Scale bar represents 400 μm in micrograph and 25 μm in inset. 

b) Center measurements of the GCL, IPL, ONL and PH of m3R tau-Tg and Non-Tg retinal 
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cross-sections at 3 months (Non-Tg n = 10, outlined bars; m3R tau-Tg, unlined grey bars, n 
= 17,) and 9 months (Non-Tg, outlined bars, n = 9; m3R tau-Tg, unlined grey bars, n = 12). 

Measurements were recorded in the dorsal (light shades) and ventral (dark shades) region of 

each retinal cross-section. c) Peripheral measurements of the GCL, IPL, ONL and PH layer 

of m3R tau-Tg and Non-Tg retinal cross-sections at 3 months (Non-Tg, outlined bars, n = 

10; m3R tau-Tg, unlined grey bars, n = 17) and 9 months (Non-Tg, outlined bars, n = 9; 

m3R tau-Tg, unlined grey bars, n = 12). Measurements are represented as mean ± standard 

error of the mean. * p < 0.0332 m3R tau-Tg ventral region compared to Non-Tg ventral 

region. ^ p < 0.0332 m3R tau-Tg dorsal region compared to m3R tau-Tg ventral region. 

~p < 0.0254 Non-Tg dorsal region compared to m3R tau-Tg dorsal region. d) Total count 

of hematoxylin stained cells along the GCL of retinal cross-sections at 3 months (Non-Tg, 

outlined white bars, n = 9; m3R tau-Tg, grey bars, n = 9;) and 9 months (Non-Tg, outlined 

white bars, n = 9; m3R tau-Tg, grey bars, n = 9). ^^ p < 0.0021, ^^^ p < 0.0002 m3R tau-Tg 

dorsal region compared to m3R tau-Tg ventral region. e) Composite image of a 9 month 

m3R tau-Tg retinal flatmount. Inset micrographs reflect the highlighted regions depicted on 

the flatmount. f) Quantification of RBPMS+ cells of retinal flatmounts at 9 months (Non-Tg, 

outlined white bars, n = 4; m3R tau-Tg, grey bars, n = 4). ~p < 0.0384 Non-Tg dorsal region 

compared to m3R tau-Tg dorsal region.
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Fig. 4. 
Transcriptional alterations due to 3R tau expression. a) Venn diagram of differentially 

expressed genes in Non-Tg (Outlined white region, n = 4–5) and m3R tau-Tg (Grey region, 

n = 5) retinas. Among the differentially expressed genes shared between genotypes, only two 

genes varied in expression direction. b) Top six biological pathways in which differentially 

expressed genes in m3R tau-Tg and Non-Tg clustered into. Circle size represents the gene 

ratio, and color depicts the qvalue of each biological pathway. Biological pathways are 

sourced from the REACTOME database.
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Fig. 5. 
Increased expression of caspase-2 in 3R tau positive regions of the retina. Representative 

image of retinal tissue of retina from a) m3R tau-Tg and c) Non-Tg mouse, stained with 

3R tau (green) and caspase-2 (red). Cross-section from a Z-stack of b) m3R tau-Tg and d) 

Non-Tg retinal tissue, indicating where the fluorescence signal lies in the retinal layers.
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Fig. 6. 
Mice over expressing mutant 3R tau exhibit visual as well as memory deficits in the Morris 

Water Maze. Performance of in the Morris Water Maze represented as Distance travelled 

(in meters) by Non-Tg (Outlined white triangles) and m3R tau-Tg (grey squares) mice at a) 

3 months and b) 9 months. The Cued Platform Phase is conducted in the first three trials, 

where the platform is visible, while in the last four trials denote the hidden platform phase. 

c) Overall locomotor activity in Non-Tg (Outlined white bars) and m3R tau-Tg (Grey bars), 

measured in beam breaks along the x, y and z-axis. d) After completion of water maze 

testing, Non-Tg (Outlined white bars) and m3R tau-Tg (Grey bars) mice underwent the 

Probe trial to test for memory retention. e) Visual acuity was assessed in the Visual Probe by 

measuring time spent locating a visible platform in Non-Tg (Outlined white bars) and m3R 

tau-Tg (Grey bars). Mice used per genotype per age: m3R tau-Tg (3 month: n = 17, 9 month: 

n = 12), Non-Tg (3 month: n = 10, 9 month: n = 9). Measurements are represented as mean 

± standard error of the mean. * p < 0.0332 m3R tau-Tg mice compared to Non-Tg mice, ** 

p < 0.0021 m3R tau-Tg mice compared to Non-Tg mice, *** p < 0.0002 m3R tau-Tg mice 

compared to Non-Tg mice, **** p < 0.0001 m3R tau-Tg mice compared to Non-Tg mice. 

^^^^ p < 0.0001 3 month m3R tau-Tg mice compared to 9 month m3R tau-Tg mice.
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Table 1

Linear regression analysis of the Cued Platform Phase in the Morris Water Maze.

Slope (Mean ± SEM) R squared F P value

Non-Tg 3 months −3.94 ± 0.06619 0.9997 3543 0.0107

Non-Tg 9 months −5.879 ± 0.1472 0.9994 1594 0.0159

m3R tau-Tg 3 months −2.202 ± 0.2789 0.9842 62.32 0.0802

m3R tau-Tg 9 months −1.271 ± 1.028 0.6044 1.528 0.4330
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