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ABSTRACT

Alternative polyadenylation increases transcript di-
versities at the 3’ end, regulating biological pro-
cesses including cell differentiation, embryonic de-
velopment and cancer progression. Here, we present
a Bayesian method SCAPE, which enables de novo
identification and quantification of polyadenylation
(pA) sites at single-cell level by utilizing insert size
information. We demonstrated its accuracy and ro-
bustness and identified 31 558 sites from 36 mouse
organs, 43.8% (13 807) of which were novel. We il-
lustrated that APA isoforms were associated with
miRNAs binding and regulated in tissue-, cell type-
and tumor-specific manners where no difference was
found at gene expression level, providing an extra
layer of information for cell clustering. Furthermore,
we found genome-wide dynamic changes of APA us-
age during erythropoiesis and induced pluripotent
stem cell (iPSC) differentiation, suggesting APA con-
tributes to the functional flexibility and diversity of
single cells. We expect SCAPE to aid the analyses of
cellular dynamics and diversities in health and dis-
ease.

INTRODUCTION

When appending poly(A) tails to the 3’ end of an mRNA,
the untranslated region (UTR) of the corresponding gene
may be cleaved at alternative polyadenylation (APA) sites
to generate different isoforms. APA occurring in the exonic

or intronic region may disrupt the functional or structural
domains (1). The 3’ UTRs often contain binding sites of
micro RNAs (miRNA) and RNA binding proteins, which
are involved in the control of mRNA translation (2), stabil-
ity (3) and localization (4,5). APA is observed in >50% of
human genes (6) and plays important role in cellular repro-
gramming and cell fate. For instance, 3’ UTRs are globally
lengthened during differentiation (7) but shortened during
de-differentiation (8) and tumorigenesis (9).

To better understand how APA is involved in these
biological processes, the technologies of mapping
transcriptome-wide APA utilized 3’ end sequencing
protocols were developed at the bulk level. This 3’ UTR en-
riched sequencing is similar to single-cell RNA-sequencing
(scRNA-seq) methods based on oligo-dT enrichment,
including CEL-seq (10), 10× (11) and Microwell-seq (12).
Several methods such as scAPA (13), scAPAtrap (14), Sierra
(15), scDaPars (16), SCAPTURE (17) and MAAPER (18)
have been proposed to detect APA events by finding peaks
from the read coverage profile (Supplementary Table S1).
However, since the majority of scRNA-seq reads did not
cover the pA sites (Supplementary Figure S1F), these
methods had limitations in (i) inferring the locations of pA
sites accurately, (ii) separating overlapping peaks and (iii)
discriminating weak signals from technical noise.

Here, we developed a Bayesian method SCAPE (Sin-
gle Cell Alternative Polyadenylation using Expectation-
maximization) that aims to solve the aforementioned chal-
lenges by utilizing the insert size information introduced
during the preparation of sequencing libraries. We demon-
strate that SCAPE exhibited superior performance com-
pared to the current methods in various aspects. We further
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showcased its usage on multiple datasets and technical plat-
forms, illustrating the global APA landscape in mouse cell
atlas and human glioblastoma. We also examined the dy-
namics of the varied pA length during erythropoiesis and
iPSC in the mouse model, in which genes with multiple
pA sites (multi-pA gene) exhibited general increasing or de-
creasing trends in their APA usage during cell differentia-
tion and reprogramming. Furthermore, we identified differ-
entially expressed APA isoforms and found they were asso-
ciated with expressions of miRNA binding in their 3’ UTR.
Taken together, our results established APA as a significant
contributor to the cell identity at the single-cell level, con-
sistent with an important role of transcript diversification
through APA as a means to increase functional diversity.

MATERIALS AND METHODS

SECTION 1: SCAPE

SCAPE bioinformatics pipeline

The input data of SCAPE is a genome-aligned bam file. For
10× or bam-only scRNA-seq datasets, the genome-aligned
bam file could be directly used by SCAPE.

For non-10x scRNA-seq datasets like Microwell-seq and
Drop-seq, the procedure consists of three steps.

a) The raw fastq files are converted into unmapped bam
files by Drop-seq tools (19). Cell barcode, unique molec-
ular identifiers (UMI) and the length of polyT on R1 are
recorded into unmapped bam files as tag information at
the same time.

b) Then unmapped bam are converted to fastq, which are
then aligned it to the reference genome with STAR (20).
The unmapped and mapped bam files are merged by
MergeBamAlignment function in Picard (2.9.3).

c) The gene expression matrix is retrieved by DigitalEx-
pression in Dropseq tools, which is used to filter low-
quality cells. The bam file generated in step (b) is fed into
SCAPE to infer the pA sites and other parameters.

Estimation of insert size distribution and poly(A) length dis-
tribution

In pair-end scRNA-seq data, a small proportion of reads
contains the cleavage site (junction between 3’ UTR and
poly(A) part), which we call cleavage reads (Supplementary
Figure S1F). Both read 1 (R1) and read 2 (R2) of a cleav-
age read could be uniquely mapped to the genome. We select
genes with only one exon and pick cleavage reads mapped to
these one-exon genes, which excludes the biases brought by
splicing in insert size calculation. Distances between R1 and
R2 of these reads, plus the length of poly(A) part in R1, pro-
vide the insert size distribution. In practice, we follow sev-
eral forward computational procedures of Drop-seq (19) to
clean up the reads, including trimming and gathering bar-
code, UMI and poly(T) information from R1. The cleaned
pair reads are then aligned to the genome with STAR (20).

Poly(A) part of cleavage reads across all genes could be
used to estimate the distribution of poly(A) length. We gen-
erated a histogram for the lengths of the poly(A) parts of
cleavage reads, which could be used as the empirical distri-
bution of poly(A) lengths. If single-end scRNA-seq data is

used, for which there is no information regarding poly(A)
parts, we used a uniform distribution from 20 to 150bp.

Statistical model of SCAPE

SCAPE is a probabilistic mixture model for inferring pA
sites. Approximate expectation maximization (EM) is used
for parameter inference. This mixture model contains K
components for reads generated from APA isoforms and
one noise component that accounts for random reads.

Figure 1A illustrates the model for an APA component.
The pair-end reads (R2 and R1) are mapped to the 3’ UTR
and poly(A) parts, whose lengths are ln and rn , respectively.
xn is the start position of R2. θnk is kth pA site on the nth
DNA fragment, i.e. 3’ UTR and poly(A) are connected at
this site. αk and βkare hyperparameters that control the dis-
tribution of the kth pA site. The poly(A) part length of the
nth DNA fragment is denoted by sn.

There are three sources of uncertainty in the modelling:
(i) the cDNA fragment size, (ii) fluctuation of pA sites and
(iii) poly(A) part length of the DNA fragment. Based on
empirical data, cDNA fragments are around 300 bp with
50 bp standard variation which was estimated by scRNA-
seq dataset (Supplementary Figure S1A). According to ob-
servations from the limited junction reads (reads cover a
pA site), we find the pA sites exhibit a certain degree of
fluctuation, as shown in Supplementary Figure S1F. The
mRNA poly(A) tails are captured by 30 bp poly(T) tails on
the beads, which may bind to any part of the poly(A) and
thus introduce uncertainty.

As shown in Figure 1A, we introduce the hidden variables
θnk and sn, as well as znk that indicates the component mem-
bership. With the help of these hidden variables, we are able
to explicitly write out the likelihood. The hidden variables
are marginalized out to account for the aforementioned un-
certainties. The likelihood is given by

p (Z, xxx, lll,rrr |ααα,βββ,πππ ) =
N∏

n=1

K∏

k=0

{πk p(xn, ln, rn |αk, βk, MI(k))}znk

where πk is the weight for kth component; I (k) = 1 if k ≥ 1
and I (k) = 0 if k = 0; M1 stands for APA isoform model
and M0 stands for the noise model. The APA isoform model
could be further written as

p(xn, ln, rn |αk, βk, M1) =
∑

θnk

p(xn, ln, rn, θnk|αk, βk)

=
∑

θnk

p(xn, ln, rn | θnk ) p(θnk|αk, βk)

=
∑

θnk

p(θnk|αk, βk)
∑

sn

p(ln |xn, θnk)p(xn |sn, θnk)p(rn |sn)p(sn)

where θnk and sn are hidden variables and will be marginal-
ized out. The explicit forms of the terms are given by

p(θnk|αk, βk) = N(θnk|αk, β
2
k)

where a Gaussian prior is assumed for the kth pA site.

p(ln|xn, θnk) = 1
θnk − xn + 1

where we have assumed a uniform distribution for ln .

p (xn|sn, θnk) = N
(
xn|θnk + sn + 1 − μ f , σ 2

f

)
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Figure 1. Overview of SCAPE model and method comparison. (A) Statistical model of SCAPE. The pair-end reads provide the start positions (xn ) of the
DNA fragments on 3’ UTR (top). Uncertainties of insert size ( fn) and poly(A) length (sn) are considered by the statistical model, where ln and rn are the
length of pair end reads R2 and R1. znk indicates the membership of nth read to kth isoform (middle). The outputs include the location of each pA site
(αk) and its confidence interval (βk) and weights (πk) of isoforms (bottom). The kth potential pA site for nth fragment is denoted by θnk (k = 1, 2), whose
Gaussian fluctuation is defined by αkandβk . (B–D) Method comparison for detecting pA sites with SCAPE, Sierra, scAPAtrap, scAPA, SCAPTURE and
MAAPER. Precision (B), recall (C) and F-score (D) of different methods on a simulation with 12 255 pA sites from 3533 genes with varying cutoff (x-axis)
for matched pA sites. Matched pA sites are predicted pA sites that are within x bp (cutoff) of the ground truth. Precision is the proportion of matched
pA sites out of all predicted pA sites. Recall is the proportion of matched sites out of all pA sites in the ground truth. F-score is a summarized measure of
accuracy calculated from precision and recall with higher value indicating better performance.

where μ f and σ f are the mean and standard deviation of
fragment length distribution (Gaussian). Note that the frag-
ment length is the sum of the 3’ UTR part length θnk − xn +
1 and the poly(A) length sn.

p(rn|sn) = 1
sn

p (sn) = Uni f (20, 150)

The noise model is given by

p (xn, ln, rn, α0, β0|M0) = p (xn, ln, rn|M0)

= p (xn|M0) p (ln|sn, M0) p (rn|sn, M0) = 1
L

1
L

1
LA

where α0 and β0 serve as place holders for notational sim-
plicity; L and LA refer to the length of 3’ UTR part and
maximum poly(A) part of the given gene, respectively.

We use an EM algorithm to maximize the marginalized
log-likelihood and Bayesian Information Criterion (BIC) to
select the number of components. Note there are no analytic
solutions for αk and βk in the M-step, we use numeric com-
putation for the maximization instead.

Detailed description of the mixture model is provided in
Supplementary Note 1.

Differential APA analysis

Differential APA analysis is essentially the same as differ-
ential gene expression analysis except that we replace gene
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expression values with pA counts. Here, we present three
differential expression approaches.

The first approach is suitable for scRNA-seq dataset
where the cells are grouped into multiple clusters. SCAPE
is used to assign the reads to different APA isoforms. As a
result, we get the number of reads for each pA site, which
we term as pA counts. We then treat the pA counts as
gene counts and utilize the ‘FindMarkers’ function in Seu-
rat (v3.1.0) (21) to perform the differential analysis.

The second approach is to use DEXseq (22) to perform
differential expression analysis between two groups, which
is suitable for scRNA-seq data with high dropout rate. Cells
from each group were randomly shuffled and divided into
six equal size subgroups, whose expressions are summed
to serve as six pseudo-replicates. The expression matrix of
the pseudo-replicates and metadata of samples are then fed
into DEXseq to perform the differential 3’ UTR expression
analysis. This approach is implemented as the ‘FindDE’ in
the SCAPE package.

The third approach is suitable for differential analysis be-
tween two groups with low dropout rates in the data. We
use SCAPE to quantify the weights of pA sites of a gene in
each cell. We then test if there exist differences between two
groups. For a given pA site, we assume a Gaussian distri-
bution for its weights in different cells in each group. Then
we test if the means of the two Gaussian distributions are
the same, for which we could calculate the Bayes factor.
The function ‘ttestBF’ from R package ‘BayesFactor’ (23)
is used for this purpose. This approach is implemented as
the ‘FindBF’ in the SCAPE package.

Category of pA usage

To better understand the heterogeneity of APA patterns
among cell populations, we first calculated the usage of pA
sites for each gene at single cell level, and used previous
studies to classify alternative splicing methods to classify
the pA usage (24,25), mainly divided into the following five
categories: (1) L shape (average of pA usage less than 0.2),
(2) J shape (average of pA usage greater than 0.8). When
0.2 ≤ average pA usage ≤0.8, we first calculate the expected
variance of each pA using the binomial distribution, and
then we compare the observed variance of each pA site with
the expected variance of all pA sites, when the observed
variance is greater than third quartile of the expected vari-
ance is defined as (3) overdispersed, and the first quartile less
than the expected variance is defined as (4) underdispersed,
and the others are (5) Multimodal.

Expected pA length

Given a gene with K(K > 1)pA sites, let us denote the
K pA sites by θ1, θ2, · · · , θkand their corresponding weights

by π1, π2, . . . , πk. Note that θ1 > θ2 > · · · > θk,
K∑

k = 1
πk =

1 and πk > 0. The expected pA length is given by

θ̄ =
K∑

k = 1

πk
θk − θ1

θK − θ1

which normalizes the pA length to the range of [0, 1]. If
proximal pA sites are used more frequently, the expected pA
length will be close to 0; if distal pA sites are preferred, its
value will be close to 1. Thus, the expected pA length serves
as an indicator of pA site usage. If weights of all pA sites are
0, then the expected pA length is not defined, which should
be represented using a missing value such ‘NA’.

SIMULATED DATASETS

Theoretical validation on simulated datasets

To assess the performance of SCAPE, we simulate data for
a single gene that mimics real scRNA-seq as follows:

1) the number of APA isoforms or pA sites K ∈ {1, 2, 3}
is uniformly sampled.

2) the 3’ UTR length is set to L = 2000 and the poly(A)
length is uniformly sampled from [50, 200].

3) K pA sites are randomly selected on the 3’ UTR such
that adjacent sites are at least 500 bp away.

4) standard deviation for each pA site is randomly picked
from {5, 10, 15, 20, 25, 30}.

5) weights for K isoforms and the noise component are
generated using a Dirichlet distribution such that iso-
form weights are 0.2 to 1 and noise weight is around
0.1.

6) fragment length mean and standard deviation are uni-
formly sampled from [250, 350] and [20, 40], respec-
tively.

7) poly(A) length is sampled from an empirical distribu-
tion estimated from a mouse dataset, which falls in the
range of [10, 130] with its mode located at 50.

8) mean and std of pair-end reads are set to 120 and 10,
respectively.

9) 10% of R1 reads (with poly(A)) are kept to represent
reads that can be mapped to the genome, while other
unmapped reads are represented using a stretch of ‘N’.

10) the number of reads is uniformly sampled from 0 to
5000.

11) 2000 datasets are generated by repeating the previous
steps. For each dataset, we performed SCAPE analy-
sis by setting the maximum number of isoforms to 3,
the mean and std of fragment length to 300 and 30, re-
spectively. We filter out low weight APA components
by varying the cutoff from 0 to 0.2 with a step size of
0.01.

In this simulation, the noise weight is 0.1 and APA com-
ponents weights are larger than 0.2 in general. Supplemen-
tary Figure S1 B-E shows the parameter comparisons be-
tween SCAPE results and the ground truth. The x-axis rep-
resents the component weight cutoff.

Panel (B) shows the precision and recall of the number of
matched pA sites (within 50 bp of a pA site in the ground
truth). The overall precision and recall are higher than 0.75,
which supports the correctness of the prediction. The best
performance is achieved at a cutoff between 0.05 and 0.1,
where both precision and recall are around 0.9, which shows
a high consistency with the ground truth.

Panel (C) shows the root-mean-square error (RMSE) be-
tween inferred pA site location and the ground truth. If no
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pA site (ground truth) is found within 200bp of an inferred
pA site, the difference is set to 200bp. It can be seen that
the average difference drops as the cutoff increases. When
the cutoff is 0.1, the average difference between inferred pA
sites and the ground truth is around 30bp.

Panel (D) shows the Spearman Rank correlation between
inferred pA site std and the ground truth. Due to the high
noise-to-signal ratio, the estimated std of pA site shows a
low consistency with the ground truth. Thus, we check if the
relative order of std of different components is kept instead.
Given a component weight cutoff, we first identify matched
pA sites (within 50bp of a pA site in the ground truth); then
we perform Spearman rank correlation for genes with more
than 2 matched pA sites; after that we discard genes that re-
turn an invalid correlation (NA); finally, we derive the mean
and median of the correlations over all genes. At cutoff 0.1,
the mean is 0.5 and the median is 0.9, which shows a relative
strong agreement with the ground truth.

Panel (E) shows the RMSE between inferred APA com-
ponent weights and the ground truth. If no pA site (ground
truth) is found within 200 bp of an inferred pA site, the dif-
ference is set to the weight of the inferred component. In
general, the difference decreases as the cutoff increases. The
difference ranges from 0.0215 to 0.0245, which is very low.

In summary, we demonstrate that SCAPE is able to ac-
curately identify and quantify APA isoforms from the the-
oretical perspective.

Method comparison on simulated datasets

We compare SCAPE with several state-of-the-art methods
including Sierra (15), scAPA (13), scAPAtrap (14), SCAP-
TURE (17) and MAAPER (18) on a simulated dataset,
which is generated as follows:

1) 3’ UTR annotations of 3533 genes are taken from
QAPA (26).

2) for each gene, the number of pA sites K ∈ {1, 2, 3} is
uniformly sampled.

3) K pA sites are randomly selected on the UTR such that
adjacent sites are 250–350 bp away.

4) standard deviation for each pA site is randomly picked
from {5, 10, 15, 20, 25, 30}.

5) poly(A) length is sampled from an empirical distribu-
tion estimated from a mouse dataset, which falls in the
range of [10, 130] with its mode located at 50.

6) weights for K isoforms and the noise component are
uniformly sampled such that summed isoform weights
is 0.9 and noise weight is 0.1.

7) mean and standard deviation (std) of fragment length
(insert size) are uniformly sampled from [250, 350] and
[20, 40], respectively.

8) mean and std of pair-end reads are set to 120 and 10,
respectively.

9) 10% of R1 reads (with poly(A)) are kept to represent
reads that can be mapped to the genome, while other
unmapped reads are represented using a stretch of ‘N’.

10) with the above information, we could infer the exact
locations of pair-end reads on the 3’ UTR and use the
corresponding DNA fragments to generate the reads.

11) the number of pair-end reads is uniformly sampled
from 0 to 5000.

We analyzed the simulated scRNA-seq dataset using the
chosen tools with the following specifications. For SCAPE,
mean and std of the fragment length are set to 300 and 50;
maximum number of pA sites is set to 5. Default parameters
are used in the analysis of Sierra, SCAPTURE, MAAPER,
scAPA and scAPAtrap. Since scAPAtrap does not filter out
low weight components, we set the component weight cut-
off to 0 for SCAPE. Sierra, scAPAtrap and scAPA provide
intervals of the peaks of corresponding pA sites, but do not
provide the exact locations of pA sites. We use the end point
(near poly(A)) of the interval as the location of the predicted
pA site for these methods.

Generation of the mouse bone marrow dataset

This section describes sample preparation and data genera-
tion of the mouse bone marrow (MBM) dataset.

Mice. C57BL/6J mice were purchased from Beijing HFK
Bioscience Co. Ltd (Beijing, China), housed and bred under
SPF condition (Specific Pathogen Free) at Laboratory Ani-
mal Center of West China Second University Hospital and
were allowed access to diet and water ad libitum. All an-
imal experiments were carried out following the protocols
approved by the Institutional Animal Care and Use Com-
mittee of West China Second University Hospital [(2018)
Animal Ethics Approval No.004].

Tissue preparation. The bone marrow cells were obtained
from the femur and tibia of C57BL/6 mice aged between
8 and 9 weeks and filtered via a 70-�m cell strainer (BD
Biosciences). After centrifuging at 1,200 rpm for 3 min, the
cells were re-suspended in PBS containing 2% FBS at a
concentration of 1.2 × 107 cells/ml. Hematopoietic stem
and progenitor cells (HSPCs) were negatively selected using
the EasySep™ Mouse Hematopoietic Progenitor Cell Isola-
tion Kit (StemCell, Cat No. 19856) with a lineage cocktail
(biotinylated-CD11b, B220, Gr-1, TER-119 and CD3e), ac-
cording to the manufacturer’s instructions. Sorted cells were
pelleted by centrifugation and lysed in TRIZOL reagent
(Invitrogen).

Bulk RNA sequencing and analysis. Total RNA was pu-
rified using TRIzol reagent (Invitrogen). RNA purity was
checked using the NanoPhotometer® spectrophotometer
(IMPLEN, CA, USA) and the concentration was mea-
sured using Qubit® 2.0 Fluorometer (Life Technologies,
CA, USA). The integrity of RNA was assessed using the
RNA Nano 6000 Assay Kit of the Bioanalyzer 2100 sys-
tem (Agilent Technologies, CA, USA). Sequencing libraries
were generated using NEB Next® UltraTM RNA Library
Prep Kit for Illumina® (NEB, USA) following the man-
ufacturer’s recommendations. The library fragments were
purified with AMPure XP system (Beckman Counlter, Bev-
erly, USA). The libraries were loaded on the Illumina HiSeq
2500 platform for 150 bp pair-end sequencing at the An-
noroad Gene Technology Corporation (Beijing, China).
Fastq files were initially subjected to a quality control step
using FastQC (v0.10.1), and the reads were then trimmed
using Trimmomatic (27). The filtered reads were mapped
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to mouse (mm10) using STAR (v2.5.3) (20) with Ensembl
GRCm38 (release-84) annotation.

Oxford Nanopore Technologies (ONT) library prepara-
tion and sequencing. Total RNA from bone marrow (cKit+)
samples of 8-weeks-old C57BL/6J mice was extracted using
TRIzol reagent (Invitrogen) following the manufacturer’s
protocol. Starting from 1500 ng total RNA, mRNA selec-
tion was performed using Dynabeads® Oligo (dT)25 (In-
vitrogen). The mRNA was converted to cDNA and 10 am-
plification cycles of PCR using PCR-cDNA Sequencing Kit
(Oxford Nanopore Technology, SQK-PCS109). The cDNA
PCR products were end-repaired and added dA-tailed us-
ing the NEBNext® Ultra II End Repair/dA-Tailing Mod-
ule (NEB, E7546) and then ligated to Naı̈ve barcode by us-
ing Blunt/TA Ligase Master (NEB, M0367) and tethered to
the adapter by using Quick Ligation Module (NEB, E6056).
The library was loaded into PromethION flowcells and se-
quenced over 72 h. Finally, used the ‘high accuracy’ base-
calling mode of guppy basecaller to convert the electrical
signal of fast5 to the base sequence of fastq.

PacBio library preparation and sequencing. The full-length
cDNA libraries were generated as described above, 5 �g
of full-length cDNA were used for size selection using the
BluePippin™ Size Selection System (Sage Science, Beverly,
MA, USA). SMRTbell library was constructed using 1
�g size-selected (above 4 kb) cDNA with the Pacific Bio-
sciences SMRTbell template prep kit. The binding of SM-
RTbell templates to polymerases was conducted using the
Sequel II Binding Kit, and then primer annealing was per-
formed. Sequencing was carried out on the Pacific Bio-
science (PacBio) Sequel II platform. Sequencing library
construction and sequencing were performed in Annoroad
Gene Technology (Beijing, China).

Single-cell RNA Library preparation and sequencing.
HSPCs were collected as described before. The collected
cells were resuspended in PBS containing 1% BSA at the
concentration at 1 × 106 cells/mL and prepared for single-
cell library preparation. Single cells were prepared in the
Chromium Single Cell Gene Expression Solution using the
Chromium Single Cell 3′ Gel Bead, Chip and Library Kits
v2 (10× Genomics) as per the manufacturer’s protocol. The
cells were then partitioned into Gel Beads in Emulsion in
the Chromium instrument, where cell lysis and barcoded re-
verse transcription of RNA occurred, followed by amplifi-
cation, shearing 5′ adaptor, and sample index attachment.
Libraries were sequenced on the Illumina NovaSeq 6000
platform at Novogene, Beijing, China.

Analyses of full-length sequencing from PacBio and ONT.
For PacBio dataset, the 142 686 raw reads were clus-
tered and polished using the Iso-Seq pipeline (SMRTLink,
v5.1.0.26412) (28) and 20,106 high-quality, full-length se-
quences were used for the follow-up analysis. The raw
reads were aligned to Ensembl GRCm38 (release-84) us-
ing GMAP (version 2018-07-04) (29). For ONT dataset,
raw reads were initially subjected to a quality control step
using NanoComp (v1.33.1) (30). Then 32 117 065 high-
quality reads of long-read sequencing were aligned to the
same genome using Minimap2 (v2.17-r974-dirty) (31). We
further used FLAIR (v1.5) (32) to construct full-length iso-
forms with default parameters for PacBio and ONT reads.

Validation of APA events on tissue sections

Fresh Frozen Sections. Brain tissues and femurs were iso-
lated after perfusion using DEPC-PBST. Femurs were im-
mersed in 4% paraformaldehyde (PFA) in 1 × PBS at 4ºC
for 24 h, transferred into 14% (w/v) EDTA (pH 8.0) at
4ºC for 48 h, next into DEPC-treated water containing 30%
(w/v) sucrose at 4ºC for 24 h for dehydration and tissue
clearing, followed by embedding and cryostat. Brains were
directly embedded in O.C.T. and snapped frozen in the gas
phase of liquid nitrogen following storage at -80 ºC until
use. All the fresh frozen sections were sectioned on a Leica
CM1950 cryostat at a thickness of 10 μm. For brain sec-
tions, a fixation at room temperature for 45 min using 4%
PFA in 1× PBS was performed following dehydration in a
gradient series of ethanol (75%, 85% and 100% respectively,
v/v). For femur sections, O.C.T. were washed away before
dehydration, skipping the fixation step. All the sections were
kept at -80 ºC until use.

in situ RNA detection. RNA fluorescence in situ hy-
bridization (RNA-FISH) employing padlock probes was
performed according to the methods described previously
(33–35) with some modifications. In brief, padlock probes
were designed using in-house python scripts. The 5’- and 3’-
arms were reverse complement to the mRNA, leaving a nick
between 5’- and 3’-sites. All priming sites of the padlock
probes were assessed by ultrafast alignment using Bowtie2,
and the probes that bind specifically to the targets were
shortlisted.

Sections were equilibrated to room temperature before
permeabilization in 0.1 M HCl and 0.2 mg/mL pepsin at
37ºC for 5 min. After washing twice with DEPC-PBST,
a heat shock was performed in the TE buffer at 70ºC for
10 min, according to the method described by Codeluppi
et al. (36). Sections were then hybridized with a pool of
padlock probes (100 nM) and RCA primers in 2× SSC
and 20% formamide at 37ºC for 4 h, briefly washed with
DEPC-PBST, and incubated with SplintR Ligase mixture
(250 nM SplintR Ligase with 1× BSA and 1 U/μl Ri-
boLock RNase Inhibitor) at 37 ºC for 1 h. The sections
were then washed twice with DEPC-PBST, post-fixed with
a 4% PFA in 1 × PBS at room temperature for 30 min. Af-
ter washing twice with DEPC-PBST, the rolling-circle am-
plification (RCA) was performed using phi29 DNA poly-
merase mixture (1 U/μl phi29 DNA polymerase and 1 mM
dNTP mixture in 1× phi29 buffer) at 30ºC for 2 h. With
a brief wash with DEPC-PBST, the fluorescence labeled
detection probes were added at the condition of 20% for-
mamide, 2× SSC at room temperature for 30 min. The sec-
tions were mounted in SlowFade with DAPI and covered
with a cover slit. Images were acquired using a Leica DM6B
widefield fluorescence microscope under 40× objective lens
and DAPI, GFP, Cy3, TXR and Cy5 filter set. Area scan
and images stitching were performed using LAS X suite. Af-
ter exporting tiled images as TIFF format, bright compact
FISH signals were detected using CellProfiler (3.1.8) (37)
with a custom pipeline. In brief, signal dots were recognized
using the ‘IdentifyPrimaryObjects’ module with a modified
threshold, keeping the coordinates of each dot. Due to the
FISH signals are very compact in a tiled large image, these



PAGE 7 OF 19 Nucleic Acids Research, 2022, Vol. 50, No. 11 e66

coordinates were virtually plotted under DAPI channel for
better pattern observation.

Analysis of scRNA-seq data in mouse bone marrow (MBM)
dataset

Alignment and quantification. The sequencing data were
processed using Cell Ranger software (version 3.0.0) with
default parameters, and mapped to the mouse (mm10)
genome. We first removed outliers using isOuterlier from
scater package (v1.12.2) (38), then removed low-quality
cells (gene count < 500 or the mitochondrial gene ra-
tio > 25%).

Clustering and annotation. We used Seurat (v3.1.0) (21)
for downstream analyses including data normalization
(NormalizeData, LogNormalize method, scaling factor
10,000), data feature scaling (ScaleData), variable gene de-
tection (FindVariableGenes with vst method) and PCA of
variable genes (RunPCA). Then the original Louvain algo-
rithm (FindClusters) with clustering resolution 0.6 was per-
formed to cluster the cells.

Weighted nearest neighbor (WNN) analysis. Gene and
pA expression matrixes were integrated by weighted
nearest-neighbor (WNN) model using the ‘FindMulti-
ModalNeighbors’ function from R package Seurat (v. 4.0.5)
(39).

Trajectory analysis. The STARsolo (40) was used to esti-
mate proportions of spliced and unspliced reads in mouse
bone marrow dataset. The spliced and unspliced count ma-
trices were inputted to scVelo (41) to infer the pseudotime
and driver genes in ‘dynamic’ mode with default parame-
ters.

GO analysis. Based on a given classification of cells, dif-
ferentially expressed pA sites were obtained using the Find-
AllMarkers function in the Seurat package with default pa-
rameters. These pA sites were further filtered using criteria
P-value <0.01 and log2 fold change >0.25 to generate sig-
nificant pA sites, the host genes of which were fed into clus-
terProfiler (42) to perform GO enrichment analysis.

Analysis of mouse cell atlas (MCA), mouse iPSC (MIC) and
human Glioblastoma (HGB) datasets

We download the mouse cell atlas, mouse iPSC and hu-
man GBM (Glioblastoma) datasets from GSE108097 (12),
GSE103221 (43) and PRJNA5795936 (44), respectively Fol-
lowing the same preprocessing steps described by the origi-
nal publications, we retrieved high quality cells for down-
stream analysis in Seurat(v.3.1.0) (21), including variable
gene detection (FindVariableGenes with vst method), PCA
using variable genes (RunPCA) and UMAP using PCA ma-
trix (RunUMAP).

Mouse cell atlas and iPSC datasets. Differentially ex-
pressed pA sites for each tissue were obtained using ‘Find-
AllMarkers’ in Seurat by inputting the pA count matrix.
Top pA sites (P-value < 0.01 and log2 fold change > 0.25)
were then selected for GO enrichment analysis using
DAVID (45).

Human GBM datasets. The presence/absence of somatic
copy-number aberrations (CNAs) was assessed with CON-
ICSmat (46). Malignant and non-malignant cells were clas-

sified based on chromosome 1–22 with the default parame-
ters as described in section ‘CNA Analysis of Tumor versus
Normal Cells’ (44). Briefly, raw counts in cells of each pa-
tient were scaled to log(CPM/100 + 1) and centered by the
average expression in each cell. Subsequently, we fit a two-
component Gaussian mixture model on the average expres-
sion values across all cells for each chromosome, whereas
only genes robustly (log(CPM/100 + 1)) > 1) expressed
in more than 10 cells were considered. We then only fo-
cused on chromosomes with a significant deviation of the
log-likelihood of the model compared to a one-component
model (likelihood ratio test < 0.001) and a difference in
Bayesian Inference Criterion (BIC) > 300. These chromo-
somes were considered to have somatic CNVs. Cell with
CNV alterations with a cutoff on the posterior probability
(pp > 0.8) were classified as tumor cells, whereas cells were
classified as normal cells. Cells that could not be clearly as-
signed to a genotype (e.g. 0.2 < pp < 0.8) remained unclas-
sified.

3’-Seq dataset analyses

The mouse 3’-seq dataset of ex vivo isolated mouse mul-
tipotent steady state hematopoietic stem cells (sHSC) and
proliferating HSCs (16h pIC; pHSC) was downloaded from
PRJEB29693 (47). Following the preprocessing steps de-
scribed in the original publication, fastq files first went
through a quality control step using FastQC (v0.10.1), then
the reads were trimmed using Trimmomatic (27). The fil-
tered reads were mapped to mouse genome (mm10) using
bowtie2 (2.4.1) (48) with Ensembl GRCm38 (release-84) an-
notation.

Differential miRNA expression analysis

For mouse brain and bone marrow, the miRNA expres-
sion matrix was downloaded from miRBase (http://www.
mirbase.org/). For human GBM and normal brain, miRNA
expression matrices of all GBM patients were fetched by
bioconductor package TCGAbiolinks (49) from TCGA
with `GDCquery(project = ‘TCGA-GBM’,data.category
= ‘Transcriptome Profiling’, data.type = ‘miRNA Expres-
sion Quantification’)`. Datasets of all normal human brain
tissues were downloaded from R package microRNAome
(50) with `data(‘microRNAome’)`, samples annotated as
astrocyte, cerebellum and brain were included for down-
stream analysis. For each dataset, we performed normaliza-
tion and differential expression analysis using DESeq2 (51).
Significance of differentially expressed miRNAs was set to
adjusted P-value <0.05 and absolute log2(fold-change) > 1.

RESULTS

Overview of SCAPE

In scRNA-seq, each pair-read contains read 1 (R1) and
read 2 (R2), the former consists of a cell barcode, a unique
molecular identifier (UMI), and a poly(A) tail (Figure 1A),
whereas the latter provides the sequence information on 3’
UTR that is not directly adjacent to the pA site. Therefore,
scRNA-seq data cannot directly pinpoint the APA location.

http://www.mirbase.org/


e66 Nucleic Acids Research, 2022, Vol. 50, No. 11 PAGE 8 OF 19

However, a size-selection step is used in the sequencing li-
brary preparation step to control the average length of in-
serted cDNA fragments, which provide key information to
infer pA sites. By utilizing this insert size information, we
developed a Bayesian model SCAPE that enables de novo
identification of pA sites and quantification of APA events
using scRNA-seq data (Figure 1A, Online Methods, Sup-
plementary Note 1).

SCAPE models the scRNA-seq data as a mixture of K
isoform components and one noise component, i.e. a read
either arises from an isoform or noise. The ith (i = 1. . .K)
isoform component (Figure 1A) has three parameters: (a)
the mean position of the pA site αi , (b) the standard devi-
ation (std) of the pA site βi , (c) the weight or proportion
πi . The idea is to infer the kth pA site (θnk) on nth frag-
ment using the start position of R2 on 3’ UTR (xn), frag-
ment length (fn) and poly(A) length (sn). As a fragment only
consists of the 3’ UTR and the poly(A), the length of 3’
UTR is given by fn − sn. Since the end position of the 3’
UTR is the pA site, we could infer it by adding the length
of 3’ UTR (fn − sn) to its start position (xn), i.e. θnk = xn +
(fn − sn) − 1. In practice, the start position (xn) is known,
while the fragment length (fn) and poly(A) length (sn) pos-
sess uncertainties that need to be modelled. In the pair-end
sequencing, the insert size (fn) distribution can be estimated
from the read pairs by SCAPE that are mapped to large
constitutive regions such as 3’ UTR, which are typically in-
tronless. Poly(A) length (sn) distribution could be estimated
from the reads that cover pA sites, or data from the litera-
ture (52,53) that directly measure the poly(A) length. With
these specifications, SCAPE integrates out the uncertainties
and infers the probabilities of a read arising from isoforms
or noises. The number of components is automatically se-
lected using Bayesian Information Criterion (BIC). We used
the Expectation-Maximization (EM) algorithm and numer-
ical optimization to infer the parameters (Online Methods
and Supplementary Note 1).

SCAPE can be used to analyze single- or pair-end
scRNA-seq data such as 10× genomics or Microwell. Users
need to further specify the maximum number of isoforms in
the data, the minimum weight of an isoform component, the
mean and standard deviation (std) of fragment lengths. The
outputs are K sets of parameters that specify the location
(mean and std), weights of pA sites and the noise compo-
nent, as well as the component membership of each input
read (Figure 1A). With these parameters, SCAPE can cal-
culate statistics of interest such as expected pA length and
perform differential analysis (Online methods).

Robust identification of APA in simulated and real datasets

To validate the robustness of SCAPE, we simulated 2000
datasets according to the hypothesized statistical model.
We demonstrated that the estimated parameters agreed well
with the ground truth (Supplementary Figure S1B-E), in
general estimated pA sites were within 30 bp of the ground
truth and estimated weights varied less than 0.03), which
validated the accuracy of our inference algorithm. Next, we
compared SCAPE with several methods including Sierra
(15), scAPA (13), scAPAtrap (14), SCAPTURE (17) and
MAAPER (18) on a simulated scRNA-seq dataset that in-

cludes 3533 genes and 12 255 pA sites (Online Methods).
SCAPE exhibited a higher precision, recall and F-score than
other methods (Figure 1A-D) in terms of pA site identi-
fication. Moreover, the number of matched real pA sites
of SCAPE (N = 9592) was much larger than MAAPER
(N = 4067), Sierra (N = 3759), SCAPTURE (N = 2404),
scAPAtrap (N = 1313) and scAPA (N = 134). In terms of
isoform weight quantification, SCAPE showed the highest
correlation with the ground truth (R2 = 0.97), while the best
performance of other methods was R2 = 0.53 (Supplemen-
tary Figure S1G).

To further assess the performance of SCAPE in real
datasets, we generated a comprehensive RNA-seq dataset
from the same mouse bone marrow (MBM) sample to cross
validate the predictions, including 10x scRNA-seq, bulk
RNA-seq, ONT and PacBio data (Online Methods, Sup-
plementary Table S2). Moreover, we used a mouse cell atlas
(MCA) scRNA-seq data (Microwell-seq) (12) and bulk 3’
tag sequencing data (3’-seq) from mouse bone marrow (47)
as external validations. From 10x scRNA-seq data, SCAPE
detected 15 576 pA sites, 78.1% of which have been anno-
tated in GENCODE v13 (54) or polyA DB (55) (Figure
2A, Supplementary Table S3). To further validate these pre-
dicted pA sites, we first searched for the poly(A) signals
within 50 bp upstream region and compared the enrich-
ment with the random 3’UTR sequences after 1000 permu-
tations. We found that the majority of identified pA sites
contained canonical poly(A) signals (49% and 12.2% for
AATAAA and ATTAAA, respectively), or their one-base
edit (20.6%) (Figure 2B), which are significantly higher than
those of the random 3’UTR sequences (0.2% for AATAAA
and 0.012% for ATTAAA, T test P ≤ 2.2e–16, Supplemen-
tary Figure S2A). These results showed that a large pro-
portion of pA sites identified by SCAPE have annotations
and poly(A) signals. The rest 3,411 (21.9%) predicted pA
sites were not annotated. Notably, 93.9% of unannotated
ones can be validated by ONT or PacBio (Supplementary
Figure S2B), this validation rate is significantly higher than
that for randomly-selected sites from 10 000 3’ UTR re-
gions (21.2%, Chi-square test, P < 2.2e–16, Supplemen-
tary Figure S2C).For the rest of 6.1% unvalidated ones, we
found that they were from genes expressed in fewer cells
(Wilcox test P = 0.017, Supplementary Figure S2D), po-
tentially explaining why they were not captured by the bulk
long-read sequencing. Next, we used the high-confident pA
sites identified by ONT sequencing as the ‘ground truth’
in mouse bone marrow, and compared the pA sites iden-
tified by SCAPE, scAPA, Sierra, scAPAtrap, SCAPTURE
and MAAPER. 83.7% of pA sites identified by also were
supported in one or more methods (Supplementary Figure
S2E), suggesting a high consistency between SCAPE and
other methods. Simultaneously, SCAPE exhibited higher
precisions than other five methods, with comparable recalls
to that of MAAPER and are higher than the other four
methods. Overall, SCAPE has a consistently higher F-score
than other methods even when using 30 bp as the cutoff
(Figure 2C).

To demonstrate that the SCAPE can identify anno-
tated, novel and multiple APA sites, we cross-validated the
SCAPE-predicted pA sites using data generated by differ-
ent sequencing platforms or methods. For example, two of



PAGE 9 OF 19 Nucleic Acids Research, 2022, Vol. 50, No. 11 e66

Figure 2. SCAPE discovers reproducible unannotated APA. (A) Comparison of SCAPE inferred pA sites from MBM 10x genomics dataset with pA
annotations from GENCODE v13 and polyA DB. Inferred pA sites within 50 bp of annotated pA sites are treated as the same pA site. (B) Proportion
of poly(A) signals (AATAAA or ATTAAA) in the 50 bp upstream region of SCAPE inferred pA sites. The sequence logo shows the AT-rich 6-mers. (C)
Method comparison for detecting pA sites with SCAPE, Sierra, scAPAtrap, scAPA, SCAPTURE and MAAPER. Precision (left), recall (middle) and
F-score (right) of different methods on MBM datasets with varying cutoff (x-axis) for matched pA sites. Matched pA sites are predicted pA sites that are
within x bp (cutoff) of the ground truth. (D) Sashimi plots of pA sites in Cdk19, Fbxo42 and Kdm5a from mouse bone marrow inferred by SCAPE. PacBio
full length sequencing, ONT, bulk RNA-seq, scRNA-seq (10x genomics) were generated from the mouse bone marrow sample, and Microwell and 3’-Seq
are public datasets of mouse bone marrow. Dashed lines and the surrounding grey areas indicate the mean and standard deviation (std) of predicted pA
sites. Transcript annotations from GENCODE v13 are given at the bottom. (E) Sashimi plots of SCAPE inferred pA sites of Gtf2a1 in mouse bone marrow.
Vertical blue lines indicate the estimated pA sites of SCAPE. Transcript annotation from GENCODE v13 is given at the bottom. (F) in situ hybridization
of two APA isoforms of Gtf2a1 in mouse bone marrow. The long (Gtf2a1 L) and short (Gtf2a1 S) isoforms are colored by green and red, and the signal
counts are provided for each isoform. (G) Comparison of SCAPE predicted weights (blue) and in situ hybridization signals (red) of Gtf2a1 isoforms in
mouse bone marrow. The dots and error bars represent mean and standard deviation of SCAPE estimations of 4 biological replicates from microwell-based
mouse cell atlas dataset.
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the three annotated pA sites in Cdk19 were identified by
SCAPE using data from both 10x and Microwell-Seq, and
further validated using 3’-seq, ONT and PacBio datasets.
More importantly, SCAPE identified one and four novel
pA sites in Fbxo42 and Kdm5a from the MBM data, re-
spectively (Figure 2D), which were supported by the ONT
or PacBio derived from the same sample as well as pub-
lic Microwell, and the 3’-seq data validated 4 pA sites ex-
cept the most proximal one. In contrast, bulk RNA-seq
data did not show clear change points at these sites, sug-
gesting that APA inference directly based on bulk RNA-
seq might be challenging. Next, we validated a distal novel
pA site (Figure 2E) predicted by SCAPE in a transcription
factor Gtf2a1, which was associated with white blood cell
counts in genome-wide association studies (56,57). We per-
formed in situ hybridization (Figure 2F) for different APA
isoforms of Gtf2a1 and their expression level were consis-
tent with the SCAPE predicted isoform weights (Figure
2G). In summary, our results suggested that SCAPE outper-
formed other methods in terms of precision and recall at dif-
ferent cutoffs, providing the highest sensitivity and accuracy
in both the simulated and real datasets. Moreover, SCAPE
enabled de novo identification of APA sites with high accu-
racy and robustness in mouse bone marrow at single-cell
level.

APA provides an extra layer of information for cell clustering

Next, we applied SCAPE on the mouse cell atlas (MCA)
dataset to chart pA sites across 36 mouse organs at single-
cell level (12). A total of 31 558 pA sites were identified from
119 921 cells, 17 751 (56.2%) pA sites of which were an-
notated in GENCODE v13 (54) or polyA DB (55), while
13 807 (43.8%) were unannotated (Supplementary Figure
S3A). 65% of them had canonical or one-edited poly(A) sig-
nals within their 50 bp upstream regions (Supplementary
Figure S3B).

To further dissect the contributions of gene expression
and APA isoform to the cell clustering, we clustered the cells
based on the expression of APA isoforms (read counts as-
signed to a pA site were used as the proxy of APA isoform).
We treated the gene expression and APA isoform as ‘differ-
ent modals’ and performed the multimodal analysis from
Seurat, which uses weighted nearest-neighbor (WNN), an
unsupervised method to learn the relative utility of the gene
expression and APA isoform in each cell (39). For example,
we extracted endothelia and epithelial cells from all organs
and clustered them using WNN, where gene expression and
APA isoform were used and their relative contributions to
the clustering could be quantified as weights. Note that the
cell type annotation is obtained by clustering each organ in-
dependently based on gene expression in the original publi-
cation (12). Independent unsupervised analysis of the gene
and APA expression revealed largely consistent cell classifi-
cations in endothelia (Endo) and epithelial (Epi) cells from
MCA (Figure 3A, left and middle). However, they indeed
exhibited some differences. For example, Endo Maged2hi

cells, which have been identified as an subcluster from the
previous study (12), were partially blended with other cells
in gene expression results but separated clearly in the APA
data (red circle in Figure 3A), potentially due to the cell-

specific APA isoforms such as Clic4 (Supplementary Fig-
ure S3C-D). We thus used the WNN graph to derive an in-
tegrated UMAP with both gene and APA expression mea-
sured within a cell and to obtain a joint definition of cellu-
lar state for Endo and Epi cells (Figure 3A, right). More-
over, when comparing the unsupervised weights calculated
by WNN from Seurat (Figure 3B), we noticed that cells clas-
sified as Endo Maged2hi cells were assigned higher APA
modality weights, while Epi (Fetal kidney) cells were as-
signed higher gene expression modality weights, suggesting
that both gene and APA level contribute to the improve-
ment of cell clustering in different cell types.

Next, we applied this multimodal integration of gene ex-
pression and APA to derive WNN UMAPs for 36 mouse
organs (Supplementary Figure S3E, F). In total, 67 clus-
ters were identified based on APA isoform expression (Fig-
ure 3C). Next, we identified 1608 tissue-specific APA iso-
forms (Figure 3D, Supplementary Table S4). Moreover, we
noticed that tissues from fetal and neonatal stages tend to
be clustered together, suggesting that there may be some
potentially development-related APA isoforms (Figure 3D,
E). To compare the levels of APA across various organs, we
quantified the number of genes with multiple pA sites (Fig-
ure 3F) in each organ by randomly selecting 3000 UMI per
cell, mitigating the biases brought by varying sequencing
depth. Interestingly, testis showed one of the highest num-
bers of multi-pA genes with the most unannotated pA sites
and was clustered as an outlier (Figure 3D–F), consistent
with the ‘out-of-testis’ hypothesis that testis had permissive
transcription, allowing novel isoforms (e.g. Supplementary
Figure S3G) and a higher transcriptional diversity to be se-
lected when beneficial (58,59). Taken together, these results
suggest that APA isoform-level quantification provides ex-
tra information and improves the accuracy of cell cluster-
ing. One possible explanation was that certain content of
the cell specificity was regulated at the APA isoform level
but was hidden at the gene level.

Differential APA analysis reveals coordinated regulation be-
tween APA and miRNA

To explore the extent of tissue- and cell-type specific reg-
ulation of APA transcripts, we analyzed the gene expres-
sion and APA isoforms in the brain and bone marrow cells
(n = 9264, Figure 4A) from MCA dataset. In total 15
clusters were formed, and 1348 APA isoforms were differ-
entially expressed compared between two tissues (Supple-
mentary Table S6). These isoforms belonged to genes that
were enriched in tissue-relevant pathways such as ‘ensheath-
ment of neurons’ in the brain and ‘defense response to bac-
terium’ in the blood (Figure 4B, Supplementary Table S5).
Among 161 highly tissue-specific pA sites (P-value < 0.01
& |log2(fold change) | > 1), we presented two genes Mbp
and Bzw1 as examples, where differential expression was ob-
served for APA isoforms but not for the whole gene. Mbp, a
gene related to neuro and IL-1 pathway (60), was expressed
both in the bone marrow and brain (Figure 4C). In con-
trast, the proximal pA site (18:82558711:+) was specifically
expressed in blood cells, whereas the distal pA site of Mbp
(18:82585640:+) was preferentially expressed in the brain
cells (Figure 4D). A similar pattern was also found in Bzw1,
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Figure 3. Tissue- and cell-type specific APA isoforms improve cell clustering. (A) UMAP plot of gene expression (left), APA isoforms (middle) and
weighted combination of gene and APA isoforms (right) similarities (WNN) for endothelia and epithelial cells from MCA. Cell types are indicated by
different colors. Endo Magedhi (red dotted circle) do not separate in gene expression analysis, but form distinct cluster in APA and WNN analysis. Epi,
epithelial cell; Endo, Endothelia cell; OVSEC, Ovarian vascular surface endothelium cell. (B) Mean gene and APA modality weights for cells in (A).
Modality weights were calculated for each cell without knowledge of cell type labels. (C) UMAP plot using WNN analysis based on gene expression and
APA isoforms of all cells from 36 mouse organs. Organs are indicated by different colors. Cell types of clusters are labeled. (D) A hierarchical clustering
heatmap showing differentially expressed pA (columns) across mouse organs (rows). Yellow indicates to a high expression level, and purple corresponds
to low expression levels. (E) Sashimi plot showing differential isoform usage of Cnot8 across development stages. Proximal pA site 11:58117850:+ (left)
and distal pA site 11:58118599:+ (right) exhibit a variable expression in fetal, neonatal and adult organs. PacBio transcripts are provided at the top and
the annotations of Cnot8 transcripts are provided at the bottom. (F) Fraction of multi-pA genes (≥2 pA sites), in each organ after randomly selecting 3000
UMI per cell. Each dot represents a cell. Spleen and testis have the highest proportions of multi-pA genes.
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Figure 4. Differential pA sites between mouse bone marrow and brain. (A) UMAP plot of cells from mouse bone marrow and brain based on gene
expression from MCA dataset. Cell types are indicated by colours and texts. The left side contains mainly bone marrow cells and the right side are brain
cells. (B) GO enrichment of 1044 differentially expressed APA isoforms (correspond to multi-pA genes) in bone marrow and brain. Genes expressed in
the target organ were used as the background. (C) Mbp gene (top) and pA sites expression (middle and bottom) projected on UMAP plot (A). Each
dot represents a cell and the color represents the normalized expression using the ‘NormalizeData’ function of Seurat. Mbp showed expression in both
bone marrow and brain. pA site 18:82558711:+ is preferentially used in the bone marrow, while pA site 18:82585640:+ is preferentially used in the brain.
(D) Sashimi plot showing differential isoform usage of Mbp between brain and bone marrow. Annotations of miRNA binding sites and Mbp transcripts
are provided at the bottom. Proximal pA site 18:82558711:+ (left) exhibits a higher expression in three biological replicates of bone marrow, which has
no miRNA binding sites. Distal pA site 18:82585640:+ (right) exhibits a higher expression in two biological replicates of brain, which has two miRNA
binding sites. (E) Box plot of miRNA binding numbers per kilobase among APA region and common 3’ UTR region (Wilcox test P = 8.727e–9). APA region
represented variable 3’ UTR region among two transcript which caused by alternative polyadenylation. (F) Differentially expressed miRNAs targeting Mbp.
The Volcano plot shows all miRNA expressions in the brain versus bone marrow. X-axis and y-axis are the log2 fold change (significance cutoff = ±1)
and negative log10 adjusted p-value (significant cutoff = 0.05) of miRNA expression comparison between brain and bone marrow. Each dot represents
a miRNA with gray dots meaning no significance. The left and right plates contain miRNAs highly expressed in bone marrow and brain, respectively. 2
(red dots) out of 2 miRNAs targeting the 3’ UTR of Mbp passed statistical significance. Particularly, mmu-mir-124–2 is the top differentially expressed
miRNA between the brain and bone marrow, among all miRNAs. (G, H) Two differentially expressed miRNAs targeting Mbp: mmu-mir-124-2 (G) and
mmu-mir-22 (H). The arrows indicate their genomic locations in panel (D). Y-axis is the normalized expression in log scale and x-axis indicates the organs.
Both mmu-mir-124-2 and mmu-mir-22 are highly expressed in the brain.
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coding for an RNA binding protein, whose APA isoforms
were switched between brain and blood cells (Supplemen-
tary Figure S4B–E).

The 3’ UTRs often contain binding sites of miRNAs and
RNA binding proteins involved in the regulation of tran-
scripts. We predicted miRNA binding sites in 3’ UTR of
each gene using TargetScan (61) and calculated the miRNA
binding numbers per kilobase (kb) of the APA shorten-
ing and inclusion regions in the mouse genome. A signifi-
cantly higher number of miRNA binding was observed in
the APA shortening region than that of in the common 3’
UTR region (Wilcox test P = 8.727e–9, Figure 4E), con-
sistent with the roles of miRNA in regulation APA iso-
forms (62). To investigate the potential links between the
tissue-specific APA isoforms and miRNAs, we compared
the miRNA expression between the mouse bone marrow
and brain based on data from miRbase (63). Among the
295 differentially expressed miRNA (Supplementary Table
S7), we highlighted two miRNAs that predicted binding
to the upstream region of the distal pA sites of Mbp (Fig-
ure D). Both miRNAs (Figure F–H) exhibited differential
expression for Mbp, where mmu-mir-124-2 exhibited the
highest significance and expression fold-change (adjusted
P = 2.5e–60) across all extracted miRNAs, the co-expression
of the Mbp long isoform and mmu-mir-124-2. Notably,
SCAPE enables the investigation of the heterogeneity of this
tissue-specific APA of Mbp at the single-cell level, we found
that the megakaryocyte and macrophage, even though they
were from bone marrow, use the distal pA sites, resemble the
APA usage of cells from the brain (Supplementary Figure
S4A), suggesting that the APA heterogeneity exists within
a tissue and the necessity of studying APA at the single-
cell level. For Bzw1, we observed that the short isoform
was co-expressed with mmu-mir-142a in the bone mar-
row (Supplementary Figure S4F–H), whereas the brain-
specific long isoform contains two mmu-mir-144 binding
sites (Supplementary Figure S4F, G, I), which showed a
320 fold up-regulation in the brain. These results suggested
that tissue-specific APA usage might be associated with ex-
pression of miRNAs that bind to their 3’ UTR, indicat-
ing the coordinated regulation between APA isoform and
miRNA.

Tumor-specific APA expression and regulation in human
glioblastoma

To characterize tumour-specific APA events, we compared
the APA expression of neuronal cells between tumour cells
and normal cells from human GBM (HGB) scRNA-seq
data (44) using SCAPE. Both immune and neuronal cells
were presented in the samples, according to the clustering
results of all cells (Supplementary Figure S5A). Here, we
only kept the neuronal cells (n = 6513) for comparison,
which were further clustered into five cell types (Figure A),
including neurons, astrocytes, oligodendrocyte progenitor
cells (OPC), oligodendrocytes and radial glia. KIF1B, in-
volved in neuronal apoptosis and transport of synaptic vesi-
cles (64), was expressed in all five cell types. The proximal
pA site (1:103066788:+, ENST00000377093) was highly ex-
pressed in the radial glia, astrocytes and OPCs, whereas the
distal pA site (1:10381671:+, ENST00000622724) was the
major isoform in the oligodendrocytes and neurons with

26 additional exons (Figure 5B, C), suggesting an isoform
switch in different cell types.

Differential APA usage was also observed in tumors com-
pared to healthy tissues. First, we performed CNA anal-
ysis for detecting the presence and/or absence of somatic
CNA indicated malignant or non-malignant cells, respec-
tively (Online Methods). CNA analysis revealed large-scale
amplifications and deletions in most cells, including the
glioblastoma hallmarks of chromosome 7 gain and chro-
mosome 10 loss (Supplementary Figure S6). Next, since as-
trocyte was the major cell type in HGB samples from all
three patients (Supplementary Figure S5B), we only kept
astrocytes from patient SF11159 (with the highest sequenc-
ing depth) for the comparison to exclude differences in pa-
tients and cell types. Clustering of the selected astrocytes
(Figure 5D) showed two separate clusters for tumor and
normal cells, where tumor cells were identified by CON-
ICSmat (46). CALM3, coding for a protein that binds cal-
cium and functions as an enzymatic cofactor (65), had an
APA isoform switch (Figure 5E-F), where distal pA site
(19:46610849:+) was more prevalent in the malignant cells.
Expressions of miRNAs targeting 3’ UTR of CALM3, in
normal and tumor cells were obtained from microRNAome
(50) and TCGA (66), respectively. We found that 9 out of 11
miRNAs exhibited significant differences (5 up-regulation
and 4 down-regulation) between normal and tumor cells
(Figure 5G, Supplementary Figure S5C), such as hsa-mir-
532 (Figure 5I) and hsa-mir-122 (Figure 5H).

Dynamic APA usage analysis reveals APA preference in cell
differentiation

The observations of widespread changes of 3’ UTR length
during stem cell differentiation, early embryonic develop-
ment, and somatic reprogramming (7,8,67) at the bulk level,
suggested that APA might be tightly regulated during cell
fate determination. To assess whether SCAPE can identify
these dynamic changes of APA, we generated the scRNA-
seq data from mouse bone marrow. Using the 10x Ge-
nomics platform, we sequenced and filtered cells based on
stringent criteria (Online Methods), resulting in 4301 high-
quality single cells from adult mice. We clustered them
using unbiased graph-based clustering (68) and classified
11 cell types based on canonical markers (Supplementary
Figure S7A, B). Next, we focused on 1,823 cells involved
in erythropoiesis including hematopoietic stem and pro-
genitor cells (HSPC), pro-erythroblast (ProE), basophilic-
erythroblast (BasoE), early- and late- polychromatic ery-
throblast (PolyE), and orthochromatic erythroblast (Or-
thoE) (Figure 6A, Supplementary Figure S7C).

Next, we reconstructed the cell differentiation trajectory
based on RNA velocity using scVelo (41). Indeed, the RNA
velocity showed a trend from HSPC to OrthoE, reflecting
the erythrocyte differentiation (Figure 6B). A shortening
trend was observed after averaging pA length over all genes
in each cell type during erythropoiesis (Figure 6C). We then
calculated an APA usage preference index, ranging from 0
(the proximal pA site) to 1 (the distal pA site) by group-
ing adjacent 10 cells in the pseudotime space into one to
reduce random noises (Online Methods). Interestingly, we
observed that the APA usage index of 89% genes (245 out of
275 genes with multiple pA sites) decreased over the pseu-
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Figure 5. Differential APA analysis of cell types and cell states in human GBM. (A) UMAP plot of non-myeloid cells based on gene expression from three
Glioblastoma patients. Cell types are indicated by different colours and texts. OPC, Oligodendrocyte progenitor cells. (B) Relative expression of KIF1B and
its two pA sites in different cell types. The size of the circle represents the proportion of expressing cells. The colour indicates the average expression level
over expressing cells of a given cell type. (C) Sashimi plot of KIF1B in different cell types. Oligodendrocytes and neuron preferentially express the distal pA
site 1:10381671:+. (D) UMAP plot of non-malignant and malignant astrocyte cells based on gene expression from patients SF11159. Cells are classified into
malignant (red) and non-malignant (blue) cells using CONICSmat. (E) Relative expression of CALM3 and its two pA sites in malignant and non-malignant
astrocyte cells, with circle size and colour indicating expressing cell proportion and average expression level, respectively. pA site 19:46609355:+ is mainly
expressed in non-malignant cells, while 19:46610849:+ is mainly expressed in malignant cells. (F) Sashimi plot of CALM3 in malignant and non-malignant
astrocyte cells. Blue lines represent the pA sites. Malignant cells exhibit a preference on pA site 19:46610849:+. (G) Differentially expressed miRNAs
targeting CALM3. The Volcano plot shows miRNA expressions in normal brain versus GBM (Glioblastoma) tissues. X-axis and y-axis are the log2 fold
change (significance cutoff = ±1) and negative log10 adjusted P-value (significant cutoff = 0.05) of miRNA expression comparison between normal and
GBM tissues. Each dot represents a miRNA with gray dots meaning no significance. The left and right plates contain miRNAs highly expressed in normal
or GBM tissues, respectively. Nine (red and blue dots) out of 10 miRNAs targeting the 3’ UTR of CALM3 show significance. Red dots are miRNA targeting
the proximal pA site 19:46609355:+, while blue dots target the distal pA site 19:46610849:+. (H-I) Two example differentially expressed miRNAs targeting
CALM3: hsa-miR-122 (H) and hsa-miR-532 (I). The arrows indicate their genomic locations in panel (F). Y-axis is the normalized expression in log scale.
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Figure 6. Dynamic APA usage in erythropoiesis and somatic cell reprogramming. (A) UMAP plot (gene expression) of cells in erythropoiesis of mouse.
Cell types are indicated by colors and texts. (B) Pseudotime of each cell estimated by scVelo. Cells are projected to the same UMAP plot. The color
indicates the estimated pseudotime. (C) Boxplot of the mean of the expected pA lengths of all genes in each cell type in the erythropoiesis process. Each
dot represents agglomerated 10 neighbouring cells in pseudotime space. The expected pA length is decreasing from HSPC to OrthoE in the erythropoiesis
process. The y-axis shows the scaled value (z-score) across all data points. (D) Dynamics of expected pA length of all genes in erythropoiesis. The color
reflects expected pA length (standardized). Each row represents a gene. Each column represents 10 grouped neighboring cells in pseudotime space. Colours
in the top row indicate differentiating cell types from HSPC to OrthoE, with the same colour scheme in (a). The upper and lower parts are genes with
increasing and decreasing trends, respectively. (E) Dynamics of expected pA length of 35 driver genes estimated by scVelo (erythropoiesis). Genes are
classified into increasing (upper) and decreasing (lower) trends. Known driver gene such as Cdk6 show a decreasing trend. (F) Density plot of pA usage
with different pA category of Mrps34 (17:24896284:+) between HSPC (J shape) and erythroid (L shape). (G) Sashimi plot of Mrps34 in different cell types
during erythropoiesis. Blues lines represent pA sites. Numbers in the coverage peaks represent the corresponding proportion of the pA sites. The usage of
proximal pA site 17:24896284:+ gradually decreases, while the usage of distal pA site 17:24897503:+ gradually increases. (H) UMAP plot (gene expression)
of iPSC. Cells from different stage are indicated by colors and texts. (I) Boxplot of the mean of the expected pA lengths of all genes in each stage in the iPSC
process. Each dot represents agglomerated 10 neighboring cells in pseudotime space provided by local embedding. The expected pA length is first increasing
from day 0 (d0) and then decreasing from day 3 (d3) to ESC. Note that the y-axis shows the scaled value (z-score) across all data points. (J) Dynamics
of expected pA length of all genes (iPSC). The color reflects expected pA length (standardized). Each row represents a gene. Each column represents 10
grouped neighboring cells in the pseudotime space, with pseudotime estimated using local embedding. Colours in the top row indicate differentiating cell
types from day 0 to ESC, with the same colour scheme as panel (H). (K) Sashimi plot of Tmem191c in different iPSC differentiation stages. Blues lines
represent pA sites. Numbers in the coverage peaks represent the corresponding pA site’s proportion. In the iPSC differentiation process, the usage of the
proximal pA site 16:17283229:+ gradually increases, while the usage of distal pA site 16:17278660:+ gradually decreases. Note that the central unannotated
peak is from the anti-sense strand, which is not relevant to Tmem191c.
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dotime in our linear regression analysis (Figure 6D, Sup-
plementary Table S8). Next, we inferred the driver genes in
erythrocyte differentiation using scVelo. Importantly, driver
genes tended to be with dynamic APA usage (Figure 6E, chi-
square test, P = 1.61e–4). The distribution of APA usage can
be further classified, indicating the minor (L shape) or ma-
jor (J shape) in each cell type (Supplementary Figure S7D,
E). We found that genes having a switch of APA distribu-
tion were enriched with GO terms (Supplementary Figure
S8A) including structural constituent of ribosome (e.g. mi-
tochondrial ribosomal protein Mrps34). The major isoform
of Mrps34 switched from HSPC to erythroid, elongating the
3’ UTR during the process (Figure 6F, G). Taken together,
SCAPE enabled the dissection of dynamic APA usages dur-
ing in vivo cell differentiation. Also, we discovered that the
majority of genes, including driver genes, showed a shorten-
ing trend during erythropoiesis at the single-cell level, sug-
gesting that APA regulation may be of importance during
the red blood cell differentiation.

Next, we investigated how APA changed when somatic
cells were reprogrammed into induced pluripotent stem
cells (iPSCs). We analysed 34 174 cells from a time-course
Oct4/Sox2/Klf4 (OSK) reprogramming process in mouse
(43). UMAP based on pA counts showed that cells at day 0
(d0) were well-separated from other cells, but the cells from
d3 to d8 exhibited a contiguous trajectory (Figure 6H). The
dynamic changes of APA usage were also observed when
comparing the averaged pA length (Figure 6I), exhibiting
a sharp increase from d0 to d3 followed by a gradually de-
creasing pattern towards d8. Next, we estimated the pseudo-
time of each cell using local embedding (69) and merged 10
adjacent cells in the pseudotime space for further analysis.
405 (33%) multi-pA genes, including gene (e.g. Tdgf1) that is
important for mature iPSC formation (70), lengthened their
3’UTR during the reprogramming, whereas the majority
(823) of genes such as Prmt5 that enhances the generation of
iPSCs (71) showed a decreasing trend (Figure 6J). Notably,
in addition to the known regulatory genes, we identified that
Tmem191c, a gene coding for a transmembrane protein,
presented a dynamic change to the proximal pA site dur-
ing the iPSC reprogramming process (Figure 6K). Differen-
tially expressed pA sites at d0 and d3 were enriched for ep-
ithelial cell proliferation and cytokine-mediated of cell mi-
gration, in accordance with previous studies (43,72) show-
ing that stem cell fate and immune responses were intercon-
nected. We also found that differentially expressed pA sites
between d8 and embryonic stem cells (ESC) were enriched
for functions related to transitioning from the naı̈ve to the
primed pluripotent state, such as cell cycle phase transition,
embryonic development pathway and pyruvate metabolic
process (Supplementary Figure S8B).

Taken together, SCAPE revealed the APA usage dynam-
ics during cell differentiation and iPSC reprogramming at
single-cell level. We identified potential driver genes that uti-
lized different APA isoforms in erythropoiesis and a dra-
matic change of APA usage from d0 to d3 during iPSC re-
programming. Future experiments are warranted to explore
of the potential roles these dynamic APA usages of driver
genes.

DISCUSSION

We have developed a powerful probabilistic model named
SCAPE, facilitating the de novo identification and quantifi-
cation of pA sites from poly(A)-enriched scRNA-seq data.
SCAPE used the cDNA insert size to further improve the
accuracy of APA calling. Note that the accuracy of SCAPE
relies on the prior information of (a) insert size, (b) poly(A)
length and (c) poly(A)-enrichment process. In addition, the
poly(T) oligonucleotide may bind to A-rich region in the
gene body rather than the poly(A) tail in scRNA-seq library
preparation, which may affect the accuracy of predicted pA
sites. Nonetheless, we reasoned that these factors can be ad-
dressed to some extent. First, a size-selection step is com-
monly used in paired-end RNA-seq to control the mean
length of inserted cDNA fragments, which may be acquired
from the experiment protocol or can be measured precisely
from read pairs that mapped to large constitutive regions
such as intronless 3‘ UTRs (73). Second, the poly(A) tail
length may be different between transcripts/cell types. We
could estimate its distribution from cleavage reads in the
read 1 of scRNA-seq data (Methods). ONT direct RNA
sequencing and other methods such as TAIL-seq have re-
ported that poly(A) tail length ranges mostly from 50 to
100 nt) in mammalians (52,53,74,75), In SCAPE, we used
20–150 nt as the range which should be modified accord-
ingly if the data is generated from other organisms. Lastly,
most common single-cell RNAs-seq protocols rely on oligo-
DT primers to enrich polyadenylated mRNA molecules.
scRNA-seq sometimes contains 15–25% unspliced intronic
sequences, mostly originating from secondary priming po-
sitions within the intronic regions (76). To avoid captur-
ing these internal priming polyT and calling them poly(A)
sites, SCAPE separated the regions into 3’ UTR and in-
tronic regions. When a potential poly(A) site was identi-
fied, it was compared with the internal priming regions and
was removed when this site is proximal to these priming
regions.

In summary, we have demonstrated that APA isoforms
provide an additional level of information that improves
the cell clustering. Our method enables investigation of the
novel APA signals and cell type-specific isoforms in dif-
ferent cell types as well as exploration of the heterogene-
ity and differential regulation of APA in various tissues.
The tissue- and cell type- specificity regulated at the post-
transcriptional level, which sometimes are latent at gene ex-
pression level, could be used to infer cell identity in the task
of cell type classification. Furthermore, our method raises
the exciting prospect of identifying new cell subsets using
known or novel pA sites as markers. Given a large amount
of differentially expressed APA have been identified. It is
worth noting that some may be originated from biologi-
cal and technical noises. Our method and results will facil-
itate the identification of the functional APA isoforms. Fu-
ture experiments to explore the role of dynamic APA usage
and its regulation related to miRNA will further our un-
derstanding the regulation and biological function of APA
during cell differentiation, reprogramming and tumorigen-
esis.
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SCAPE is available at https://github.com/LuChenLab/
SCAPE. We deposited the mouse bone marrow dataset in
the NCBI Sequence Read Archive (SRA) under accession
No. PRJNA706066. All other data are available from the
corresponding authors upon reasonable request.
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