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ABSTRACT: Designing molecules for pharmaceutical purposes has been a
significant focus for several decades. The pursuit of novel drugs is an arduous and
financially demanding undertaking. Nevertheless, the integration of computer-
assisted frameworks presents a swift avenue for designing and screening drug-like
compounds. Within the context of this research, we introduce a comprehensive
approach for the design and screening of compounds tailored to the treatment of
prostate cancer. To forecast the biological activity of these compounds, we employed machine learning (ML) models. Additionally,
an automated process involving the deconstruction and reconstruction of molecular building blocks leads to the generation of novel
compounds. Subsequently, the ML models were utilized to predict the biological activity of the designed compounds, and the t-SNE
method was employed to visualize the chemical space covered by the novel compounds. A meticulous selection process identified
the most promising compounds, and their potential for synthesis was assessed, offering valuable guidance to experimental chemists
in their investigative endeavors. Furthermore, fingerprint and heatmap analysis were conducted to evaluate the chemical similarity
among the selected compounds. This multifaceted approach, encompassing predictive modeling, compound generation,
visualization, and similarity assessment, underscores our commitment to refining the process of identifying potential candidates
for further exploration in prostate cancer treatment.

1. INTRODUCTION
The prostate gland, an accessory organ of the male
reproductive system, is found below the bladder and surrounds
the urethra. It plays a vital role in the formulation of ejaculate
by producing essential fluids, consequently supporting the
health and viability of sperm.1 Prostate glands generally
develop tumors in old age, typically after the age of 50.2 The
prostate gland of the adult male can be classified into the
following regions: central, transition, and peripheral zones, as
well as fibromuscular and periurethral.3,4 The peripheral zone
covers over 70% of the prostate gland in young adult men;
therefore, it holds the largest share when it comes to the
execution of the normal function of the prostate gland. It has
been reported in various studies that the peripheral zone is the
region of the prostate gland where neoplasms are most
frequently produced in the aged prostate, and around 80% of
cases of prostate cancer have been reported due to the
accumulation of neoplasms in this region.3,4 Prostate cancer is
a prevalent malignancy in males, which is a common cause of
cancer-related death in men.5 Annually, prostate cancer affects
the health and lifestyle of millions of men around the globe, as
reported by numerous studies. Anticipating an individual’s
disease trajectory often relies on analyzing the histopatho-
logical, anatomical, and molecular profiles of the tumor along
with the patient’s health condition. Prostate cancer is a highly
important multidisciplinary research field that encompasses

various subjects including computational biology, laboratory
research, clinical science, and many more.

The combined potential of artificial intelligence and machine
learning holds great promise for the significant progress and
advancement in the field of predicting properties and designing
molecules.6,7 Subsequently, numerous methods, tools, and
models have been devised that can effectively analyze complex
and nonlinear data.8 The journey of drug discovery and
development is intricate and multifaceted, entailing a multitude
of intricate variables. Machine learning (ML) methods offer a
variety of tools to improve decision-making and facilitate
discovery throughout the drug discovery process, particularly
for well-defined problems with sufficient high-quality data.
Some examples of these applications include clinical trial
analysis, target validation, and the development of prognostic
biomarkers, among others. Machine learning techniques, such
as QSAR analysis, hit discovery, and de novo drug design,
enable the pharmaceutical industry to make informed decisions

Received: July 13, 2023
Accepted: October 3, 2023
Published: October 16, 2023

Articlehttp://pubs.acs.org/journal/acsodf

© 2023 The Authors. Published by
American Chemical Society

39408
https://doi.org/10.1021/acsomega.3c05056

ACS Omega 2023, 8, 39408−39419

This article is licensed under CC-BY-NC-ND 4.0

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Muhammad+Ishfaq"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Mohamed+Ibrahim+Halawa"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ashfaq+Ahmad"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Aamir+Rasool"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Robina+Manzoor"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Kaleem+Ullah"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Kaleem+Ullah"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yurong+Guan"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acsomega.3c05056&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c05056?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c05056?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c05056?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c05056?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c05056?fig=abs1&ref=pdf
https://pubs.acs.org/toc/acsodf/8/42?ref=pdf
https://pubs.acs.org/toc/acsodf/8/42?ref=pdf
https://pubs.acs.org/toc/acsodf/8/42?ref=pdf
https://pubs.acs.org/toc/acsodf/8/42?ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acsomega.3c05056?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://acsopenscience.org/open-access/licensing-options/
https://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


and achieve better outcomes.9 As a result, these methodologies
are currently driving the achievements of experts within the
pharmaceutical industry.10,11 Deep structured learning has
risen as an innovative machine learning approach with
substantial ramifications across scientific domains, especially
in cases where the intricate nature of biological systems eludes
comprehensive modeling through physical-based methods,
necessitating a more sophisticated approach.

The pharmaceutical sector has embraced the realm of ML
initiatives, embarking on the integration of this technology
within the drug development processes. The evolution of ML
methodologies, coupled with the burgeoning repository of
pharmacological data, has elevated the significance of artificial
intelligence (AI) in shaping the landscape of drug design. A
pivotal facet of AI lies in its capability to translate intricate
medical data into reproducible approaches, thereby diminish-

Figure 1. Scatter plots between pIC50 and the top descriptors.
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ing the need for speculative enhancements. Within this
context, a pivotal contribution emerges through the establish-
ment of a stability model for drug sensitivity. This model is
crafted utilizing ML techniques orchestrated by dissecting
preclinical data. Subsequently, the efficacy of this model is
tested by using clinical samples from patients, ushering in a
phase of validation to ascertain its accuracy. This, in turn,
offers invaluable insights into disease indications and facilitates
a streamlined selection process, expediting the course of
clinical drug development. The burgeoning potential of ML

Figure 2. Performance comparison of various machine learning
models for the test set.

Figure 3. (a) Residuals for random forest regressor. (b) Scatter plot between experimental and predicted pIC50 values using random forest
regressor.

Figure 4. Positive and negative impacts of selected descriptors on the
output of random forest regressor (fr_phenol_noOrthoHbond,
fr_phenol, and fr_Ar_OH are low contributing features).

Figure 5. t-SNE plot.
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methodologies is poised to supplant traditional practices within
this domain, ushering in a transformative era of advancement.

In this research, our focus was on designing and evaluating
compounds for prostate cancer treatment. Machine learning
models play a vital role in prognosticating their biological
activity. The employment of the t-SNE technique unveiled the
intricate chemical landscape covered by these newly designed
compounds. From this array, standout candidates were
meticulously selected, considering factors such as synthetic
feasibility. The tapestry of chemical likeness was further
explored through cluster analysis and heatmap visualization,
enhancing our understanding of compound relationships.

2. MATERIALS AND METHODS
2.1. Machine Learning Analysis. The data for machine

learning is collected from the CHEMBL database.12 Search is
done using the word “prostate cancer”. Only the data of a
single protein are sorted out, and the protein complex is not

considered. To obtain more data, all protein targets are
considered. The data of 2000 compounds are used for machine
learning analysis. Half-maximal inhibitory concentration (IC50)
values are converted into pIC50, that is, the negative log of
IC50. The distribution of the pIC50 values is given in Figure S1.
The structure of 10 compounds with lowest pIC50 values and
10 compounds with highest pIC50 values is given in Figure S2.
The molecular descriptors are calculated using RDKit.13 It
generates about 200 descriptors. Pandas module was used for
importing the data library with determined optimum
descriptors and target property in the comma-isolated
(.CSV) format. Seaborn, Matplotlib, and Scikit-learn are used
for machine learning and data visualization. The interpretation
of ML models is done using SHapley Additive exPlanations
(SHAP).14 It helps to understand the impact of different
features (descriptors) on the output of ML models.
2.2. Compound Design and Similarity Analysis. The

breaking retrosynthetically interesting chemical substructures

Figure 6. Chemical structures of selected compounds 1−15.
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(BRICS) method15 is used to design new compounds. BRICS
is implanted on RDKit.13 A set of compounds as input is
required. The 500 compounds in the data set with the highest
pIC50 values are selected as input. BRICS breaks the
compounds into fragments and then joins them to design
new compounds. We have generated 20,000 compounds. The
pIC50 values of the generated compounds are predicted using
the already trained ML model. Then, the generated chemical
space is visualized using a t-distributed stochastic neighbor
embedding (t-SNE) plot. Designed compounds are shortlisted
on the basis of predicted values. Chemical similarity and

clustering are performed on selected compounds. For this
purpose, chemical fingerprints are used. Synthetic accessibility
is also calculated.

3. RESULTS AND DISCUSSION
3.1. Machine Learning Analysis. Molecular descriptors

can be described as either experimental or computationally
derived values that are associated with a specific molecule.16,17

Alternatively, a molecular descriptor is the outcome of a logical
and mathematical transformation that converts chemical
information into a numerical representation or a standardized

Figure 7. Chemical structures of selected compounds 16−30.
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experimental result.18,19 These descriptors enable qualitative
and quantitative analyses of chemical data. Some examples of
molecular descriptors include structural, topological, elec-
tronic, and physicochemical descriptors.

Molecular descriptors encompass various quantitative
representations of molecules. These descriptors prove valuable
in conducting similarity searches within molecular libraries,
enabling the identification of molecules with similar physical or
chemical properties based on shared descriptor values.20,21

Furthermore, molecular descriptors play a crucial role in
prediction models. They establish a correlation between the
structure−property relationship and aid in predicting the

properties of molecules by considering their descriptor values.
The literature contains a wide range of molecular descriptors,
spanning from simple bulk properties to complex three-
dimensional formulations and extensive molecular fingerprints
with thousands of bit positions. Selecting the most suitable
descriptors for specific applications based on knowledge is an
important task in chemoinformatics research.22 To ensure
rational selection rather than relying on guesses or chemical
intuition, a thorough evaluation of the descriptor performance
is necessary. Figure 1 shows the correlation plots between
pIC50 and the top descriptors. From the figure, it is clear that
individually most of the descriptors are not showing a strong

Figure 8. Chemical structures of selected compounds 31−45.
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correlation with target property. Jointly, all of the descriptors
are useful in model training.

Machine learning is a field that explores the construction of
computer systems capable of improving through experience
while uncovering the fundamental laws governing learning
systems.23,24 It has rapidly evolved from a curiosity to a
practical technology in the past two decades, finding extensive
use in commercial applications and becoming the preferred

approach in AI for tasks such as computer vision and natural
language processing. Machine learning’s impact extends
beyond AI, influencing various domains, including data-
intensive fields like consumer services and fault diagnosis.25,26

Moreover, empirical sciences have benefited from machine
learning’s ability to analyze high-throughput experimental data,
revolutionizing disciplines such as biology, cosmology, and
social science.

Figure 9. Chemical structures of selected compounds 46−60.
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Globally, gastric cancer has one of the highest mortality rates
among cancers with a current survival rate of only 30% even
when using combination therapies. However, recent evidence
suggests that miRNAs (microRNAs) may have a potential role
in diagnosing and assessing the prognosis of various cancers,
including gastric cancer.27 In the field of cancer research,
machine learning (ML) has become increasingly prominent as
a tool for identifying clinically relevant biomarkers with
practical applications. Biofilm production in bacteria contrib-
utes to the severity of infections and poses challenges for
antimicrobial treatment. Bacteriophage depolymerases, the
enzymes employed by viruses, offer a potential solution to
degrade the biofilm matrix. The machine learning-based
method accurately identifies phage depolymerases using a
limited set of validated enzymes, which highlights the potential
machine learning for protein functional annotation and the
discovery of novel therapeutic agents.28

There are so many machine learning models. Their
performance depends on the used data set. The machine
learning model is not suitable for every type of data. A specific
machine learning model is of high significance because it
determines the output (results).29,30 Therefore, Lazy Predict (a
Python-based code) is used to test around 40 machine learning
models.31 For this analysis, the data set is divided into a
70:30% train:test ratio. The bar graph based on the R-squared
values for the test set is given in Figure 2. Only a few models
show a higher performance. The random forest model is the
best model among all tested models. This model is selected for

further analysis. For the best model, various ratios of the
training and test sets are tried. The 70:30 ratio is the best. The
hyperparameters of random forest models are also optimized.
However, no significant difference is observed. The residual
plot for random forest regressor is given in Figure 3(a). R-
squared values for training and test sets are 0.899 and 0.626,
respectively. The model is responsibly accurate. Values of
residuals are not high. The scatter plot between the predicted
and true values for the training and test sets using the random
forest model is given in Figure 3(b). Most points are near the
standard line.

To further get insights about the ML working model and
identify the possible contributions of features on the output of
the model, SHapley Additive exPlanations (SHAP) was
applied.14 The SHAP value ranks the samples by allocating
them a specific number based on the selection of optimum
sample features in comparison with the desired features.
Positive and negative impacts of selected descriptors on the
output of random forest regressor are given in Figure 4. For
MinPartialCharge, most low values have a high positive impact
on the model. High values of these descriptors have a low
negative impact on model performance. SMR_VSA2 has
shown opposite behavior. In the case of PEOE_VSA7 and
Kappa2, higher values of descriptors have shown positive
impact and negative values have shown negative impact. In the
case of the QED descriptor, behavior is mixed. Other
descriptors have shown mixed behavior or low impact.

Table 1. pIC50 and Synthetic Accessibility Score of Selected
Compounds 1−30

name pIC50 synthetic accessibility score

1 10.637 3.522
2 10.565 2.673
3 10.507 3.148
4 10.503 2.882
5 10.503 2.546
6 10.482 3.741
7 10.444 3.614
8 10.444 3.805
9 10.444 3.481
10 10.444 3.681
11 10.444 3.856
12 10.444 3.72
13 10.444 3.525
14 10.421 4.271
15 10.421 4.058
16 10.399 3.552
17 10.395 3.433
18 10.395 3.874
19 10.395 3.801
20 10.395 3.478
21 10.389 3.926
22 10.374 3.707
23 10.371 3.758
24 10.371 3.79
25 10.369 3.003
26 10.366 3.665
27 10.366 3.806
28 10.361 4.023
29 10.36 3.178
30 10.356 3.78

Table 2. pIC50 and Synthetic Accessibility Score of Selected
Compounds 31−60

name pIC50 synthetic accessibility score

31 10.356 3.437
32 10.356 3.798
33 10.334 3.682
34 10.328 4.774
35 10.328 4.797
36 10.319 3.87
37 10.299 3.865
38 10.299 3.387
39 10.299 3.826
40 10.282 3.055
41 10.28 2.972
42 10.274 3.658
43 10.265 3.539
44 10.256 2.935
45 10.254 3.952
46 10.25 3.15
47 10.25 3.214
48 10.25 3.59
49 10.243 4.032
50 10.232 3.274
51 10.229 3.577
52 10.229 3.651
53 10.215 3.594
54 10.21 3.237
55 10.21 4.087
56 10.208 4.28
57 10.182 3.715
58 10.176 3.381
59 10.172 3.019
60 10.172 2.928
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3.2. Designing of New Compounds. De novo molecular
design is a challenging task aimed at creating new chemical
compounds with specific properties and activities.32 The vast
search space of feasible molecules, estimated to be around
1033−1080, poses a significant challenge as only a small fraction
exhibits the desired traits.33 Traditionally, de novo molecular
design heavily relies on trial and error, with human expertise
and intuition playing a major role. However, the high costs
associated with developing new molecules have prompted the
use of computational tools to assist in the process, leading to
practical applications and widespread adoption in the field.
These computational tools have proven to be valuable in
mitigating the challenges of de novo molecular design.

The availability of multiple types of modification of organic
molecules allows us to design a large number of new
molecules.34,35 The chances to incorporate more heteroatoms
also allow us to design more organic semiconductors.36,37 New
building units are also generated using the BRICS method.
The 500 compounds in the data set with the highest pIC50 are
used as input. BRICS analysis is done using RDKit. The
BRICS algorithm automatically breaks the compounds into

fragments on the basis of predefined rules and then joins these
fragments to design new compounds. We have generated
20,000 new compounds. The pIC50 values of the generated
compounds are predicted using random forest regressor. The
distribution of the predicted pIC50 values is given in Figure S3.
The predicted values are found in a wide range. Majority of
compounds have shown values near to 6. Only limited
compounds have shown values near to 10.

The generated chemical space of the compounds is
visualized using t-SNE. t-SNE is a powerful visualization tool
to group the probabilities based on their similarities.
Furthermore, it also reduces the noise in high-dimensional
data with a huge number of features. The distance between
compounds indicates the similarity between compounds. The
closer the compounds, the more similar they are. A large
number of small patches indicates that these compounds are
structurally diverse in nature (Figure 5). The higher and lower
values are almost equally distributed.

The generated compounds are screened on the basis of the
predicted pIC50 values. We selected 60 compounds. Their
structures are given in Figures 6−9. The selected compounds
are structurally dispersed in nature. Our approach is valuable in
finding unique compounds.
3.3. Synthetic Accessibility. The synthesis of compounds

requires multiple steps depending on the availability of starting
materials.38,39 The ease of the synthesis is controlled by various
factors. The synthetic accessibility score (SAS) is a measure of
the ease with which a molecule can be synthesized. It considers
all of the possible factors, including availability and cost of
starting materials, number of synthetic steps involved, and the
possibility of side reactions taking place during synthesis. We
have calculated the synthetic accessibility score using RDkit.
Results are given in Tables 1 and 2. Synthetic accessibility
score values fall between 1 (easy to synthesize) and 10
(difficult to synthesize). Six is considered a threshold to
distinguish between easy to synthesize and difficult to
synthesize.40 All of the selected compounds have synthetic
accessibility score values lower than 5. It indicates that these
compounds are easy to synthesize.
3.4. Similarity Analysis. Clustering of compounds is a tool

to categorize compounds together based on their similarity.
This technique is helpful in the design and synthesis of new
compounds. It also helps experimental scientists to search and
identify the compounds with like properties.39,41 The
clustering of compounds on the basis of structural similarity
is shown in Figure 10. From the figure, it is clear that
compounds are much different. Only a small group of
compounds is similar. To further verify the similarity between
the compounds, we visualize the similarity between the
compounds with the help of a heatmap (Figure 11). It
provides the pairwise similarity between compounds.42 Only a
few compounds have similarity higher than 0.9. Majority of
compounds have similarity near to 4.

Machine learning models are trained for the prediction of
biological activity. A large library of new compounds is
designed using an automatic method. In the majority of
reported studies, only property prediction is done, and
designing and screening of new compounds make our study
unique.

4. CONCLUSIONS
Efficient and cost-effective approaches have become crucial in
drug design, as they swiftly pinpoint the most promising

Figure 10. Clustering of compounds on the basis of similarity.
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compounds. This research delves into the realm of machine
learning, harnessing molecular descriptors to forecast the
biological properties of compounds. By leveraging the breaking
retrosynthetically interesting chemical substructures (BRICS)
technique, a pool of 20,000 novel compounds was synthesized.
These newly generated compounds were subjected to
established machine learning models that had been previously
trained. These models were employed to prognosticate the
biological activity of the synthesized compounds. Notably, the
application of the t-SNE method unveiled the remarkable
diversity inherent in these new compounds, emphasizing their
wide-ranging nature. The calculation of synthetic accessibility
is applied to both the standard and selected compounds. It is
observed that a significant portion of these compounds exhibits
a high level of synthetic feasibility. Utilizing a heatmap based
on chemical similarity, it becomes evident that a considerable
proportion of the chosen compounds displays remarkable

dispersion across the chemical space. This innovative frame-
work that we propose holds the potential to substantially assist
in the identification of optimal compounds for advancing
prostate cancer treatment strategies.
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