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Background: Infiltrating low-grade gliomas (LGG; WHO grade 2) typically present with seizures in young adults. LGGs grow
continuously and usually transform to higher grade of malignancy, eventually causing progressive disability and premature
death. The effect of up-front surgery has been controversial and the impact of molecular biology on the effect of surgery is un-
known. We now present long-term results of upfront surgical resection compared with watchful waiting in light of recently es-
tablished molecular markers.

Materials and methods: Population-based parallel cohorts were followed from two Norwegian university hospitals with dif-
ferent surgical treatment strategies and defined geographical catchment regions. In region A watchful waiting was favored while
early resection was favored in region B. Thus, the treatment strategy in individual patients depended on their residential address.
The inclusion criteria were histopathological diagnosis of supratentorial LGG from 1998 through 2009 in patients 18 years or
older. Follow-up ended 1 January 2016. Making regional comparisons, the primary end-point was overall survival.

Results: A total of 153 patients (66 from region A, 87 from region B) were included. Early resection was carried out in 19 (29%)
patients in region A compared with 75 (86%) patients in region B. Overall survival was 5.8 years (95% CI 4.5–7.2) in region A
compared with 14.4 years (95% CI 10.4–18.5) in region B (P< 0.01). The effect of surgical strategy remained after adjustment for
molecular markers (P¼ 0.001).

Conclusion: In parallel population-based cohorts of LGGs, early surgical resection resulted in a clinical relevant survival benefit.
The effect on survival persisted after adjustment for molecular markers.
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Introduction

Infiltrating low-grade gliomas (LGG) are slow growing brain

tumors typically presenting with seizures in young or middle-

aged adults. LGGs grow continuously and usually transform to

higher grades of malignancy, eventually causing progressive dis-

ability and premature death [1].

The management of LGGs has long been controversial, both

with respect to surgical and oncological management and tim-

ing of treatment [1, 2]. Although case-series have reported as-

sociations between extent of surgical resection and survival, a

causal relationship is impossible to establish from such uncon-

trolled studies [3, 4]. Due to concerns if clinical equipoise exists

[1, 4–8], and need for long follow-ups [9], a randomized con-

trolled trial comparing surgery to no surgery is not to be ex-

pected. Also, patients hesitate to enroll in randomized

controlled trials with radically different options involving brain

tumor surgery [10]. Our population-based parallel cohort

study comparing outcomes in two Norwegian regions with
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opposite surgical management traditions was a landmark paper

in surgical management of LGG [5]. The study demonstrated a

marked survival advantage in favor of early surgical resection

compared with watchful waiting. Although practice changing

(including in the region that used to favor watchful waiting),

criticism included risk of histopathological sampling bias

when comparing stereotactic biopsies to tissue samples from

resection [11]. Even though the population-based setting pre-

sumably would ensure well-balanced groups from the two re-

gions, more tumors from the region advocating early and

extensive surgery had a favorable histopathological subtype

(i.e. containing oligo-component) [5, 8, 9, 12]. Also, since me-

dian survival was not reached in one of the cohorts, it still re-

mains unknown how much surgery improves survival in the

longer term [8].

The recently updated WHO classification system now incorp-

orates molecular markers in LGG classification [13]. With mo-

lecular characterization the possibility of diagnostic sampling

errors is much reduced, as these are early, common events with

homogenous distribution within the tumor [14]. 1p19q codele-

tion in combination with IDH mutation now define oligo-

dendroglioma, a diagnosis that used to be associated with

considerable uncertainty based on morphological classification

alone [15]. Also, although IDH wild-type LGGs are still classified

as LGGs, they frequently present a much more malignant pheno-

type [16, 17]. However, the impact of surgery in the recently

defined molecular subgroups is still unknown [13, 16, 17].

In the present study, we now provide long-term survival data

and assess molecular markers in our population-based parallel

cohorts of LGG.

169 supratentorial low-grade gliomas
screened and assessed for possible inclusion

71 reviewed from hospital A 98 reviewed from hospital B

11 patients excluded5 patients excluded

87 included in the regional
Comparative analysis of
favored strategy

66 included in the regional
Comparative analysis of
favored strategy

66 patients with low grade gliomas
(diffuse WHO grade II)
treated at hospital A

87 patients with low-grade gliomas
(diffuse WHO grade II)
treated at hospital B

6 grade I gliomas
3 grade III ro IV gliomas
2 other histopathology

2 grade I gliomas
2 grade III or IV gliomas
1 other histopathology

0 lost to follow up 0 lost to follow up

47 (71 %)
initial biopsy

19 (29 %)
initial resection

12 (14 %)
initial biopsy

75 (86 %)
initial resection

Figure 1. Flow chart of patient inclusion.
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Methods

Study design and patients

In a retrospective population-based parallel cohort study, we assessed
survival in patients with LGGs treated at two Norwegian university hos-
pitals with completely different surgical treatment strategies, as
described earlier [5]. The two hospitals served exclusively in defined
geographical catchment regions. The hospital in region A favored bi-
opsy and watchful waiting while early 3D ultrasound guided resection
in general anesthesia was the preferred strategy in region B. Thus, the
treatment strategy in individual patients highly depended on their resi-
dential address.

The inclusion criteria were histopathological verification of supra-
tentorial LGG in adult patients (18 years or older) in the period from
1998 through 2009 using the WHO 2007 classification [18]. To min-
imize classification bias a blinded review was carried out where a
neuropathologist from region A reviewed all LGGs diagnosed at region
B and vice versa. Discordant diagnoses were settled in a consensus
meeting [5, 6]. Our final sample included 153 consecutive patients
(66 from region A and 87 from region B) with LGGs as seen from flow
chart in Figure 1.

Assessment of molecular markers

The assessment of molecular markers aimed at assigning patients to one
of three molecular groups: (i) the low-risk group being IDH mutated,
1p19q codeleted, (ii) the intermediate-risk group being IDH mutated
and 1p19q non-codeleted, and (iii) the high-risk group being IDH
wild-type [16]. At the hospital in region A the 1p19q codeletion and
IDH status were determined using multiplex ligation-dependent probe
amplification (MLPA) directly since the limited amount of tissue avail-
able did not allow for step-wise integrated approach [19]. Samples clas-
sified as IDH wild-type after MLPA assessment were subject to PCR and
DNA sequencing for IDH1 and IDH2 mutations. At hospital in region B
an integrated approach was used [19], with immunohistochemistry for
IDH1 R132H and alpha thalassemia/mental retardation syndrome X-
linked (ATRX) protein expression. In this initial step, if simultaneous
IDH mutation and ATRX loss were observed no further analyses were
carried out; and patients were classed as IDH mutated, 1p19q non-
codeleted. Samples classified as IDH wild-type after immunohisto-
chemistry were subject to PCR and DNA sequencing for IDH1 and
IDH2 mutations. In samples with IDH mutation and ATRX presence,
we carried out fluorescence in situ hybridization (FISH) to confirm the
1p19q codeletion. However, in three cases we assumed 1p19q codele-
tion based on IDH and ATRX presence, but without FISH confirmation
since no additional tissue was available. Further details on the assess-
ment of molecular markers are available in supplementary material,
available at Annals of Oncology online.

Follow-up and outcomes

All Norwegian citizens have a unique identification number making
them traceable in the Norwegian population registry. With the use of this
registry the patients’ status (dead/alive) and date of death was verified in
all patients. Follow-up ended 1 January 2016. No patients were lost to fol-
low up with respect to the primary end-point. The primary end-point
was overall survival making direct regional comparison between cohorts
(i.e. analyzing strategy, not introducing selection bias).

Table 1. Comparisons of baseline factors and molecular markers between
cohorts

Region A
(n566)

Region B
(n587)

P-value

Age, mean (SD) 45 (15) 44 (16) 0.67
Gender, n (%) 0.33
Female 25 (38) 40 (46)
Male 41 (62) 47 (54)
KPS �80, n (%) 51 (77) 71 (82) 0.55
Contrast enhancement, n (%) 13 (20) 15 (17) 0.83
Histopathology, n (%) 0.19
Astrocytoma 55 (83) 62 (71)
Oligodendroglioma 6 (9) 16 (19)
Oligoastrocytoma 5 (8) 9 (10)
Tumor >6 cm in diameter, n (%) 19 (29) 24 (28) 1.00
Tumor crossing midline, n (%) 10 (15) 11 (13) 0.81
Neurological deficit, n (%) 17 (26) 25 (29) 0.72
IDH status, n (%) 0.46
Mutated 48/64 (75) 56/81 (69)
Wild-type 16/64 (25) 25/81 (31)
Undetermined/missing 2 6
1p19q codeletion, n (%) 23/64 (36) 20/81 (25) 0.14
Molecular-risk group, n (%) 0.33
Low 23 (36) 20 (25)
Intermediate 25 (39) 36 (44)
High 16 (25) 25 (31)

Contrast enhancement indicates all types, including subtle patchy or
diffuse contrast enhancement and should not be confused with only
significant nodular or ring-like contrast enhancement. The molecular
risk-groups are as follows: (i) low risk infers IDH mutated and 1p19q
codeleted; (ii) intermediate risk infers IDH mutated and 1p19q non-
codeleted; and (iii) high-risk infers IDH wild-type.
KPS, Karnofsky performance status; IDH, isocitrate dehydrogenase.

Table 2. Treatment related factors in the parallel cohorts

Region A
(n566)

Region B
(n587)

P-value

Early resection, n (%) 19 (29) 75 (86) <0.001
Number of new/repeated

resections, n (%)
0.11

0 42 (63) 49 (56)
1 18 (27) 24 (28)
2 1 (2) 8 (9)
3 or more 5 (8) 6 (7)

Ever resection, n (%) 36 (55) 77 (89) <0.001
Early chemotherapy, n (%) 14 (21) 18 (21) 1.00
Ever chemotherapy, n (%) 44 (67) 42 (48) 0.32
Early radiotherapy, n (%) 20 (30) 37 (43) 0.13
Ever radiotherapy, n (%) 50 (76) 57 (66) 0.21
Early radio- and chemotherapy, n (%) 11 (17) 13 (15) 0.82
Early radiotherapy and PCV, n (%) 2 (3) 8 (9) 0.19

Early chemotherapy indicates treatment within 6 months following
histopathological diagnosis. PCV denotes procarbazine, CCNU (lomus-
tine) and Vincristine. Combined radio- and chemotherapy means con-
comitant or succeeding treatment upfront.
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Statistical analyses

For analyses, we used GraphPad Prism version 6 and SPSS version 21.0.
We used Fisher’s exact test for comparing results from 2� 2 tables. For
other categorical data, we used the v2 test. For continuous data, compari-
son of groups was carried out with independent samples t-test. Overall
survival is presented as Kaplan–Meier plots and the log-rank test was
used for between groups comparison. Cox multivariable survival analysis
was carried out to adjust for important prognostic factors, including mo-
lecular markers. All tests are two-sided and statistical significance was set
to P< 0.05.

Statements

The Regional Committee for Medical Research in Central Norway
Ethical approved the study (reference: 2014/1674). The committee
waived the need for informed consent. The study is reported based on cri-
teria from the Strengthening the Reporting of Observational Studies in
Epidemiology (STROBE) statement [20].

Results

Characteristics of patients and tumors at baseline

The age adjusted incidence rate was 1.2 per 100 000 in both re-

gions. Baseline characteristics were presented in the initial

study [5], and the most important ones are presented again

along with IDH mutation status and 1p19q codeletion status in

Table 1. More detailed analyses of molecular profile in relation

to clinical factors are available in supplementary Tables S1–S3

and Figures S1 and S2, available at Annals of Oncology online.

There were neither significant differences in known prognostic

factors such as age, tumor size, contrast enhancement, func-

tional level, nor histopathological subtypes. In 64 out of 66 pa-

tients (97%) from region A and in 81 out of 87 patients (93%)

from region B we had available tissue for molecular analyses.

The molecular markers were not significantly different between

cohorts. Interestingly, the trend toward overrepresentation of

oligodendroglial tumors in region B as defined from the 2007

WHO classification system changed when analyzed according

to 1p19q codeletion status.

Treatment-related factors

As seen from Figure 1 and Table 2, early surgical resection was

carried out in 19 patients (29%) in region A compared with 75 pa-

tients (86%) in region B (P< 0.001). As seen in Table 2, there

were no regional differences in administration of either early or

late radio- or chemotherapy, including early radiotherapy and

PCV. Furthermore, the fraction of patients undergoing later sur-

gical resections was similar between cohorts.

Survival

Overall survival was significantly worse in region A advocating

watchful waiting (Figure 1, P¼ 0.005) with a median survival of

5.8 years (95% CI 4.5–7.2) compared with 14.4 years (95% CI

10.4–18.5) in region B advocating early resections. As seen in

Figure 2, adjustment for molecular factors did not alter the re-

sults. In supplementary Tables S4, available at Annals of Oncology

online, there is an overview of 2, 5, 7 and 10 years actual and esti-

mated survival rates in both cohorts.

As seen in Figure 3, the survival benefit of the active surgical

strategy remained after adjusting for molecular-risk group

(P¼ 0.001). In sensitivity analyses of survival presented in sup-

plementary Figures S3 and S4, available at Annals of Oncology on-

line we analyzed younger patients with seizures only and we

adjusted for molecular-risk group in addition to a widely used

clinical LGG risk-score (i.e. the Pignatti score) [12]. In sum, these

additional analyses did not alter results. Adding year of treatment

to the models also did not alter results (data not shown).

Discussion

In this updated analysis of our unique population-based parallel

cohorts we demonstrate that early resection is associated with a
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Figure 2. Survival analysis comparing cohorts, where region A preferred biopsy while region B preferred early resection. In region A the me-
dian survival was 5.8 years (95% CI 4.5–7.2) compared with 14.4 years (95% CI 10.4–18.5) in region B.
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clinically relevant survival benefit when compared with watchful

waiting in LGGs. Cohorts were balanced at baseline and adjust-

ment for molecular markers did not alter results. Thus, our find-

ings are in line and strengthen the results from our previous

publication [5].

A more definitive effect size assessment can better guide

decision-making for physicians and patients that need to estimate

the risks and benefits of surgery in a given case. However, since

some patients underwent resection in region A and some had bi-

opsy only in region B, the observed survival benefit of early surgi-

cal resection is presumably a conservative measure. The debate

on the extent of surgical resection needed in order to result in a

clinically relevant survival benefit is not settled. Retrospective un-

controlled studies report a clear advantage with radiological com-

plete resection, although often not achievable [3, 4, 21]. Others

have emphasized that a residual tumor volume <15 ml must be

achieved to have a beneficial survival effect [22]. However, extent

of resection is not random and selection bias may clearly be an

issue in such studies. Unfortunately, we are not able to provide

data on extents of resection in this study due to the lack of post-

operative MR and lack of digitalization of images before 2005–

2006 in region B. However, based on the observed large effect on a
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population level it seems safe to conclude that aiming at early and

extensive surgical resections should be considered in the vast ma-

jority of patients with suspected LGGs. Post hoc analyses also

demonstrated a benefit of early surgical resection on young pa-

tients with seizures only, a patient group where some still advo-

cate watchful waiting.

It should be acknowledged that some LGGs are not eligible for

a meaningful extent of resection with an acceptable risk.

However, an overall treatment strategy in favor of watchful wait-

ing cannot be recommended in patients eligible for resection and

should only be done with informed consent, and preferably

within clinical trials. Also, the logic behind postponing treatment

until growth is detected can be questioned since LGGs always

grow, although some grow so slowly that growth is not detected

with crude measures and relatively short follow-up times, while

others transform without causing additional symptoms [23–25].

Finally, malignant transformation usually occurs with time but

extensive surgical resection may delay this process [5].

With modern surgical tools and techniques, including intrao-

perative MRI [21], 3D-ultrasound guided resection (as used in

region B in the present study) [5], and mapping techniques [1],

morbidity and surgical extent of resection is perhaps more pre-

dictable than earlier. Also there was no difference in health-

related quality of life in patients still alive from the two cohorts,

as reported previously [7].

The fraction of patients harboring LGGs with IDH mutations

is comparable or slightly lower than recently published clinical

studies, including a large Chinese population-based study [9, 26,

27]. Thus, our population-based cohorts seems representative of

the LGG reported in other clinical settings as well. In many of our

IDH wild-type cases no further tissue was available, and conse-

quently we did not perform additional analyses on TERT muta-

tion to further differentiate between the IDH wild-type tumors

between regions [17]. Although one should be careful of reading

too much into small subgroup analyses, the exploratory sub-

group analyses indicate that surgical resection is effective in all

molecular subgroups.

Limitations

The methodological concept behind our study is outlined in de-

tail in our previous publication [5]. The main limitation of our

study is the lack of randomization, but as emphasized earlier a

randomized study is highly unlikely to ever be carried out. With

this study there is even less clinical equipoise to this topic. The

retrospective assessment is also a limitation with respect to base-

line variables and nonstandardized documentation, but the pri-

mary end-point (i.e. overall survival) is robust regardless of this.

As described earlier, disease-specific death was not assessed and

with a long follow-up some patients may die of unrelated causes

[5]. However, in Norway the difference between overall and

disease-specific survival for adults with primary brain tumors

does not exceed 2% during the first 15 years of observation [28].

Another criticism we faced was that the cohort from region A did

so poorly that they could not be representative for a LGG cohort,

but this speculation is refuted after molecular classification. In

fact, survival in region A compares well to historical Surveillance,

Epidemiology, and End Results (SEER) data from the years be-

fore extensive surgery was as often attempted or achieved and

from other studies studying biopsies as a surgical policy [22, 29,

30].

Our population-based data from two geographical regions

served by two different neurosurgical departments with highly

different treatment traditions ensured comparable and balanced

groups. Also, we have analyzed results conservatively with only

regional comparisons to avoid introducing selection bias to our

study. Diagnostic sampling bias may be an issue when comparing

biopsy to surgical resection [11], but this would be unavoidable

in any study comparing biopsy with resection in a histopatholo-

gical defined group. After assessment of the molecular markers

that are early, common events we are now reassured that tumors

were comparable from a biological point of view, as expected in a

population-based study [14]. Thus, the potential risk of histo-

pathological sampling bias that may result when comparing

stereotactic biopsies to tissue samples from resection is much

reduced by analyzing molecular markers. However, the molecular

markers were assessed differently between regions and due to the

approach in region B there could be a slight underestimation of

1p19q codeleted tumors.

In conclusion, there is a considerable and sustained survival ad-

vantage associated with early resection compared with a strategy of

watchful waiting in unselected patients with LGGs. The survival

benefit remained after adjustment for molecular markers.
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