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Abstract
We and others previously showed that in mouse embryos lacking the transcription factor Sox10,

olfactory ensheathing cell (OEC) differentiation is disrupted, resulting in defective olfactory axon

targeting and fewer gonadotropin-releasing hormone (GnRH) neurons entering the embryonic fore-

brain. The underlying mechanisms are unclear. Here, we report that OECs in the olfactory nerve

layer express Frzb—encoding a secreted Wnt inhibitor with roles in axon targeting and basement

membrane breakdown—from embryonic day (E)12.5, when GnRH neurons first enter the forebrain,

until E16.5, the latest stage examined. The highest levels of Frzb expression are seen in OECs in the

inner olfactory nerve layer, abutting the embryonic olfactory bulb. We find that Sox10 is required

for Frzb expression in OECs, suggesting that loss of Frzb could explain the olfactory axon targeting

and/or GnRH neuron migration defects seen in Sox10-null mice. At E16.5, Frzb-null embryos show

significant reductions in both the volume of the olfactory nerve layer expressing the maturation

marker Omp and the number of Omp-positive olfactory receptor neurons in the olfactory epithe-

lium. As Omp upregulation correlates with synapse formation, this suggests that Frzb deletion

indeed disrupts olfactory axon targeting. In contrast, GnRH neuron entry into the forebrain is not

significantly affected. Hence, loss of Frzb may contribute to the olfactory axon targeting phenotype,

but not the GnRH neuron phenotype, of Sox10-null mice. Overall, our results suggest that Frzb

secreted from OECs in the olfactory nerve layer is important for olfactory axon targeting.
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1 | INTRODUCTION

During early olfactory nerve development, the “migratory mass” must

forge its own route through the frontonasal mesenchyme, from the

olfactory placode to the forebrain (Balmer & LaMantia, 2005). The

migratory mass comprises olfactory axons (arising from olfactory

receptor neurons in the olfactory epithelium), olfactory placode-

derived migratory neurons, and olfactory ensheathing glial cells

(OECs) (Blanchart, Martín-López, De Carlos, & López-Mascaraque,

2011; Miller, Treloar, & Greer, 2010b; Valverde, Santacana, & Heredia,

1992). OECs, which are neural crest-derived (Barraud et al., 2010),

migrate ahead of olfactory axons during both development and regen-

eration (Chehrehasa et al., 2010; Tennent & Chuah, 1996; Valverde

et al., 1992), while in explant culture, olfactory axons prefer to grow

on OECs and extend only in association with migrating OECs (Windus

et al., 2011). Hence, OECs may facilitate the migration of olfactory

axons and migrating neurons to the forebrain. Once the migratory

mass reaches the forebrain, olfactory axon fascicles ensheathed by

OECs form the presumptive olfactory nerve layer (ONL) that caps the

developing olfactory bulb (Treloar, Miller, Ray, & Greer, 2010;

Received: 15 November 2016 Revised: 19 July 2018 Accepted: 30 July 2018

DOI: 10.1002/glia.23515

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.
© 2018 The Authors. Glia published by Wiley Periodicals, Inc.

Glia. 2018;66:2617–2631. wileyonlinelibrary.com/journal/glia 2617

https://orcid.org/0000-0002-4434-3107
mailto:cvhb1@cam.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/glia


Valverde et al., 1992). As the basement membrane around the olfac-

tory bulb breaks down, OEC processes and olfactory axons enter the

main body of the bulb, and eventually olfactory axons synapse with

the dendrites of target mitral/tufted neurons, forming the glomerular

layer (Marin-Padilla & Amieva, 1989; Valverde et al., 1992). Olfactory

axons remain in the outer ONL until they are near their glomerular tar-

get, at which point they enter the inner ONL and “sort out” into

mostly homotypic axon bundles (i.e., bundles comprising mostly olfac-

tory axons expressing the same odorant receptor), before converging

on the target glomerulus (Akins & Greer, 2006a; Miller, Maurer, Zou,

Firestein, & Greer, 2010a; Treloar et al., 2010; Treloar, Feinstein,

Mombaerts, & Greer, 2002; Treloar, Purcell, & Greer, 1999).

Our lab and others recently found that defects in OEC differentia-

tion, caused by genetic deletion of the transcription factor Sox10

(which is expressed within the embryonic olfactory system only by

developing OECs and, much later in development, by mucus-secreting

Bowman's gland cells within the olfactory epithelium; Barraud et al.,

2010; Forni, Taylor-Burds, Melvin, Williams, & Wray, 2011; Barraud,

St John, Stolt, Wegner, & Baker, 2013; Pingault et al., 2013), disrupt

both olfactory axon targeting and the entry of migrating

gonadotropin-releasing hormone (GnRH) neurons into the embryonic

mouse forebrain (Amaya et al., 2015; Barraud et al., 2013; Pingault

et al., 2013). GnRH neurons migrate from the vomeronasal organ

(a specialized region of the olfactory epithelium) along caudally pro-

jecting vomeronasal and terminal nerve axons—which are also

ensheathed by OECs—to enter the ventromedial forebrain, eventually

reaching the hypothalamus, where they are required for gonadotropin

release at puberty (Cariboni, Maggi, & Parnavelas, 2007; Schwanzel-

Fukuda & Pfaff, 1989; Taroc, Prasad, Lin, & Forni, 2017; Wray, 2010;

Wray, Grant, & Gainer, 1989; Yoshida, Tobet, Crandall, Jimenez, &

Schwarting, 1995). Migrating GnRH neurons, and other neurons

within the migratory mass, are intimately associated with OECs

(Geller, Kolasa, Tillet, Duittoz, & Vaudin, 2013; Miller et al., 2010b). In

Sox10-null mice, the expression of glial markers is significantly

reduced in the neural crest-derived cells that persist on the olfactory

nerve and within the ONL (Amaya et al., 2015; Barraud et al., 2013;

Pingault et al., 2013); olfactory axons accumulate ventromedial to the

olfactory bulbs and the ONL is thinner, suggesting an olfactory axon

targeting defect (Amaya et al., 2015; Barraud et al., 2013). Signifi-

cantly fewer olfactory receptor neurons in the epithelium express

olfactory marker protein (Omp) at E16.5 (Barraud et al., 2013), most

likely owing to the axon targeting defect, given that Omp is a matura-

tion marker whose expression correlates with the onset of synapto-

genesis (Farbman & Margolis, 1980; Monti Graziadei, Stanley, &

Graziadei, 1980). The failure of normal OEC differentiation in Sox10-

null mouse embryos also disrupts the entry into the embryonic fore-

brain of GnRH neurons (Barraud et al., 2013; Pingault et al., 2013).

These data explain why loss-of-function mutations in human SOX10

have been found to underlie some cases of Kallmann's syndrome, that

is, combined anosmia and sterility (hypogonadotropic hypogonadism)

(Pingault et al., 2013), but the underlying mechanisms are unknown.

During a survey of Wnt signaling pathway gene expression during

OEC development (CAR and CVHB, unpublished), we were intrigued to

see expression of Frzb (secreted frizzled-related protein 3, Sfrp3) in a sub-

set of OECs at the embryonic olfactory nerve/forebrain junction. Frzb

expression was previously reported in the olfactory nerve layer in post-

natal and young adult mice (Shimogori, VanSant, Paik, & Grove, 2004).

Sfrp family members inhibit both “canonical” and “noncanonical” Wnt

pathways, but also have Wnt-independent activities, including in axon

extension and guidance (Cruciat & Niehrs, 2013). Frzb itself is expressed

by neurons in the dorsal horn of the spinal cord, and its deletion disrupts

innervation of the dorsal horn by cutaneous afferents (John et al., 2012).

Furthermore, during primary mouth formation in Xenopus, the basement

membrane persists after Frzb knockdown (Dickinson & Sive, 2009).

Taken together, this suggested to us that Frzb secreted from OECs bor-

dering the embryonic olfactory bulb could be involved in olfactory axon

targeting and/or basement membrane breakdown around the develop-

ing olfactory bulb, which could be important for GnRH neuron entry.

Loss of Frzb could therefore explain, at least in part, the defects in olfac-

tory axon targeting and GnRH neuron entry into the forebrain seen in

Sox10-null mice, in which normal OEC differentiation is disrupted

(Amaya et al., 2015; Barraud et al., 2013; Pingault et al., 2013).

Here, we report the time-course of Frzb expression and demon-

strate that Frzb is downstream of Sox10 in OECs. We show that the

volume of the Omp-immunoreactive ONL of Frzb-null mouse embryos

is significantly reduced, and that there are fewer mature (Omp-posi-

tive) olfactory receptor neurons in the olfactory epithelium. As Omp

expression correlates with synapse formation (Farbman & Margolis,

1980; Monti Graziadei et al., 1980), this suggests that loss of Frzb

indeed results in defective olfactory axon targeting. However, the

proportion of GnRH neurons entering the forebrain is not significantly

affected. Overall, our data suggest that Frzb secretion from a subpop-

ulation of OECs abutting the embryonic olfactory bulb plays a role in

olfactory axon targeting.

2 | MATERIALS AND METHODS

2.1 | Mouse embryos

Frzb knockout and Sox10lacZ mutant mice were previously described

(Britsch et al., 2001; Lories et al., 2007). All mouse experiments were

carried out in accordance with German law and were approved by the

respective governmental offices in Ulm and Erlangen, and, for a subset

of Sox10lacZ mutant embryos analyzed, by the Vanderbilt University

Institutional Animal Care and Use Committee. Litters from timed preg-

nancies were harvested at various days post coitus, counting the day

of plug detection as embryonic day (E)0.5. Genotyping of tail biopsies

was performed by PCR as previously described (Britsch et al., 2001;

Lories et al., 2007).

2.2 | Cryosectioning and in situ hybridization

Embryos were immersion-fixed in 4% paraformaldehyde in phosphate-

buffered saline (PBS) overnight at 4�C, then embedded in OCT (Thermo

Fisher Scientific) for cryosectioning at 10 μm. In situ hybridization was

performed on sections as previously described (Miller, Perera, & Baker,

2017). The mouse Frzb clone was a gift of Christine Hartmann

(Westfälische Wilhelms-Universität Münster, Münster, Germany). A

405-bp fragment of mouse Npy cDNA, corresponding to base-pairs
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86–490 of NCBI reference sequence NM_023456.3, was PCR-

amplified (forward primer CGCCACGATGCTAGGTAACAA; reverse

primer CTAGTGGTGGCATGCATTGGT) from single-strand cDNA (pre-

pared using Thermo Fisher's High-Capacity cDNA Reverse Transcrip-

tion Kit on total RNA extracted with Trizol [Invitrogen] from E13.5

mouse embryo heads). The Npy cDNA fragment was cloned into pDrive

(Qiagen) using the Qiagen PCR cloning kit and sequenced (Biochemistry

Department DNA Sequencing Facility, University of Cambridge, UK).

Primer-BLAST software from NCBI (Ye et al., 2012) was used to design

PCR primers and check their specificity. Primer melting temperature

and self-complementarity were checked using Primer3Plus (https://

primer3plus.com/cgi-bin/dev/primer3plus.cgi; Untergasser et al., 2012).

Digoxigenin-labeled antisense riboprobes were generated as described

(Henrique et al., 1995).

2.3 | Immunohistochemistry

Immunohistochemistry was performed as previously described (Miller

et al., 2017), except that heat-inactivated sheep, goat, or donkey

serum, as appropriate, was used at 10% in primary and secondary anti-

body solutions for blocking. When necessary, antigen retrieval was

performed by heating the slides for 4 min (until boiling) in a micro-

wave in 10 mM sodium citrate buffer solution (pH 6), followed by two

washes in PBS. Primary antibodies were used against the following

antigens: β-galactosidase (chicken, Abcam ab9361; 1:1000), FABP7

(fatty acid binding protein 7, an early glial marker also known as brain

lipid-binding protein, BLBP; rabbit, Millipore ABN14; 1:150),

gonadotropin-releasing hormone (GnRH; rabbit, Abcam ab5617;

1:150), olfactory marker protein (Omp, expressed by mature olfactory

receptor neurons; goat, Wako 019-22291; 1:500), peripherin

(a neuron-specific intermediate filament protein; rabbit, Millipore;

1:200), Sox10 (rabbit, gift of Vivian Lee, Medical College of Wisconsin,

WI, 1:3000; Meng, Yuan, & Lee, 2011; Yardley & García-Castro,

2012), Tubb3 (neuronal βIII tubulin; mouse IgG2a, clone TUJ1,

Covance MMS-435P; 1:250). Appropriately matched Alexa Fluor-

conjugated secondary antibodies (Molecular Probes) were used at

1:1000. For triple immunostaining, anti-Tubb3 was detected by

incubating with a biotinylated secondary antibody (goat anti-mouse

IgG2a, Invitrogen, 1:100; horse anti-mouse IgG, Vector Laboratories,

1:200), followed by Alexa350-conjugated NeutrAvidin (Molecular

Probes, 1:100).

2.4 | Analysis of olfactory nerve layer volume

Heterozygous Frzb+/− mutant embryos and Frzb-null embryos at

E16.5 were serially cryosectioned at 10 μm (10 slides/series: on each

slide, each section was collected every 100 μm), in either the coronal

or parasagittal plane, and slides immunostained for the mature olfac-

tory axon marker Omp (Farbman & Margolis, 1980; Monti Graziadei

et al., 1980), and the general axon marker Tubb3 (neuronal βIII tubu-

lin). Coronal series spanned the rostrocaudal extent of the olfactory

bulbs; parasagittal series spanned the width of the forebrain (i.e., both

olfactory bulbs). Low-power (10×) images were captured of each

section on one slide for each series containing olfactory bulb from

each embryo (or occasionally sections from two slides, if the region

containing the olfactory bulbs spanned more than one 10-slide series).

The freehand selection and measure tools in NIH ImageJ software

(Schneider, Rasband, & Eliceiri, 2012) were used to draw around and

measure the area of Omp expression (i.e., the area of the olfactory

nerve layer) in μm2 for each 10× image with Omp immunostaining.

For each of 4 heterozygous Frzb+/− embryos and 5 homozygous

Frzb−/− embryos, these areas were summed and multiplied by the

10 μm thickness of the sections to give an estimate of one-tenth of

the total volume of the Omp-positive olfactory nerve layer (across

both olfactory bulbs) per embryo.

2.5 | Analysis of olfactory receptor neuron
maturation and olfactory epithelium thickness

Confocal images were taken of 10 μm serial sections in either the cor-

onal or parasagittal plane (10 slides/series: on each slide, each

section was collected every 100 μm), immunostained for the matura-

tion marker Omp (Farbman & Margolis, 1980; Monti Graziadei et al.,

1980) and the general axonal/neuronal marker Tubb3, from four het-

erozygous Frzb+/− embryos and four Frzb-null embryos at E16.5. On

coronal sections, Adobe Photoshop CS6 was used to place a 200 μm

bar in the image (in the Tubb3 channel, to reduce bias) along the

dorsal olfactory epithelium on left and right sides of the nasal septum

(i.e., 2 measurements per section), for 3–4 sections per embryo

(i.e., 6–8 measurements per embryo). Similarly, on parasagittal

sections, a bar was placed in the image along the dorsal olfactory epi-

thelium, for 6 sections per embryo (i.e., 6 measurements per embryo).

Within the region of olfactory epithelium selected by the bar, all

Tubb3-positive cells (i.e., neurons) and all double Omp-positive,

Tubb3-positive cells (i.e., mature neurons) were counted, and the

thickness of the epithelium measured at 3 points (at each edge of the

bar, and at a third point near the center of the bar).

2.6 | Analysis of GnRH neuron numbers

GnRH neurons (identified as GnRH-immunoreactive, Tubb3-positive

cells) were counted on 10 μm sections through the forebrain in either

the coronal or parasagittal plane (10 slides/series: on each slide, each

section was collected every 100 μm) of three E16.5 heterozygous

Frzb+/− embryos and three E16.5 Frzb-null embryos.

2.7 | Statistical analysis

Microsoft Excel was used for initial data analysis. GraphPad Prism

7 (GraphPad Software, La Jolla, CA) was used to generate scatter plots

showing mean and standard deviation (SD), to test all datasets for

normality using the Shapiro–Wilk test, and to compare variances using

an F test. For datasets passing the Shapiro–Wilk normality test

(p > .05), means were compared in GraphPad Prism 7 using an

unpaired two-tailed Student's t test. For datasets where p < .05 for

the Shapiro–Wilk normality test, means were compared in GraphPad

Prism 7 using the Mann–Whitney (Wilcoxon rank sum) test.
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2.8 | Image capture and processing

Images were captured using either a Zeiss AxioSkop 2 MOT compound

microscope with a QImaging Retiga 2000R camera and an RGB pancake

(QImaging), using QCapture Pro 6.0 software, or a Nikon A1 confocal

with a Photometrics Evolve EM-CCD-camera running on Nikon

elements software. Adobe Photoshop CS6 was used to process images.

3 | RESULTS

3.1 | Frzb is expressed by central OECs from E12.5
until at least E16.5, with strongest expression in the
inner olfactory nerve layer, next to the olfactory bulb

At embryonic day (E)10.5 in the mouse, the “migratory mass” of olfac-

tory receptor neuron axons, migrating neurons and Sox10-expressing

OEC precursors has formed subjacent to the invaginated olfactory

epithelium (Barraud et al., 2013; Forni et al., 2011; Miller et al.,

2010b; Valverde et al., 1992). In situ hybridization on parasagittal sec-

tions of wild-type embryos at E10.5 revealed Frzb expression in mes-

enchyme in the maxillary and mandibular prominences, but not in the

developing olfactory system (n = 2; data not shown). By E11, develop-

ing OECs can be identified by Sox10 expression (Barraud et al., 2013;

Forni et al., 2011) or by immunoreactivity for the early glial marker

fatty acid binding protein 7 (Fabp7; also known as brain fatty acid-

binding protein, Bfabp, or brain lipid-binding protein, Blbp) (Miller

et al., 2010b), and their processes wrap both olfactory axons and

migrating neurons in the migratory mass (Miller et al., 2010b). The

migratory mass extends along the rostromedial surface of the telen-

cephalon without contacting it until E11.5, when olfactory axons con-

tact the future olfactory bulb region at the rostral tip of the

telencephalon, but without penetrating the basal membrane

(Doucette, 1989; Marin-Padilla & Amieva, 1989; Treloar et al., 2010).

At E11.5 in wild-type embryos, Frzb expression was detected in maxil-

lary and mandibular mesenchyme, and also in frontonasal mesen-

chyme caudal to the olfactory epithelium, but not in OECs, which

were identified by immunoreactivity for Fabp7 or Sox10, in associa-

tion with olfactory nerve fascicles (n = 6; Figure 1a–c3 shows an

embryo in which OECs were identified by Sox10 immunoreactivity).

At E12, a few “pioneer” olfactory axons penetrate the basal mem-

brane of the forebrain via small fenestrations, while by E12.5, the olfac-

tory bulb is morphologically distinguishable as a telencephalic

evagination, capped by a thin presumptive olfactory nerve layer (ONL)

(Doucette, 1989; Marin-Padilla & Amieva, 1989; Treloar et al., 2010).

Also at E12.5, the first GnRH neurons enter the forebrain, migrating

along a caudal branch of the vomeronasal nerve and terminal nerve

axons, which run medial to the olfactory nerve and are also ensheathed

by OECs (Cariboni et al., 2007; Schwanzel-Fukuda & Pfaff, 1989; Taroc

et al., 2017; Wray et al., 1989; Yoshida et al., 1995). At E12.5–13.5, Frzb

is expressed by a subset of OECs (identified by Sox10 or Fabp7

immunoreactivity in wild-type embryos, or by β-galactosidase-

immunoreactivity in heterozygous Sox10lacZ/+ embryos, in which one

allele of Sox10 has been replaced by lacZ; Britsch et al., 2001; Barraud

et al., 2013) in the olfactory nerve layer adjacent to the developing

olfactory bulb, but in only a few cells more peripherally in the olfactory

nerve (n = 10; Figure 1d–h2 shows an E13.5 embryo in which OECs

were identified by Sox10 immunoreactivity).

From E13.5 to E16.5, the ONL thickens as more olfactory axons

extend to the olfactory bulb and the basement membrane around the

olfactory bulb continues to break down, but most olfactory axons

remain restricted to the ONL until E15, when significant numbers of

synapses are first seen (only a few synapses form earlier, at E14) and

glomeruli start to form (Blanchart, De Carlos, & López-Mascaraque,

2006; Hinds & Hinds, 1976a; Hinds & Hinds, 1976b; Marin-Padilla &

Amieva, 1989; Treloar et al., 2010). This “waiting period” has been sug-

gested to enable olfactory axons expressing different odorant recep-

tors to sort into homotypic fascicles before converging to form specific

glomeruli (Treloar et al., 1999; Treloar et al., 2010): the sorting occurs

only in the inner ONL (Miller et al., 2010a; Treloar et al., 2002). At the

latest stage examined, E16.5 (n = 7), Frzb continues to be expressed by

OECs in the ONL, most strongly in those OECs closest to the olfactory

bulb (Figure 2a–b2), but in only a few peripheral OECs (Figure 2c–c2).

OECs were identified as Sox10- or Fabp7-immunoreactive cells in

wild-type embryos, or β-galactosidase-immunoreactive cells associated

with the olfactory nerve in heterozygous Sox10lacZ/+ embryos; in the

embryo shown in Figure 2, OECs were identified by Sox10 immunore-

activity. In situ hybridization for the inner ONL-specific OEC marker

neuropeptide tyrosine (Npy) (Au, Treloar, & Greer, 2002; Ubink & Hok-

felt, 2000) on alternate serial sections (Figure 2d–e2) confirmed that

the strongest expression of Frzb in the ONL was in OECs in the inner

ONL (compare Figure 2b–b2 with Figure 2e–e2).

Both GnRH neuron entry into the forebrain and olfactory axon tar-

geting are disrupted in Sox10-null embryos, in which OEC differentia-

tion is defective (Barraud et al., 2013; Pingault et al., 2013), including

loss of the inner ONL-specific OEC marker Npy (Barraud et al., 2013).

Our data show that Frzb is expressed by a subpopulation of OECs abut-

ting the olfactory bulb, beginning from E12.5 (when the first GnRH neu-

rons enter the developing bulb) and continuing through to at least

E16.5. Hence, the loss of Frzb secretion from OECs adjacent to the

olfactory bulb could be one of the molecular mechanisms underlying

the defects in GnRH neuron entry into the forebrain and olfactory axon

targeting that are seen in Sox10-null embryos (Barraud et al., 2013;

Pingault et al., 2013).

3.2 | Frzb is downstream of Sox10 in OECs

We first tested whether Frzb expression in developing OECs depends

on Sox10, by comparing Frzb expression in wild-type or heterozygous

Sox10lacZ/+ embryos versus Sox10lacZ/lacZ (Sox10-null) littermates

(Barraud et al., 2013; Britsch et al., 2001; Pingault et al., 2013). At

E12.5-E14.5, Frzb was expressed by OECs in the ONL in wild-type

and heterozygous Sox10lacZ/+ embryos (n = 7; Figure 3a–d2), but was

not detectable in the ONL in Sox10-null littermates (n = 5; Figure 3e–

h2). Frzb expression was seen in jaw mesenchyme for all genotypes

(Figure 3i–n). Hence, Frzb expression in developing OECs requires

Sox10. Furthermore, this is consistent with the hypothesis that the

lack of Frzb secretion from OECs abutting the olfactory bulb may con-

tribute to the disruption in Sox10-null embryos of olfactory axon tar-

geting and/or GnRH neuron entry into the forebrain (Barraud et al.,

2620 RICH ET AL.



FIGURE 1 Frzb is expressed by OECs in the embryonic mouse olfactory nerve layer. In situ hybridization for Frzb on parasagittal sections through

the developing mouse olfactory system. (a–c3) At E11.5, Frzb expression is seen in the maxillary and mandibular prominences, and in frontonasal
mesenchyme caudal to the olfactory epithelium, but not in OECs (identified by nuclear immunoreactivity for the transcription factor Sox10)
associated with Tubb3-positive olfactory nerve fascicles (arrowheads highlight examples). (d–h2) At E13.5, strong Frzb expression can be seen in

OECs in the olfactory nerve layer adjacent to the olfactory bulb (white arrowheads, f1–g2), but in fewer OECs on the olfactory nerve more
peripherally (yellow arrowheads, g–g2; white arrowheads, h–h2). Yellow arrowheads in panels h–h2 highlight examples of Frzb-negative peripheral
OECs. FB, forebrain; MD, mandibular prominence; MX, maxillary prominence; OB, olfactory bulb; OE, olfactory epithelium; ON, olfactory nerve;
ONL, olfactory nerve layer. Scale bar: 100 μm [Color figure can be viewed at wileyonlinelibrary.com]
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2013; Pingault et al., 2013). Frzb-null mice are viable and fertile, but

only 12% of the normal GnRH neuron population is required for

fertility in males, and 12%–34% in females (Herbison, Porteous, Pape,

Mora, & Hurst, 2008). So, it was still feasible that loss of Frzb could

contribute to the phenotype of Sox10-null embryos (Barraud et al.,

2013; Pingault et al., 2013). We tested this hypothesis by comparing

the development of the olfactory system in heterozygous Frzb+/−

versus Frzb-null mouse embryos (Lories et al., 2007).

3.3 | The Omp-immunoreactive olfactory nerve
layer is thinner in Frzbi>-null mice

At E16.5, the entire width of the ONL can be visualized by immuno-

reactivity for the maturation marker Omp in heterozygous Frzb+/−

mouse embryos (Figure 4a–c2), while the outer ONL can be identified

by immunoreactivity for the type III neuron-specific intermediate fila-

ment protein peripherin (Figure 4a–b2), as reported for wild-type

neonatal mice (Akins & Greer, 2006b). Peripherin-positive, Omp-

negative axons can also be detected deep to the ONL on these coro-

nal sections, in the external plexiform layer (Figure 4c–c2). (The

proto-glomerular layer is not well defined at this stage and is hard to

distinguish from the ONL; Blanchart et al., 2006.) These could be

“over-shooting” olfactory axons, which in wild-type rat and mouse

embryos penetrate into deeper layers of the olfactory bulb, where

they are pruned by radial glia (Amaya et al., 2015; Santacana, Here-

dia, & Valverde, 1992). This over-shooting continues into the neona-

tal and postnatal period (Tenne-Brown & Key, 1999; St John &

Key, 2005).

FIGURE 2 At E16.5, Frzb is expressed most strongly by OECs in the inner olfactory nerve layer. In situ hybridization for Frzb on parasagittal sections

through the mouse olfactory system at E16.5. (a–b2) Frzb expression is seen in OECs (identified by nuclear Sox10 immunoreactivity) throughout the
olfactory nerve layer, but more strongly in the inner region, adjacent to the olfactory bulb (white arrowheads) than in the outer region (yellow arrowheads).
(c–c2) FewOECs associated with peripheral olfactory nerve fascicles on the same section seem to express Frzb (white arrowhead highlights an example):
most are Frzb-negative (yellow arrowheads highlight examples). (d–e2) In situ hybridization for the inner ONL-specific OECmarker Npy on the adjacent
serial section to the section shown in panels a–c2. iONL, inner olfactory nerve layer; OB, olfactory bulb; OE, olfactory epithelium; ON, olfactory nerve, ONL,
olfactory nerve layer; oONL, outer olfactory nerve layer. Scale bar: 100 μm [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 3 Frzb expression in the olfactory nerve layer depends on Sox10. Coronal sections through the developing olfactory system at E13.5 in

Sox10lacZ mouse embryos, in which lacZ replaces one or both alleles of Sox10 (Britsch et al., 2001). (a–d2) In a wild-type embryo, Frzb expression
can be seen in OECs (identified by immunoreactivity for nuclear Sox10) in the Tubb3-positive olfactory nerve layer (arrowheads, d–d2). (e–h2) In a
Sox10lacZ/lacZ (i.e., Sox10-null) litter-mate, Frzb expression is lacking in the olfactory nerve layer, where β-galactosidase-positive neural crest-
derived cells persist in the absence of Sox10 (Barraud et al., 2013) (arrowheads, h–h2). (i–k) In a more caudal section of the wild-type embryo in
panels a–d2 (from a different slide in the same round of in situ hybridization), Frzb expression is seen in mesenchyme in the maxillary and
mandibular prominences. (l–n) In a more caudal section of the Sox10lacZ/lacZ (i.e., Sox10-null) litter-mate in panels e–h2 (from a different slide in the
same round of in situ hybridization), Frzb expression is seen in mesenchyme in the maxillary and mandibular prominences. FB, forebrain; MD,
mandibular prominence; MX, maxillary prominence; OB, olfactory bulb; OE, olfactory epithelium; ON, olfactory nerve. Scale bar: 100 μm [Color
figure can be viewed at wileyonlinelibrary.com]

RICH ET AL. 2623

http://wileyonlinelibrary.com


On coronal sections of Frzb-null embryos at E16.5 (Figure 4d–f2),

the Omp-immunoreactive ONL generally seemed to be thinner than

in heterozygous Frzb+/− embryos (compare Figure 4a with Figure 4d).

Peripherin-positive, Omp-negative axons were not apparent deep to

the ONL, suggesting that the loss of Frzb prevented olfactory axons

from overshooting beyond the ONL. To quantify the apparent differ-

ence in ONL thickness, as defined by Omp immunoreactivity, we used

ImageJ to outline all Omp-positive regions on series of coronal or

parasagittal sections through both olfactory bulbs at E16.5 (examples

of coronal sections shown in Figure 5a–q), and from this calculated

one-tenth of the total volume of the Omp-positive ONL (from both

olfactory bulbs) per embryo. The mean � standard deviation (SD) for

this value was 233.20 mm3 � 19.35 for heterozygous Frzb+/−

embryos (n = 4) versus 85.17 mm3 � 9.77 for Frzb-null embryos

(n = 5) (Figure 5r). Comparison of the means using an unpaired two-

tailed Student's t test showed that they were highly significantly

different (p < .0001).

These data suggest that in the absence of Frzb secreted from the

subpopulation of OECs abutting the olfactory bulb, there are fewer

Omp-positive (mature) axons in the ONL. As Omp expression correlates

with the onset of synaptogenesis (Farbman & Margolis, 1980; Monti

Graziadei et al., 1980), and can be upregulated in olfactory receptor

neurons in embryonic olfactory epithelium co-cultured in direct contact

with the presumptive olfactory bulb (Chuah & Farbman, 1983), these

results suggest that Frzb deletion disrupts olfactory axon targeting and

thus, in consequence, the maturation of olfactory receptor neurons.

3.4 | Frzb deletion disrupts olfactory receptor
neuron maturation

To test the hypothesis that Frzb deletion disrupts the maturation of

olfactory receptor neurons, we compared the proportion of olfactory

receptor neurons expressing the maturation marker Omp at E16.5 in

heterozygous Frzb+/− embryos (n = 4) versus Frzb-null embryos (n = 4)

(Figure 6a–i). A 200 μm span of dorsal olfactory epithelium was

selected on coronal sections (both left and right sides measured on

each of 3–4 sections per embryo) or parasagittal sections (6 sections

per embryo). Within the selected span of olfactory epithelium, we

counted the number of Omp-positive (mature) Tubb3-positive neu-

rons (Figure 6a–c) and the overall number of Tubb3-positive neurons

(Figure 6d–f ), and measured the thickness of the olfactory epithelium

at three different points (Figure 6g–i).

The mean number per embryo of Omp-positive (mature) olfactory

receptor neurons per 200 μm of epithelium (� SD) was 32.67 � 0.35

for heterozygous Frzb+/− embryos (n = 4; Figure 6c), versus

11.85 � 1.78 for Frzb-null embryos (n = 4; Figure 6c). The Frzb-null

dataset did not pass the Shapiro–Wilk test for normality (p = .042);

comparison of the datasets using the nonparametric Mann–Whitney

(Wilcoxon rank sum) test showed that they were significantly differ-

ent (p = .029).

In contrast, the number of olfactory receptor neurons per 200 μm

of epithelium was not significantly different for heterozygous Frzb+/−

embryos (mean per embryo � SD: 237.2 � 12.74; n = 4; Figure 6f )

versus Frzb-null embryos (235.1 � 16.40; n = 4; Figure 6f ) (unpaired

two-tailed Student's t test; p = .84). Similarly, Frzb deletion had no

effect on the thickness of the olfactory epithelium, for which the

mean per embryo (� SD) was 84.25 � 3.52 μm for heterozygous

Frzb+/− embryos (n = 4; Figure 6i), versus 81.84 � 3.08 μm for Frzb-

null embryos (n = 4; Figure 6i). The Frzb-null dataset did not pass the

Shapiro–Wilk normality test (p = .035); comparison of the datasets

using the Mann–Whitney test showed that they were not significantly

different (p = .200).

Overall, these data show that Frzb deletion has no effect on either

the overall number of olfactory receptor neurons or the thickness of

the olfactory epithelium. In contrast, significantly fewer olfactory

receptor neurons in Frzb-null embryos express the maturation marker

Omp. Given this, our results suggest that Frzb secreted by OECs abut-

ting the olfactory bulb is required for normal olfactory axon targeting,

hence for the maturation of olfactory receptor neurons.

3.5 | Frzb deletion does not significantly affect
GnRH neuron entry into the forebrain

As described earlier, Frzb expression is first seen in OECs abutting the

developing olfactory bulb at E12.5, when the first GnRH neurons

enter the forebrain (Cariboni et al., 2007; Schwanzel-Fukuda & Pfaff,

1989; Wray et al., 1989; Yoshida et al., 1995). GnRH neuron entry

into the forebrain is disrupted in Sox10-null embryos, in which normal

OEC differentiation fails (Barraud et al., 2013; Pingault et al., 2013)

and Frzb expression in the ONL is lost (Figure 3e–h2). We therefore

tested whether Frzb secretion from OECs adjacent to the developing

olfactory bulb might be important for GnRH neuron entry into the

forebrain. We counted all GnRH neurons on sections of 3 heterozy-

gous Frzb+/− embryos and 3 Frzb-null embryos at E16.5, and deter-

mined the proportion inside the forebrain. At least 85 GnRH neurons

were counted per embryo (mean � SD of GnRH neurons counted per

embryo: 142.5 � 57.1; n = 6). Figure 7a–d shows schematic represen-

tations of the distribution of GnRH neurons on coronal sections at dif-

ferent rostrocaudal levels of a heterozygous Frzb+/− embryo

(Figure 7a,b) and a Frzb-null mouse embryo (Figure 7c,d). The mean

percentage of all GnRH neurons counted (� SD) that were located

inside the forebrain was 68.63 � 9.42% for heterozygous Frzb+/−

embryos (n = 3; Figure 7e) versus 53.48 � 5.82% for Frzb-null

embryos (n = 3; Figure 7e). Comparison of the means using an

unpaired two-tailed Student's t test showed that they are not signifi-

cantly different (p = .077). This contrasts with the fourfold reduction

in GnRH neuron entry seen after Sox10 deletion (Barraud et al., 2013;

Pingault et al., 2013), which also results in the loss of Frzb expression

adjacent to the olfactory bulbs (Figure 3e–h2). Taken together, this

suggests that the loss of Frzb expression on the embryonic olfactory

nerve does not significantly affect the entry of GnRH neurons into

the forebrain.

4 | DISCUSSION

Here, we report specific expression of the secreted Wnt inhibitor gene

Frzb in OECs in the olfactory nerve layer, from E12.5 until at least E16.5

(the latest stage examined), when the strongest expression of Frzb is

seen in OECs in the inner ONL, next to the olfactory bulb. Given that
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Frzb is important both for the innervation of the dorsal horn of the

mouse spinal cord (John et al., 2012) and for the breakdown of the

basement membrane during primary mouth formation in Xenopus

(Dickinson & Sive, 2009), this led us to investigate whether Frzb secre-

tion from this subpopulation of OECs might be one of the mechanisms

underlying the defects in embryonic olfactory axon targeting and GnRH

neuron entry into the forebrain seen in Sox10-null embryos (Amaya

et al., 2015; Barraud et al., 2013 ; Pingault et al., 2013), in which normal

OEC differentiation fails (Barraud et al., 2013; Pingault et al., 2013).

Indeed, we found that Frzb expression in developing OECs requires

Sox10, and that Frzb deletion results in a significant decrease in olfac-

tory receptor neuron maturation. This indirectly suggests a role for Frzb

in olfactory axon targeting, as Omp expression correlates with synapse

formation (Farbman & Margolis, 1980; Monti Graziadei et al., 1980).

However, GnRH neuron entry into the forebrain is not significantly

reduced. These results support roles for OEC-secreted Frzb in embry-

onic olfactory axon targeting, but not in GnRH neuron entry into the

forebrain.

FIGURE 4 Frzb deletion seems to affect development of the olfactory nerve layer. Coronal sections through the mouse olfactory system at

E16.5, immunostained for the maturation marker Omp, the outer ONL marker peripherin (Prph), and the general axonal marker Tubb3. (a–c2) In a
heterozygous Frzb+/− embryo, Omp immunoreactivity labels the olfactory nerve, the full width of the ONL, and many olfactory receptor neurons
in the olfactory epithelium, while peripherin immunoreactivity labels the olfactory nerve and the outer ONL. Some peripherin-positive, Omp-
negative axons are also seen deep to the ONL, in the external plexiform layer (arrowheads, c–c2). (d–f2) In a Frzb-null embryo, the Omp-
immunoreactive ONL seems to be thinner, and peripherin immunoreactivity is not detectable in the external plexiform layer. EPL, external
plexiform layer; OB, olfactory bulb; OE, olfactory epithelium; ON, olfactory nerve; ONL, olfactory nerve layer. Scale bar: 50 μm (a,b,d,e) and
25 μm (c,f ) [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 5 The volume of the Omp-immunoreactive olfactory nerve layer is reduced after Frzb deletion. (a–g) Coronal sections moving rostrally

to caudally through the olfactory bulbs of a heterozygous Frzb+/− mouse embryo, immunostained for Omp, with the Omp-positive regions
outlined. (h) Schematic showing a parasagittal view through an E16.5 mouse head, with dotted lines showing the approximate location of the
most rostral and most caudal sections shown in (a–g). (i,j) Low-power (i) and high-power (j) views of a hematoxylin and eosin-stained parasagittal
section through an E16.5 mouse head (Plate 38c, image a, from the eHistology Atlas with Kaufman annotations; Graham et al., 2015). The dotted
lines in (j) show the approximate locations of the sections shown in (a–g). (k–q) Coronal sections moving rostrally to caudally through the olfactory
bulbs of a Frzb-null mouse embryo, immunostained for Omp, with the Omp-positive regions outlined. (r) Scatter plot showing the mean volume of
one-tenth of the Omp-positive ONL at E16.5 in heterozygous Frzb+/− embryos (n = 4) and Frzb-null embryos (n = 5). Error bars show SD. Scale
bar: 200 μm [Color figure can be viewed at wileyonlinelibrary.com]
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4.1 | Frzb deletion disrupts olfactory receptor
neuron maturation, suggesting an olfactory axon
targeting defect

Omp, a small cytosolic protein, is critical for the physiological activity of

olfactory receptor neurons (Buiakova et al., 1996; Dibattista & Reisert,

2016; Ivic et al., 2000; Kwon, Koo, Zufall, Leinders-Zufall, & Margolis,

2009; Lee, He, & Ma, 2011; Reisert, Yau, & Margolis, 2007) and has

been used for decades as a marker of maturation. Omp is first expressed

by a few olfactory receptor neurons at E14 in the mouse, correlating

with the onset of synaptogenesis (Farbman & Margolis, 1980; Monti

Graziadei et al., 1980). Omp is also upregulated by olfactory receptor

neurons when embryonic olfactory epithelium (explanted prior to the

onset of Omp expression) is co-cultured in direct contact with

presumptive olfactory bulb tissue of the same stage (Chuah & Farbman,

1983). We found that Frzb-null mice display a significant reduction both

in the volume of the Omp-immunoreactive ONL and in the number of

Omp-expressing olfactory receptor neurons in the olfactory epithelium.

This suggests that Frzb secretion from OECs abutting the embryonic

olfactory bulb is important for olfactory axon targeting, thus indirectly

affecting olfactory receptor neuron maturation. Frzb expression was

previously reported in the mouse ONL from postnatal day 7 until young

adulthood (Shimogori et al., 2004), suggesting that Frzb expression is

maintained.

How could Frzb affect olfactory axon targeting? Frzb (also known

as Sfrp3) is a member of the Sfrp family of secreted Wnt inhibitors,

which have an N-terminal cysteine-rich domain with homology to the

Wnt receptor Frizzled (Fz), and a C-terminal Netrin-related motif that

FIGURE 6 Frzb deletion disrupts olfactory receptor neuron maturation, not overall neuron number or the thickness of the olfactory epithelium.

(a,b) Example coronal sections through a region of dorsal olfactory epithelium at E16.5, immunostained for the maturation marker Omp and the
general neuronal/axonal marker Tubb3 and counter-stained with DAPI, from a heterozygous Frzb+/− mouse embryo (a) and a Frzb-null embryo (b).

All Omp-positive (mature) neurons (cyan dots) have been counted within the 200 μm region highlighted by the cyan bar. (c) Scatter plot showing
that there is a significant difference between the mean number per embryo of Omp-positive (mature) olfactory receptor neurons per 200 μm of
epithelium for heterozygous Frzb+/− embryos (n = 4) versus Frzb-null embryos (n = 4). Error bars show SD. (d,e) The same sections as in (a,b),
showing Tubb3 and DAPI only, with all Tubb3-positive neurons counted (cyan dots) within the 200 μm region highlighted by the cyan bar. (f )
Scatter plot showing there is no significant difference between the mean number per embryo of olfactory receptor neurons per 200 μm of
epithelium for heterozygous Frzb+/− embryos (n = 4) versus Frzb-null embryos (n = 4). Error bars show SD. (g,h) The same sections as in (a,b),
showing example measurements of the thickness of the olfactory epithelium at three points within the 200 μm region highlighted by the cyan
bar. (i) Scatter plot showing there is no significant difference between the mean thickness per embryo of the olfactory epithelium for
heterozygous Frzb+/− embryos (n = 4) versus Frzb-null embryos (n = 4). Error bars show SD. LP, lamina propria; OE, olfactory epithelium. Scale bar:
50 μm [Color figure can be viewed at wileyonlinelibrary.com]
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is also found in the axon guidance protein Netrin and in tissue inhibi-

tors of metalloproteinases (Cruciat & Niehrs, 2013). Sfrp1 promotes

retinal ganglion cell neurite extension and acts as a chemotropic guid-

ance cue for retinal growth cones via the Fz2 receptor (Esteve,

Trousse, Rodríguez, & Bovolenta, 2003; Rodriguez et al., 2005). Sfrp1

and Sfrp2 bind to and reduce the activity of the metalloproteinase

ADAM10, whose substrates include N-cadherin and the neural cell

adhesion molecule L1 (Esteve et al., 2011); the latter has important

roles in axon guidance (Maness & Schachner, 2007). Frzb itself seems

to be required in dorsal spinal neurons for their normal innervation by

cutaneous afferents from the dorsal root ganglia, although the mecha-

nism is unclear (John et al., 2012). Similarly, future experiments are

needed to determine the mechanism by which Frzb, secreted by OECs

at the edge of the olfactory bulb, affects olfactory axon targeting (and

thus, indirectly, olfactory receptor neuron maturation). Loss of Frzb

secretion from this subpopulation of OECs could therefore explain, at

least in part, the olfactory axon targeting defects seen in Sox10-null

mice, in which normal OEC differentiation is defective (Barraud et al.,

2013; Pingault et al., 2013).

4.2 | GnRH neuron entry into the forebrain is not
significantly impaired after Frzb deletion

The entry of the first GnRH neurons into the forebrain occurs at

E12.5 (Cariboni et al., 2007; Schwanzel-Fukuda & Pfaff, 1989; Wray

et al., 1989; Yoshida et al., 1995), correlating with the onset of Frzb

expression in OECs adjacent to the developing olfactory bulb. Sox10

deletion results in the loss of Frzb expression on the olfactory nerve,

and also in a fourfold reduction in the proportion of GnRH neurons

that have entered the forebrain at E16.5 (Barraud et al., 2013). How-

ever, we did not see a significant reduction in GnRH neuron entry at

E16.5 after Frzb deletion, relative to heterozygous Frzb+/− embryos.

This suggests that the loss of Frzb after Sox10 deletion does not con-

tribute to the defect in GnRH neuron migration seen in Sox10-null

embryos (Barraud et al., 2013; Pingault et al., 2013).

4.3 | The importance of OEC heterogeneity

The identification of Frzb expression in OECs in the developing ONL,

most strongly in OECs in the inner ONL bordering the embryonic

olfactory bulb (which also express Npy), is an example of the hetero-

geneity of OECs in vivo. OECs explanted into culture rapidly change

their transcriptomic profile (see, for example, Franssen, De Bree,

Essing, Ramón-Cueto, & Verhaagen, 2008; Ulrich et al., 2014), but

some molecular differences have been identified between different

OEC subpopulations in vivo. For example, OECs on the olfactory

nerve and in the outer ONL are immunoreactive for Ngfr (p75NTR) but

not glial fibrillary acidic protein (Gfap) or neuropeptide tyrosine (Npy),

while those in the inner ONL are Ngfr-negative, G fap-positive, and

Npy-positive (Au et al., 2002; Franceschini & Barnett, 1996; Ubink &

Hokfelt, 2000). Furthermore, OECs co-cultured with axons display dif-

ferent behaviors, depending on their location of origin within the

olfactory system, which may reflect their normal functions in vivo

(Ekberg, Amaya, Mackay-Sim, & St John, 2012; Ekberg & St John,

2014). In the peripheral olfactory nerve, axons expressing a given

odorant receptor are found in heterotypic bundles (i.e., bundled with

axons expressing other odorant receptors); in the outer ONL, they are

mostly defasciculated or in small fascicles, while in the inner ONL,

they are found in larger, almost entirely homotypic axon bundles,

before amalgamating into a glomerulus (Miller et al., 2010a; Treloar

et al., 2002). Peripheral OECs (from the olfactory mucosa) promote

greater neurite outgrowth from co-cultured dorsal root ganglion neu-

rons than do central OECs (from the olfactory bulb) (Roloff, Ziege,

Baumgärtner, Wewetzer, & Bicker, 2013). Peripheral OECs

FIGURE 7 Frzb deletion does not significantly affect GnRH neuron

entry into the forebrain. (a–d) Schematic representations of the
distribution of GnRH neurons (black spots) at E16.5 on coronal
sections at different rostrocaudal levels of a heterozygous Frzb+/−

mouse embryo (a,b) and a Frzb-null mouse embryo (c,d). Each dot
represents a single GnRH neuron counted on one slide of a 10-slide
series. (e) Scatter plot showing the mean percentage of GnRH
neurons found inside the brain for heterozygous Frzb+/− embryos
(n = 3) versus Frzb-null embryos (n = 3). Error bars show SD. FB,

forebrain; hypo, hypothalamus; OB, olfactory bulb, OE, olfactory
epithelium; VNO, vomeronasal organ [Color figure can be viewed at
wileyonlinelibrary.com]
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consistently closely interact with and bundle co-cultured olfactory

axons, while central OECs (a mixed population from both the inner

and outer ONL) have various effects on co-cultured olfactory axons,

including repulsion, adhesion, and crossover (Windus et al., 2010).

These results are consistent with a role for OECs from the outer ONL

in defasciculating axon bundles, and for OECs from the inner ONL in

refasciculating and/or sorting axons expressing the same odorant

receptor (Ekberg et al., 2012; Ekberg & St John, 2014). OECs show

considerable potential for use in autologous transplantation therapies

for nervous system repair (see, for example, Ekberg et al., 2012;

Ekberg & St John, 2014; Granger, Blamires, Franklin, & Jeffery, 2012;

Radtke & Kocsis, 2014; Roet & Verhaagen, 2014; Roloff et al., 2013;

Tabakow et al., 2013; Watzlawick et al., 2016). Our results contribute

to a greater understanding of the normal development and heteroge-

neity of OECs in vivo that may help inform these efforts.
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