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ABSTRACT
Objective  To identify dysregulated metabolic pathways 
in amyotrophic lateral sclerosis (ALS) versus control 
participants through untargeted metabolomics.
Methods  Untargeted metabolomics was performed 
on plasma from ALS participants (n=125) around 6.8 
months after diagnosis and healthy controls (n=71). 
Individual differential metabolites in ALS cases versus 
controls were assessed by Wilcoxon rank-sum tests, 
adjusted logistic regression and partial least squares-
discriminant analysis (PLS-DA), while group lasso 
explored sub-pathway-level differences. Adjustment 
parameters included sex, age and body mass index 
(BMI). Metabolomics pathway enrichment analysis 
was performed on metabolites selected by the above 
methods. Finally, machine learning classification 
algorithms applied to group lasso-selected metabolites 
were evaluated for classifying case status.
Results  There were no group differences in sex, age 
and BMI. Significant metabolites selected were 303 by 
Wilcoxon, 300 by logistic regression, 295 by PLS-DA 
and 259 by group lasso, corresponding to 11, 13, 12 
and 22 enriched sub-pathways, respectively. ’Benzoate 
metabolism’, ’ceramides’, ’creatine metabolism’, ’fatty 
acid metabolism (acyl carnitine, polyunsaturated)’ and 
’hexosylceramides’ sub-pathways were enriched by all 
methods, and ’sphingomyelins’ by all but Wilcoxon, 
indicating these pathways significantly associate with 
ALS. Finally, machine learning prediction of ALS cases 
using group lasso-selected metabolites achieved the 
best performance by regularised logistic regression with 
elastic net regularisation, with an area under the curve of 
0.98 and specificity of 83%.
Conclusion  In our analysis, ALS led to significant 
metabolic pathway alterations, which had correlations 
to known ALS pathomechanisms in the basic and clinical 
literature, and may represent important targets for future 
ALS therapeutics.

INTRODUCTION
Amyotrophic lateral sclerosis (ALS) is a progressive, 
fatal neurodegenerative disease of motor neurons,1 
characterised by complex genetics2 and disease 
mechanisms,3 as well as environmental influ-
ences.4 5 Although a handful of genes are strongly 
linked to ALS,2 genetic causes are not known in the 
majority of sporadic cases. However, ALS genes 
affect several shared cellular processes, including 
proteostasis, autophagy, mitochondrial function, 

cytoskeletal organisation and axonal transport.2 3 
Metabolic abnormalities are also implicated, such 
as amino acid, pyruvate and lipid metabolism.6–8 
Increasing the pathological complexity is the gene-
time-environment hypothesis of ALS, which states 
that environmental exposures superimposed on a 
genetic risk profile trigger metabolic abnormalities 
that initiate neurodegeneration.9

Metabolites ultimately reflect the coordi-
nated influence of genetics, epigenetics and tran-
scriptomics, as well as serving as evidence of 
environmental exposure through xenobiotics. 
Metabolites are also a reflection of dysregulated 
cellular processes and pathological state. For 
instance, a recognition that oxidative stress is an 
ALS hallmark, through the detection of oxidised 
metabolites in biosamples, led to clinical trials 
of the antioxidant edaravone,10 which is now US 
Food and Drug Administration (FDA)-approved for 
treating ALS. Thus, despite the genetic and clinical 
heterogeneity of ALS, metabolites may be a unifying 
feature through shared cellular processes and envi-
ronmental contact. Metabolomics has emerged as a 
new frontier for understanding pathological mech-
anisms, biomarkers and evaluating environmental 
impact on disease.11 Metabolomics is the untar-
geted, system-wide and simultaneous analysis of 
all metabolites present in a sample. Its untargeted 
nature allows agnostic evaluation of metabolites 
to identify diagnostic or prognostic biomarker 
panels, understand complex pathophysiology, iden-
tify drug target candidates, or reveal potentially 
novel, hypothesis-generating avenues.12 In ALS, 
a small number of studies have identified altered 
metabolites in biofluids, but from metabolite data-
sets of around 400 metabolites or fewer.13–15 Our 
aim was to identify differential metabolites and 
enriched pathways in ALS versus control partici-
pants using a commercial untargeted metabolomics 
platform, which characterises an extensive number 
of compounds. Metabolomics analysis could lead to 
novel hypotheses, therapeutic targets and potential 
biomarkers for ALS.

METHODS
Participants and biosamples
ALS and neurologically healthy control partici-
pants were enrolled at the University of Michigan 
(UM), as previously reported.5 Briefly, all patients 
seen at the UM ALS clinic over 18 years and able 
to communicate in English were asked to provide 
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plasma shortly after diagnosis. Sex-matched and age-matched 
control subjects also provided plasma. Participant demographics 
were collected, for example, sex, age, height, weight, ALS disease 
characteristics. Blood was drawn from participants that had not 
been asked to fast, as it was deemed irresponsible to request this 
from a large number of ALS participants, who have blood drawn 
in conjunction with their standard clinical care. Blood samples 
were collected following good clinical practice into lavender 
EDTA tubes and stored temporarily for a maximum of 2 hours at 
4°C. Tubes were then centrifuged at 2000g for 10 min at 4°C and 
the plasma supernatant was aliquoted into cryovials and directly 
transferred to the −80°C freezer for storage.

Metabolomic profiling
Plasma samples were shipped on dry ice to Metabolon (Durham, 
North Carolina), and stored at −80°C at their facility until they 
were analysed for untargeted metabolomics profiling using ultra-
high performance liquid chromatography-tandem mass spectros-
copy (UPLC-MS/MS) following their published protocol.16 17 
In brief, metabolites were extracted from plasma using meth-
anol and recovery and internal standards were added to assess 
extraction efficiency and instrument performance, respectively. 
Metabolites were then analysed by reverse-phase UPLC-MS/MS 
in both positive and negative ion mode and hydrophilic inter-
action chromatography UPLC-MS/MS. A total of 1051 known 
metabolites (see online supplemental table S1) were identified 
by retention time/index, mass-to-charge ratio and chromato-
graphic data against authenticated standards, followed by data 
curation to ensure correct chemical identification. Day-to-day 
variability was accounted for by normalising metabolite levels. 
This was accomplished daily by equating the metabolite median 
across samples for that day to one and normalising the metab-
olite within each sample proportionately against the median. 
Metabolites that were not detected in over 60% of samples were 
excluded from further analysis. Any missing values for remaining 
metabolites were imputed to the minimal observed value for 
each metabolite, per metabolon protocols.16 17

Descriptive analysis
Descriptive summaries of demographic and clinical character-
istics were calculated by case/control status. χ2 and Wilcoxon 
rank-sum tests identified significant case/control discrepancies in 
demographic and clinical data. Missing metabolite data counts 
and percentages and demographic information were tabulated. 
Spearman correlations determined whether medication use and 
exogenous drug metabolites affected other metabolite concen-
trations. Non-parametric Wilcoxon rank-sum test, referred to as 
unadjusted, evaluated non-normally distributed metabolomics 
data for significant case/control differences for each metabolite. 
Benjamini-Hochberg correction adjusted for multiple testing 
(see online supplemental table S2). Logistic regression models, 
referred to as adjusted, were constructed, by regressing each 
natural log-transformed and standardised metabolite against 
case/control status one at a time. Logistic regression models were 
adjusted for sex, age (as quartiles) and body mass index (BMI, 
as quartiles). Subjects missing sex, age and BMI were omitted. 
Benjamini-Hochberg correction adjusted for multiple testing 
(see online supplemental table S3).

Partial least squares-discriminant analysis
Partial least squares-discriminant analysis (PLS-DA) identifies 
metabolites that carry the greatest group-separating information, 
as represented by the first latent variable, which we performed 

using the R package mixOmics.18 Score plots illustrate differ-
ences between case versus control groups. The variable impor-
tance in projection (VIP) score of each metabolite, a weighted 
sum of the squared correlations between PLS-DA components 
and metabolites,19 contributed significantly to the separation of 
case versus controls for VIP >1.20

Group lasso
Group lasso regressed all metabolites against case/control status 
simultaneously, adjusting for sex, age and BMI (see online 
supplemental table S4). Group lasso selects entire sub-pathways 
to simultaneously account for within-sub-pathway correlation 
structure. The gglasso R package was used to implement group 
lasso with natural log-transformed and standardised metabo-
lite data. Fivefold cross-validation was used to select the tuning 
parameter corresponding to a sparse model within one SE of 
the minimum cross-validation error. Once the tuning parameter, 
corresponding to the group lasso penalty was finalised, group 
lasso was refit to the full dataset to obtain the final model.

Metabolism pathway analysis
Pathway enrichment analysis was performed using our in-house R 
package richR (https://​github.​com/​hurlab/​richR/). Sub-pathways 
(115 in total), annotated by Metabolon and 1051 identified 
metabolites were used as background pathway and metabo-
lite sets, respectively. The significant metabolites identified by 
unadjusted Wilcoxon, adjusted logistic regression, group lasso 
and PLS-DA were evaluated for over-representation in each sub-
pathway by modified Fisher’s exact test. A hypergeometric test 
was performed for each candidate sub-pathway. Sub-pathways 
with a p value <0.05 were deemed significantly enriched.

Metabolites correlation network analysis
In addition to the pathway analysis relying on prior knowledge, 
we also applied a data-driven approach to explore the potential 
associations based on group lasso-selected metabolites. Highly 
correlated and significant metabolite pairs with a Spearman’s 
rank-order correlation coefficient (ρ>0.5) and a p value of 
<0.05 were identified. A correlated metabolite network was 
constructed in Cytoscape V.3.7.2, a network visualisation and 
analysis platform.

Classification prediction analysis using machine learning
To examine the feasibility of predicting metabolite-based ALS 
cases, we constructed machine learning classification models 
using seven widely used algorithms, generalised boosted models, 
linear discriminant analysis, prediction analysis for microarrays, 
random forest (RF), regularised logistic regression with elastic 
net regularisation (RLR), recursive partitioning and regression 
trees and support vector machine (SVM). We used the R package 
caret21 to build and evaluate the performance of machine learning 
models using 10-fold cross-validation. Synthetic minority over-
sampling technique was used to balance case/control sets to 
account for imbalance.22 Prediction accuracy metrics for area 
under the curve (AUC), sensitivity (SENS) and specificity (SPEC), 
were calculated for each model, which were visualised through 
receiver operating characteristic curves generated by R package 
pROC.23 Metabolites were ranked and reported based on their 
contribution to model performance using the varImp function in 
the caret package.
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Statistical software
All statistical and prediction analyses were performed in R statis-
tical computing software.

RESULTS
Participants
This study included 125 ALS and 71 control participants that did 
not differ significantly by sex, age, BMI, smoking status and mili-
tary service history (table 1). Controls achieved higher educa-
tional levels, consistent with prior publications.24 Cases reflected 
a typical ALS population with a median diagnostic age of 62.2 
years (IQR 52.7–68.7), an interval between symptom onset and 
diagnosis of 1.01 years (IQR 0.68–1.51) and onset segment of 

bulbar 30.4%, cervical 30.4% and lumbar 39.2%. Plasma was 
collected within 0.57 years of diagnosis (IQR 0.36–0.75).

Metabolite profiling
We identified 1051 known metabolites, which were evaluated 
by descriptive statistics by case/control status (see online supple-
mental table S1). Of the 1051 identified metabolites, 144 had 
missingness >60% and were removed from further analyses. 
Of the remaining 907 metabolites, 8 were known metabo-
lites of commonly used drugs, which showed only weak or no 
correlations with the 899 endogenous metabolites (see online 
supplemental figure S1). Metabolites with negative correlations 
of <−0.2, which would bias the association away from the 
null hypothesis, did not significantly differ between cases and 
controls; therefore, their impact is negligible. We also separately 
examined riluzole, which was removed due to >60% missing-
ness in cases and controls. Riluzole also had only weak correla-
tions with other metabolites (data not shown). Overall, since 
these drug metabolites did not have strong correlations (ρ>0.5) 
with other metabolites, because drug metabolites had a high rate 
of missingness, and because typical drugs used in ALS have not 
been shown to influence metabolite results after drug washout,25 
we did not include the drug metabolites in the analysis. This 
ensured that drug metabolites would not influence case/control 
association status. Thus, 899 metabolites were used for case/
control downstream analysis.

Differential case/control metabolites
Wilcoxon rank-sum tests identified 303 significant differential 
metabolites (adjusted p value <0.05), which we visualised in a 
volcano plot (see online supplemental figure S2) and in signif-
icance plots at the super-pathway and sub-pathway levels (see 
online supplemental figure S3).

Adjusted differential case/control metabolites
Next, the logistic regression models, adjusted for sex, age and 
BMI, identified 300 metabolites presented in significance plots 
at the super-pathway and sub-pathway levels (see online supple-
mental figure S4) and as ORs for metabolites by sub-pathway 
(see online supplemental figure S5). There were differences 
among metabolites selected by unadjusted Wilcoxon rank-sum 
test (see online supplemental figure S3) versus logistic regression 
analysis, adjusted for sex, age and BMI (see online supplemental 
figure S4). Thirty-four metabolites identified by unadjusted 
Wilcoxon were no longer statistically significant after adjusting 
for clinical factors (see online supplemental figure S6A). On the 
other hand, adjusted logistic regression uniquely selected 31 
metabolites, including glutamate-related metabolites, suggesting 
that sex, age and BMI may significantly affect metabolite rela-
tionships between cases and controls.

PLS-DA differential case/control metabolites
PLS-DA identified 295 metabolites with VIP >1 that sepa-
rated cases from controls (figure 1A). The top 30 metabolites, 
with highest VIP and greatest contribution to case/control 
separation, are presented in a VIP score plot (figure 1B). Top 
metabolites (sub-pathway) with the highest VIP included beta-
guanidinopropanoate (xenobiotics), imidazole lactate (histidine 
metabolism), creatine (creatine metabolism), creatinine (creatine 
metabolism) and 4-acetylcatechol sulfate (xenobiotics).

Table 1  Participant demographics

Covariate
ALS cases
(n=125)

Controls
(n=71) P value

Age at plasma collection 
(years)*

63.0 (53.0–69.0) 61.0 (53.0–65.0) 0.362

Sex 0.972

 � Female 51 (40.8) 28 (39.4)

 � Male 74 (59.2) 43 (60.6)

BMI at study entry (kg/m2)† 25.6 (22.8–29.6) 26.6 (23.9–30.3) 0.116

Smoking 0.569

 � Non-smoker 68 (54.4) 33 (46.5)

 � Former smoker 43 (34.4) 26 (36.6)

 � Current smoker 13 (10.4) 10 (14.1)

 � Missing 1 (0.8) 2 (2.8)

Family history of ALS

 � No 111 (88.8)

 � Yes 10 (8.0)

 � Missing 4 (3.2)

Age at diagnosis (years) 62.2 (52.7–68.7)

El Escorial criteria

 � Suspected 3 (2.4)

 � Possible 19 (15.2)

 � Probable, LS 37 (29.6)

 � Probable 42 (33.6)

 � Definite 23 (18.4)

 � Missing 1 (0.8)

Onset segment

 � Bulbar 38 (30.4)

 � Cervical 38 (30.4)

 � Lumbar 49 (39.2)

Time between diagnosis and 
blood draw (years)*

0.57 (0.36–0.75)

Time between symptom onset 
and diagnosis (years)

1.01 (0.68–1.51)

PEG tube present (%) 6 (4.8)

Table of descriptive statistics for the overall participant study population. 
Continuous variables represented as the median (25th–75th percentile) and for 
categorical variables as n (%). P values correspond to Wilcoxon rank-sum tests for 
continuous variables and χ2 tests for categorical variables. C9orf72 status and ALS 
family history do not have p values because counts were too small for hypothesis 
testing.
*Median, 25th percentile and 75th percentile are computed using 123 cases and 69 
controls (2 cases and 2 controls are missing).
†Median, 25th percentile and 75th percentile are computed using 117 cases and 61 
controls (8 cases and 10 controls are missing).
ALS, amyotrophic lateral sclerosis; BMI, body mass index; GED, Graduate 
Equivalency Diploma; HS, high school; LS, lab supported; m, metres; NA, not 
available; PEG, percutaneous endoscopic gastrostomy.
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Group lasso differential case/control metabolites
Sub-pathways shared by metabolites provide biologically mean-
ingful groupings and are critical for a deeper understanding of 
disease pathomechanisms. Group lasso incorporates additional 
group information (ie, sub-pathways) when determining signif-
icant differences between cases versus controls. Sex-adjusted, 
age-adjusted and BMI-adjusted group lasso identified 259 differ-
ential metabolites (ORs≠1) across 32 sub-pathways (see online 
supplemental figure S7). Heatmaps illustrate the 30 metabolites 
with the highest differences in relative abundance between case 
and control groups (figure 2) and also for all metabolites (see 
online supplemental figure S8). Group lasso-selected metabolites 
did not overlap fully with the other models (see online supple-
mental figure S9). Whereas, unadjusted Wilcoxon, adjusted 
logistic regression and PLS-DA only uniquely identified 19, 7 
and 3 metabolites, respectively, group lasso uniquely selected 
123 metabolites. These model differences are further highlighted 

by enriched pathways, as discussed later, and demonstrate the 
group lasso effect of considering sub-pathways for discrimi-
nating cases from controls.

Pathway enrichment in case/control
Metabolomics pathway enrichment analysis identified signifi-
cantly over-represented sub-pathways among the differential 
metabolites. There were 11 sub-pathways enriched by unadjusted 
Wilcoxon-selected metabolites, 13 sub-pathways by adjusted 
logistic regression, 12 sub-pathways by PLS-DA and 22 sub-
pathways by group lasso (see online supplemental figures S6C–E, 
figure 3). Unadjusted Wilcoxon, compared with adjusted logistic 
regression, enriched ‘tyrosine metabolism’ but not ‘sphingomy-
elins’, ‘gamma-glutamyl amino acid’ and ‘endocannabinoid’, 
indicating that sex, age and BMI adjustment may be important 
for interpreting ALS metabolomics data. Thus, we focused on 
the adjusted logistic regression, PLS-DA and group lasso models, 
which shared ‘benzoate metabolism’, ‘ceramides’, ‘creatine 
metabolism’, ‘fatty acid metabolism (acyl carnitine, polyunsatu-
rated)’, ‘hexosylceramides’ and ‘sphingomyelins’ sub-pathways, 
as represented by heatmap and upset overlap plot (figure 3D,E, 
respectively). These pathways significantly associate with ALS. 
Group lasso also uniquely identified 16 sub-pathways, including, 
among the most significant, ‘diacylglycerol’, ‘chemical’, ‘urea 
cycle; arginine and proline metabolism’, ‘lysine metabolism’, 
‘histidine metabolism’ and ‘glutamate metabolism’. Since these 
metabolic pathways are significant to ALS (see the Discussion 
section), this enrichment analysis suggests group lasso is an 
informative analytical technique for this metabolomics dataset.

Metabolite correlation analysis in case/control
We performed a data-driven correlation analysis of the group 
lasso-selected metabolites to visualise interconnections between 
significant metabolites and their respective sub-pathways 
(figure  4 and online supplemental figure S10). Most inter-
connections arose between ‘ceramides’, ‘hexosylceramides’, 
‘sphingomyelins’ and ‘diacylglycerol’ sub-pathways. Further, 
‘diacylglycerol’ metabolites correlated with metabolites within 
‘histidine metabolism’, ‘fatty acid metabolism (acyl carnitine, 
polyunsaturated)’ and ‘glutathione metabolism’ sub-pathways. 
Additionally, ‘sphingolipid synthesis’ metabolites correlated with 
‘sphingosines’ and ‘polyamine metabolism’ metabolites. ‘Lysine 
metabolism’ had multiple interconnections to ‘glutamate’, ‘histi-
dine’, ‘creatine’, ‘urea cycle; arginine and proline’ and ‘guanine 
containing purine’ metabolism.

Classification models for predicting ALS cases
To assess the predictive power of the 259-group lasso-selected 
metabolites, we built and validated seven different machine 
learning algorithms, whose performance was evaluated by SENS, 
SPEC and AUC (figure 5 and online supplemental figure S11). 
RLR performed the best, with an AUC of 0.98. All seven models 
incorporated creatine, creatinine and imidazole lactate into their 
classification algorithms, a finding consistent with their higher 
absolute ORs in the case/control association models. Thus, 
group lasso selected metabolites were sufficient to differentiate 
cases and controls.

DISCUSSION
Metabolomic profiles reflect the cumulative effect of both 
endogenous physiological processes and exogenous influences. 
Herein, we harnessed the power of advanced untargeted metab-
olomic analyses to gain insight into ALS disease mechanisms to 

Figure 1  Partial least squares-discriminant analysis (PLS-DA) analysis 
of amyotrophic lateral sclerosis (ALS) cases versus controls. (A) PLS-DA 
score plot of ALS cases (red) versus controls (blue); each dot represents an 
individual subject. (B) The variable importance in projection (VIP) score plot 
of the top 30 PLS-DA metabolites, which most significantly separate cases 
from controls. A total of 295 metabolites had VIP >1. Asterisks denote 
compounds that have not been confirmed against a standard, but whose 
identity the analytical platform is confident in.
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Group Lasso Odds Ratios EstimatesA
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Figure 2  Group lasso of amyotrophic lateral sclerosis (ALS) cases versus controls. (A) The ORs of each metabolite within its respective super-pathway. The 
dashed red line represents an OR of 1. All OR values are available in online supplemental table S4. (B) A heatmap of relative levels for the 30 metabolites 
with the highest differences in relative abundance in cases versus controls. Metabolites selected by partial least squares-discriminant analysis and adjusted 
models are marked by a black dot next to the differences in relative abundance (RA) column. Pink bars, OR >1, RA >0 (over-represented metabolites); 
blue bars, OR <1, RA <0 (under-represented metabolites). A heatmap of all metabolites is available in online supplemental figure S8. Asterisks denote 
compounds that have not been confirmed against a standard, but whose identity the analytical platform is confident in.
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identify new therapeutic opportunities. We analysed 899 metab-
olites after excluding metabolites with high missingness and 
common drug metabolites. We also omitted riluzole from our 
final analyses, due to its high degree of missingness and lack of 
strong correlations to other metabolites, as seen previously.25 
Three separate approaches identified differential metabolites 
in ALS, 303 by unadjusted Wilcoxon, 300 by adjusted logistic 
regression, 295 by PLS-DA, of which 261 overlapped. Indepen-
dent of the modelling approach, we found shared, critical and 
significant differential metabolites and sub-pathways in ALS, 
yielding a distinct metabolomic signature that identified poten-
tial ALS biomarkers and drug targets. These findings represent 
the greatest number of differential metabolites reported in ALS 
patients versus controls, likely due to our large dataset of 899 
metabolites. Among other studies with a rich dataset,13 one 
identified 404 metabolites, of which 31 associated with ALS 
risk,14 and another identified 367 metabolites, of which 62 were 
significantly altered in ALS.15

PLS-DA, commonly used to identify metabolites that signifi-
cantly separate cases from controls, identified creatine, creatinine 

and beta-guanidinopropanoate, a creatine analogue, as differ-
ential in ALS versus controls. Creatine, which is synthesised in 
the liver or ingested as a dietary supplement, is transported to 
muscle, where it recycles ATP for muscle contraction, before 
eventual conversion to creatinine. Previous targeted analysis 
shows these pathways are dysregulated in ALS,26 a relationship 
that persists in our untargeted analyses, where creatine metabo-
lism tops the list of dysregulated metabolites and pathways. Clin-
ical studies found higher creatine and lower creatinine in ALS 
plasma15 and cerebrospinal fluid27; plasma creatinine correlated 
with Revised ALS Functional Rating Scale (ALSFRS-R) scores.15 
Yet, other groups did not identify changes in creatine-to-
creatinine ratios in serum or erebrospinal fluid (CSF) from ALS 
patients versus controls.7 28 These discrepancies likely arise from 
ALS stage, since creatinine or changes in its levels correlate with 
disease severity.15 26 Dietary creatine supplementation failed to 
improve ALSFRS-R in a multicentre clinical trial,29 suggesting 
these metabolites are muscle dysfunction biomarkers and not 
therapeutic targets.

Figure 3  Pathway enrichment of adjusted logistic regression-selected, partial least squares-discriminant analysis (PLS-DA)-selected and group lasso-
selected metabolites. Significantly enriched sub-pathways from metabolites selected by (A) adjusted logistic regression, (B) PLS-DA and (C) group lasso 
models illustrated in dot plots. Each significantly selected sub-pathway is represented by a circle characterised by three parameters. (1) The circle size 
represents how many metabolites were selected in the sub-pathway (see legend in grey to right of the plot for relative sizes). (2) The circle shading from 
light pink to red indicates the selected sub-pathway significance level according to –log10 (p value) (see legend to the right of the plot for relative colour 
gradient). Sub-pathways were considered significantly enriched if they met the threshold p value <0.05, which is equivalent to –log10 (p value) >1.3. (3) 
The circle position along the rich factor axis specifies the proportion of selected metabolites from the sub-pathway against all sub-pathway metabolites. (D) 
Heatmap of all significantly enriched sub-pathways and their represented in colour gradient and value according to –log10(p value). Any cell with a –log10(p 
value) indicates the sub-pathway was significantly enriched in metabolites selected by the corresponding models; p value <0.05 is equivalent to –log10 (p 
value) >1.3. (E) Upset plot of enriched pathway overlap across the three models.
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Besides PLS-DA, we also analysed our metabolomics data 
using clinically guided sex-adjusted, age-adjusted and BMI-
adjusted logistic regression and group lasso models. Many 
metabolites exist within more than one network, which are in 
turn interconnected. Within these interconnected networks, 
some metabolites may be over-represented, whereas others may 
be underrepresented in these pathways, depending on disease 
states. In the current study, we reported individual metabolites, 
for example, creatine, creatinine, beta-guanidinopropanoate, but 
mostly focused our analyses on discovering significant pathway 
changes in ALS. Among the most significantly enriched path-
ways, ‘sphingomyelins’, ‘ceramides’, ‘benzoate metabolism’ and 
‘fatty acid metabolism’ were shared among all three PLS-DA, 
logistic regression, group lasso, while group lasso also identified 
‘diacylglycerol’, ‘chemical’, ‘urea cycle’ and ‘histamine’, ‘lysine’ 
and ‘glutamate’ metabolism, among others. Among pathways 
that were selected by logistic regression and PLS-DA but not 
by group lasso, ‘xanthine metabolism’ was the most significant, 
followed by ‘long chain monounsaturated fatty acid’. Overall, 
however, we suggest group lasso may be a useful approach, since 
our analyses show that accounting for sub-pathway architecture 
in complex diseases, such as ALS, may reveal additional signifi-
cant insight into disease pathogenesis.

Using group lasso-selected metabolites, several prominent sub-
pathways emerged that were highly significant in ALS, especially 
‘diacylglycerol’ and ‘sphingomyelins’. Sphingolipids are bioac-
tive signalling molecules in apoptosis, autophagy and inflam-
mation,30 which are all ALS hallmarks.31 Altered sphingolipids 

included sphingomyelins, sphingosines, ceramides and hexosyl-
ceramides, which have been previously reported in ALS partic-
ipant plasma,14 15 25 CSF,8 and spinal cord,32 33 and ALS mouse 
models.32–35 Targeting sphingolipid metabolism with sphingo-
lipid inhibitors is at the forefront of cancer therapeutics,36 and 
has been advocated as a possible treatment for Alzheimer’s, 
Parkinson’s and Huntington’s disease.37 38 Our study provides 
evidence that sphingolipid metabolism may similarly be targeted 
in ALS as a potential therapeutic opportunity.

Group lasso also selected sub-pathway metabolites in argi-
nine, proline,6 15 27 lysine,6 histidine6 28 39 and polyamine metab-
olism,6 as seen in ALS human and animal models. Polyamines, 
including spermidine, have pro-autophagy, immunomodula-
tory and neuroprotective properties,40 all dysregulated in ALS 
pathology.31 41 Spermidine rescues motor dysfunction in TDP-43 
proteinopathy mice,42 and arginine, a source for spermidine 
biosynthesis, lengthens survival in mutant SOD1 ALS mice.43 
Dietary spermidine is currently being investigated in a phase 
IIb trial as a treatment for cognitive decline,44 and represents 
another unique and untested opportunity for ALS therapeutics.

Oxidative stress and biomarkers are also pervasive in ALS,45 
and this was observed in our study through enriched sub-
pathways ‘glutathione metabolism’ and ‘tocopherol metabolism’. 
Glutathione is the most abundant intracellular thiol antioxi-
dant that scavenges reactive oxygen species (ROS) and is also 
involved in xenobiotic elimination.46 Glutathione deficiencies, 
as occurs in ALS patients47 and culture models,48 would lead to a 
diminished capacity to clear ROS and elevated oxidative stress.45 

Figure 4  Metabolite correlation analysis of group lasso-selected metabolites. Correlation analysis depicted in a simplified chord diagram format of 259 
significant group lasso-selected metabolites (p value <0.05) represented by chords that connect intra-sub-pathway or inter-sub-pathway significantly 
correlated metabolites (Spearman correlation coefficient ρ>0.5). Each sub-pathway is depicted by an annotated arc of the circle sized proportionately to the 
number of selected metabolites is contains. Chord correlations are colour coded by the correlation sign (red, positive, the vast majority of correlations; green, 
negative). Metabolite names are omitted for clarity; some sub-pathways are missed for technical reasons. The full correlation analysis, depicted in correlation 
network format and including all metabolite names and involved sub-pathways, is shown in online supplemental figure S10.

https://dx.doi.org/10.1136/jnnp-2020-323611


1336 Goutman SA, et al. J Neurol Neurosurg Psychiatry 2020;91:1329–1338. doi:10.1136/jnnp-2020-323611

Neuromuscular

Other metabolic studies also found differences in glutathione 
metabolism49 50 and other antioxidants, such as tocopherol15 
and ascorbate,7 27 in ALS patients and model systems. Unfortu-
nately, antioxidant therapies for ALS,51 with the exception of a 
moderate effect from edaravone, have failed to date, suggesting 
that dysregulated pathways may be a consequence of disease 
progression, rather than a cause.

Higher premorbid BMI is associated with slower ALS progres-
sion.52 As anticipated, we identified significant changes in sub-
pathways involved in energy metabolism, a BMI marker, including 
‘fatty acid metabolism (acyl carnitines, polyunsaturated)’,14 
‘glycolysis, gluconeogenesis and pyruvate metabolism’,7 25 and 
generally altered lipid metabolism.8 15 35 Interestingly, C9orf72 
expansions, the most prevalent ALS genetic mutation, may inter-
fere with lipid metabolism through coactivator-associated argi-
nine methyltransferase 1, leading to lipid hypermetabolism.53 
Another lipid pathway, ‘diacylglycerol’, was the most significant 
sub-pathway selected by group lasso. One other study reported 
diacylglycerols associated negatively with pre-symptomatic ALS 
versus healthy participants.14 Diacylglycerols are bioactive signal-
ling lipids with roles in cytoskeleton, neuronal development, 
inflammation, immune cell signalling and apoptosis.54 Although 
these cellular processes are well-known in ALS pathology,31 41 the 
contribution specifically of diacylglycerols to ALS pathogenesis 
is unstudied and unknown. Of interest, diacylglycerol kinases, a 
family of enzymes that convert diacylglycerols to phosphatidic 
acids, is another cancer therapeutic target,55 highlighting the 
clinical importance of these bioactive signalling diacylglycerols, 
and promoting them to the list of potential new mechanism-
based ALS targets.

We4 5 and others9 have shown that xenobiotic exposure from 
the environment may contribute to ALS. In our correlation anal-
ysis, ‘benzoate metabolism’ and ‘chemical’, both from the xeno-
biotic super-pathway, consisted of many metabolites containing 
cresol and catechol groups, which are common pesticide moieties. 
An integrated metabolomic and genomic study also found two 
xenobiotics that correlated with ALS,50 as have other studies.15 25 
Single nucleotide variants of flavin-containing monooxygenases, 
oxidative enzymes of xenobiotics, pesticides and drugs, are more 
prevalent in female ALS participants,56 also underscoring that 
detoxification mechanisms in ALS patients may be impaired and 
contribute to disease onset and/or progression.

Other than genetics, and only for patients harbouring a 
known ALS mutation, there is currently no molecular diag-
nostic ALS test. We applied machine learning to the 259-group 
lasso-selected metabolites using seven different algorithms to 
determine whether these metabolites could differentiate cases 
from controls, and potentially serve as a diagnostic tool. RLR 
performed the best overall, with an AUC of 0.98% and 83% 
specificity, but SVM was the most sensitive (97%), suggesting 
machine learning guided metabolomics may be able to differ-
entiate ALS from healthy participants. Creatine, creatinine and 
imidazole lactate were incorporated by all machine learning 
algorithms, again underscoring creatine metabolism as a possible 
ALS biomarker. However, our analysis was performed on plasma 
from individuals who had already developed ALS. It would 
be more useful if a diagnostic tool could identify ALS early, 
when treatment may be more effective. Bjornevik et al found 
RF and SVM could not predict whether an individual would 
develop ALS later in life based on an early, pre-symptomatic 

Figure 5  Machine learning (ML) classification of group lasso-selected metabolites. Heatmap representation of metabolite importance score from the 
different ML models. Scores are scaled from 0 (not important) to 1 (very important) to the model’s performance. Asterisks denote compounds that have 
not been confirmed against a standard, but whose identity the analytical platform is confident in. ML operating characteristics are provided in online 
supplemental figure S11. GBM, generalised boosted models; LDA, linear discriminant analysis; PAM, prediction analysis for microarrays; RF, random forest; 
RLR, regularised logistic regression with elastic net regularisation; RPART, recursive partitioning and regression trees; SVM, support vector machine.
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metabolic profile.14 Their study findings did not change when 
they restricted their analyses to blood draws taken within 
1 (n=51) or 2 years (n=72) of ALS diagnosis. The authors 
suggested that since ALS is so rapidly progressing, it may not 
be preceded by a long preclinical stage, or that the preclinical 
stage may not be characterised by metabolic changes, which may 
rather possibly be caused by the disease. Therefore, the temporal 
shifts in ALS metabolic profiles prior to symptom onset remain 
uncertain. Since we only included ALS participants in our anal-
ysis, we cannot evaluate whether we would be able to differen-
tiate them from individuals with a different neurological disease. 
Indeed, Lawton et al found that RF correctly predicted ALS 
versus a neurological mimic only 63% of the time, but correctly 
predicted ALS versus controls more often at 77%.15 Future ALS 
metabolomics studies as a diagnostic tool will need to analyse 
biosamples as early as possible in disease course and compare 
them to metabolic profiles from patients with similar diseases.

Our study has several strengths, foremost is the sample size; 
this is one of the largest untargeted metabolomics study of 
ALS patients versus controls, which also benefited from a large 

number of well-characterised metabolites. Furthermore, untar-
geted metabolomics evaluated aberrant pathways agnostically. 
By using group lasso, we adjusted for covariates, modelled all 
metabolites jointly and incorporated biologically meaningful 
groupings by sub-pathway membership. Our study does have 
limitations; because it was untargeted, we could not measure 
every metabolite in each pathway. Additionally, while our patient 
sample size was large, the number of metabolites surpassed 
sample size. We were also unable to completely control for 
heterogeneity, since ALS participants differed in disease stage, 
segment onset and genetic background, which may all impact 
metabolic profiles. Additionally, our study was cross-sectional, 
so we were unable to assess temporal changes in metabolites 
to highlight earlier versus later events in disease development. 
This also contributes towards differentiating metabolic processes 
that are integral to the primary disease process versus metabolic 
processes that may occur as downstream consequences of disease 
pathogenesis. Plasma analysis also reflects the systemic effect of 
disease development, and does not evaluate shifts in the local 
metabolomics milieu in certain diseased tissues. Moreover, 
since we only collected samples from diagnosed ALS patients, 
we could not determine whether there may be differences in 
pre-symptomatic ALS metabolite profiles that could be used to 
predict disease development. Finally, our study did not include 
plasma samples from patients with other neurological diseases, 
so we are unable to determine how specific the identified metab-
olite profiles were to ALS patients.

In summary, this untargeted metabolomics study found 
evidence of pathway abnormalities in ALS, both among previ-
ously established pathways (eg, energy homoeostasis, amino acid 
metabolism) and novel or emerging pathways (eg, diacylglyc-
erols, benzoate metabolism), which may lead to promising new 
therapeutic targets for disease modification (figure 6). Targeted 
mechanism-based therapies are needed in ALS, and metabolo-
mics studies can help address these research needs. Moreover, 
longitudinal and mechanistic studies will be able to reveal path-
ways preceding neurodegeneration, which will also aid in the 
drug discovery process.
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