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Abstract
Fatty acid metabolism, exercise, and insulin action play critical roles in maintaining vascular health, especially 
relevant in metabolic disorders such as obesity, type 2 diabetes, and cardiovascular disease. Insulin, a vasoactive 
hormone, induces arterial vasodilation throughout the arterial tree, increasing arterial compliance and enhancing 
tissue perfusion. These effects, however, are impaired in individuals with obesity and type 2 diabetes, and 
evidence suggests that vascular insulin resistance contributes to the pathogenesis of type 2 diabetes and its 
cardiovascular complications. Elevated plasma levels of free fatty acids in people with insulin resistance engender 
vascular inflammation, endothelial dysfunction, and vascular insulin resistance. Importantly, these effects are both 
functionally and structurally dependent, with saturated fatty acids as the primary culprits, while polyunsaturated 
fatty acids may support insulin sensitivity and endothelial function. Exercise enhances fatty acid oxidation, 
reduces circulating free fatty acids, and improves insulin sensitivity, thereby mitigating lipotoxicity and promoting 
endothelial function. Additionally, exercise induces beneficial vascular adaptations. This review examines the 
complex interplay among fatty acid metabolism, exercise training-induced vascular adaptations, and insulin-
mediated vascular changes, highlighting their collective impact on vascular health and underlying mechanisms in 
both healthy and insulin-resistant states. It also explores the therapeutic potential of targeted exercise prescriptions 
and fatty acid-focused dietary strategies for enhancing vascular health, emphasizing tailored interventions to 
maximize metabolic benefits. Future research should investigate the pathways linking fatty acid metabolism to 
vascular insulin resistance, with a focus on how exercise and dietary modifications can be personalized to enhance 
vascular insulin sensitivity, optimize vascular health, and reduce the risks of type 2 diabetes and associated 
cardiovascular complications.
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Introduction
The global rise in the prevalence of type 2 diabetes (T2D) 
and the associated cardiovascular disease (CVD) morbid-
ity and mortality has made the study of metabolic health 
and vascular function increasingly critical. Most people 
with T2D have increased adiposity, elevated plasma free 
fatty acids (FFAs) and hypertension in addition to dys-
glycemia [1–3], and eventually succumb to the vascular 
(both microvascular and macrovascular) complications 
[4]. Insulin is an anabolic hormone that regulates car-
bohydrate, protein, and lipid metabolism. Importantly, 
insulin is also a potent vasoactive hormone and actively 
modulates vascular tone and tissue perfusion, and vascu-
lar insulin resistance has been linked to the pathogenesis 
of T2D and the associated cardiovascular complications 
[5–8]. FFAs are essential for normal cellular function 
and play a pivotal role in the regulation of metabolic 
homeostasis, not only by serving as key energy sources 
and cellular structural components, but also critically 
modulating metabolic signaling pathways, including 
insulin secretion and action. However, excess availability 
of fatty acids, especially the saturated fatty acids (SFAs), 
can disrupt insulin signaling and glucose metabolism and 
lead to insulin resistance and higher risk of developing 
T2D and the associated CVD complications [9–11]. The 
impact of FFAs on insulin action and substrate metabo-
lism is structure and concentration dependent, where 
polyunsaturated fatty acids (PUFAs) have been shown to 
enhance insulin sensitivity and attenuate glucose intoler-
ance, and SFAs are linked to insulin resistance and meta-
bolic dysfunction [12]. Exercise plays a foundational role 
in human health, significantly influencing insulin sensi-
tivity, fatty acid metabolism, and vascular function, and 
remains one of the most effective non-pharmacological 
interventions for T2D prevention and management 
[13–16]. This review explores the intricate relationship 
among insulin action, fatty acid metabolism, and exercise 
in metabolic homeostasis and vascular function, with a 
hope of not only to fill the literature gap but also provide 
guidance on future studies.

Insulin action and resistance in the vasculature – 
implications for metabolic abnormalities and CVD
Insulin is an anabolic as well as a vasoactive hormone. It 
actively modulates vascular tone to regulate tissue perfu-
sion and insulin’s vascular actions closely couple with its 
metabolic actions [17]. Vascular endothelium expresses 
abundant insulin receptors as well as the insulin-like 
growth factor I (IGF-1) receptors and the hybrid insulin/
IGF-1 receptors [18–22]. At physiological concentra-
tions, insulin binds and activates the insulin receptors 
exclusively, but at supra-physiological or pharmaco-
logical concentrations, insulin also stimulates the IGF-1 
receptors and the hybrid insulin/IGF-1 receptors [18]. 

In the vasculature, insulin signals mainly through the 
phosphatidylinositol 3-kinase (PI3K) / Protein kinase B 
(Akt) / endothelial nitric oxide (NO) synthase (eNOS) 
pathway to produce NO, which is a potent vasodilator 
[18, 19, 23, 24], and the mitogen-activated protein kinase 
(MAPK) / extracellular signal regulated kinase (ERK) 
pathway to mediate endothelial cell proliferation and the 
expression and secretion of a vasoconstrictor endothe-
lin-1 (ET-1). ET-1 acts on the G protein-coupled endo-
thelin receptors, mainly the ETA and ETB subtypes, to 
engender vasoconstriction, oxidative stress, and vascu-
lar smooth muscle cell growth and mitogenesis [25–29]. 
Insulin exerts actions on all segments of the arterial sys-
tem, including the conduit arteries, the resistance arteri-
oles, and the microvasculature [30–32]. As each segment 
of the arterial tree has different structure and function, 
the results of insulin’s actions on the vasculature vary 
depending on the arterial size and location (Fig. 1) [2, 8, 
13, 33].

Conduit arteries are large arteries containing collagen 
and elastin filaments in the tunica media and expand 
in response to cardiac ejection to maintain a relatively 
constant pressure in the arteries [34]. Insulin infusion 
in healthy humans enhances the responsiveness of the 
femoral artery to methacholine-induced vasodilation [35] 
and decreases augmentation index (AI) (i.e., increased 
distensibility / compliance) [30, 36, 37]. The resistance 
arterioles, which range from 400 μm to 100 μm, are the 
major determinant of vascular resistance and total tissue 
blood flow [38]. Insulin infusion dilates resistance arte-
rioles, and results in decreased vascular resistance and 
increased total tissue blood flow in humans [35, 39–43]. 
The microvasculature, including small arterioles, capil-
laries, and small venules, plays a pivotal role in maintain-
ing tissue health by delivering adequate supply of oxygen, 
nutrients, and hormones to the tissues and removing 
metabolic waste and by-products away from the tissues. 
Over the past two decades, the actions of insulin on the 
microvasculature have garnered high attention as numer-
ous studies have confirmed that muscle microvasculature 
is an insulin target, insulin is an important physiological 
modulator of muscle microvascular perfusion, and there 
is a close coupling between insulin-mediated microvas-
cular perfusion and insulin-stimulated glucose disposal 
in the skeletal muscle [5, 17]. Insulin-mediated muscle 
microvascular recruitment occurs within 5–10  min and 
this precedes insulin-stimulated glucose disposal in mus-
cle which occurs in ~ 20–30  min, and inhibition of NO 
synthesis during insulin infusion via eNOS inhibition 
abolishes insulin-induced microvascular recruitment in 
muscle and reduces insulin-stimulated muscle glucose 
disposal by up to 40% [44, 45].

Insulin’s actions on different arterial segments are 
interconnected either directly or indirectly. We have 
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previously shown that insulin-enhanced flow-mediated 
dilation (FMD) is independently associated with insulin-
mediated microvascular perfusion in muscle [2]. This is 
important as FMD reflects endothelial function mainly in 
the conduit artery (with some component of resistance 
arterioles) and microvascular perfusion is mostly con-
trolled by resistance and microvascular arterioles. This 
is also not surprising as both FMD and insulin-mediated 
microvascular perfusion are predominately NO-depen-
dent [46–48]. In healthy humans and adults with meta-
bolic syndrome, there is a clear correlation between FMD 
and insulin-mediated glucose disposal during the insulin 
clamp [31] while insulin-stimulated glucose disposal and 
insulin-mediated changes in microvascular perfusion are 
mutually predictive in a cohort including healthy, obese, 
and type 1 diabetes populations [49].

It has been well-documented that insulin resistance 
can occur in all segments of the arterial tree, and vascu-
lar insulin resistance typically co-exists with endothelial 
dysfunction and metabolic insulin resistance. Insulin’s 
vasodilatory action in the conduit arteries and resis-
tance arterioles is clearly impaired in insulin resistant 
conditions [31, 35, 50] and people with T2D frequently 
have both impaired endothelium-dependent FMD [51] 
and reduced insulin-mediated NO-dependent vaso-
dilation [41, 52]. In humans with obesity or metabolic 
syndrome, there is a marked resistance of the ability of 
insulin to decrease arterial stiffness [50, 53]. This is very 
important as reduced compliance of the conduit arter-
ies independently predicts atherosclerotic coronary and 
cerebral artery diseases [53–56]. Mounting evidence 
confirms that insulin-mediated microvascular perfusion 

in cardiac and skeletal muscle is lost in insulin resistant 
conditions like obesity and metabolic syndrome [31, 
57, 58]. Vascular insulin resistance is also present in the 
microvasculature in insulin resistant states, and there is 
clear evidence of generalized microvascular dysfunction 
in people with prediabetes or T2D [59]. Impaired insu-
lin-mediated microvascular perfusion has been seen in 
obese and diabetic animals [60, 61], humans with T2D 
[62], and humans with obesity [58, 63]. Insulin resistance 
at the microvasculature level appears to be more closely 
coupled with metabolic insulin resistance as the micro-
vasculature plays a pivotal role in regulating insulin deliv-
ery from the circulation to the tissue interstitium [17]. 
It is important to note that microvascular insulin resis-
tance contributes to the development of systemic insulin 
resistance and occurs early in the disease course [64]. In 
mice on a HFD, vascular insulin resistance occurs within 
one week, while it takes 4–8 weeks to develop in muscle 
and liver and 14 weeks in adipose tissue [65]. In rats on 
a HFD, microvascular insulin resistance was observed 3 
days after the initiation of the HFD, while impaired insu-
lin-mediated glucose disposal and muscle Akt phosphor-
ylation were not observed until one week after [64]. As 
such, early intervention that targets microvascular insu-
lin resistance might afford an opportunity to delay the 
development of systemic insulin resistance and the onset 
of T2D.

The fundamental pathophysiology of endothelial insu-
lin resistance resides in the PI3K/Akt/eNOS signalling 
pathway, while the MAPK signalling pathway is spared or 
even enhanced due to the compensatory insulin secretion 
[29, 66, 67]. This selective insulin resistance results in a 

Fig. 1 Vascular function and the impact of insulin and exercise. Vascular function varies depending on vessel size and location. Insulin and exercise lead 
to beneficial effects throughout the vasculature, while insulin resistance and endothelial dysfunction impair vascular function. (Abbreviations: FMD, flow 
mediated dilation; PWV, pulse wave velocity; AI, augmentation index)
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reduced NO production and amplifies the MAPK-medi-
ated cell proliferation and ET-1 production [68], leading 
to a decreased vasodilation and increased vascular tone 
in arterioles with subsequently less tissue perfusion [26, 
27] and predisposing affected people to atherosclerosis, 
hypertension, and/or microvascular complications.

Fatty acids, metabolic regulation and insulin action
In addition to regulating carbohydrate and protein 
metabolism, vascular tone, and tissue perfusion, insulin 
also actively regulates lipid metabolism, with an overall 
effect of increasing fat storage [69–71]. It activates cap-
illary endothelium lipoprotein lipase to hydrolyze cir-
culating lipoprotein triglycerides and generate free fatty 
acids (FFAs) that are either oxidized by tissue or stored 
by fat cells. It also facilitates the re-esterification of FFAs 
into triglycerides within fat cells and inhibits hormone-
sensitive lipase, a rate-limiting enzyme in the lipolytic 
pathway, both of which lead to decreased plasma levels 
of FFAs.

Fatty acids are a key energy source for cells, particularly 
during periods of fasting or prolonged physical activ-
ity when carbohydrate stores are depleted. In times of 
increased energy demand, lipolysis occurs to generate 
FFAs which are transported into cells, and β-oxidized 
in the mitochondria to generate adenosine triphosphate 
(ATP) [69, 71]. The balance among fatty acid intake 
(either from food sources or lipolysis), storage loca-
tions (i.e., adipose tissue vs. ectopic storage in muscle 
and liver), and rate of oxidation is critical for metabolic 
homeostasis. Chronic elevation of plasma FFA levels, 
and excess accumulation of fatty acids in tissues other 
than adipose tissue are associated with insulin resistance, 
inflammation, and tissue dysfunction [2, 72, 73]. FFAs 
are perhaps the most important physiological factors 
that regulate glucose metabolism and insulin action in 
vivo. FFAs are classified based on the number of double 
bonds in their hydrocarbon chains. Monounsaturated 
fatty acids (MUFAs) contain one double bond, and poly-
unsaturated fatty acids (PUFAs) contain two or more 
double bonds, while SFAs lack double bonds. Each class 
of fatty acids has distinct effects on glucose metabolism 
and insulin secretion and action. Short-term exposure 
of β-cells to FFAs potentiates glucose-stimulated insulin 
secretion through GPR40-mediated process [74], and the 
potency increases with chain length and degree of satu-
ration [75–77]. On the other hand, prolonged exposures 
of β-cells to fatty acids increases basal insulin release but 
inhibits glucose-stimulated insulin secretion in vitro [78, 
79] as well as in vivo [80, 81]. The prolonged exposure 
findings are more clinically relevant as plasma FFAs are 
elevated in people with obesity and insulin resistance / 
T2D [82], and there is clear evidence of glucolipotoxicity 
causing β-cell dysfunction [83].

Numerous studies have confirmed a causative effect of 
FFAs on insulin resistance through mechanisms involv-
ing intracellular accumulation of diacylglycerol and 
ceramide, activation of protein kinase C (PKC), activa-
tion of the nuclear factor kappa B (NF-κB) pathway, 
decreased PPARγ coactivator-1 α/β activation, recruit-
ment of immune cells like macrophages, neutrophils, 
and bone marrow-derived dendritic cells to adipose tis-
sue and muscle, and decreased tyrosine phosphorylation 
of insulin receptor substrate 1/2 [84–89]. However, it is 
important to note that different FFAs appear to have dis-
tinctly different impacts on glucose metabolism. It is well 
known that SFAs, such as palmitic acid, potently trigger 
insulin resistance [89–92] while MUFAs, such as oleic 
acid found in olive oil, have neutral or even beneficial 
effects on glucose metabolism [89, 93]. A good example 
is the Mediterranean diet, which is rich in MUFAs. In 
clinical trials, the Mediterranean-type diet was found to 
improve glycemia in those with T2D [94], and the risk of 
T2D was 83% lower among those who closely adhered to 
the diet [95]. Even among those at high CVD risks and 
without calorie restriction, the Mediterranean diet seems 
to be effective in preventing T2D [96]. Whether these 
beneficial actions are the direct results of unsaturated 
fatty acids remain to be determined, as in vivo and in 
vitro evidence has suggested that unsaturated fatty acids 
also cause insulin resistance [97] despite the experimen-
tal evidence of unsaturated fatty acids reducing inflam-
mation and improving insulin sensitivity.

Fatty acids, endothelial function, and vascular 
insulin action
While the endothelial cells derive their energy primarily 
through glycolysis [98–100], fatty acid oxidation in endo-
thelial cells critically regulates endothelial function [101]. 
Equally important is the uptake and transport of fatty 
acids by endothelial cells to meet the needs of surround-
ing cells for a variety of cellular processes, including 
membrane synthesis, intracellular signal transduction, 
ATP generation, protein posttranslational modifications, 
and metabolic gene transcriptional regulation [102, 103]. 
However, abnormalities in lipid and fatty acid metabo-
lism are detrimental to endothelial biology and function 
[104]. People with T2D frequently manifest lipid abnor-
malities such as hypertriglyceridemia and elevated levels 
of plasma FFAs [105], where both are well-established 
risk factors of CVD.

Endothelial cells take up and metabolize fatty acids 
through the tricarboxylic acid cycle in the mitochondria 
to produce ATP and store excess fatty acids as cytosolic 
lipid droplets, protecting cells from endoplasmic reticu-
lum stress from excess FFAs [106]. When the levels of 
FFAs surpass the cellular protective capacity, endothelial 
dysfunction ensues. Multiple mechanisms contribute to 
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FFA-induced endothelial dysfunction, including oxida-
tive stress, inflammation, cellular apoptosis, impaired 
insulin signaling, and reduced NO bioavailability [6, 104, 
107]. Studies have confirmed a causative role of FFAs in 
endothelial dysfunction and endothelial insulin resis-
tance, which are closely coupled, mutually perpetuate, 
and contribute together to accelerate cardiovascular dis-
eases [42, 43, 104, 108, 109]. They are present through-
out the arterial tree, and the outcomes differ based on the 
structure and location of the arteries affected [2]. Thus, 
endothelial dysfunction and insulin resistance in the con-
duit arteries accelerate atherosclerosis, in the resistance 
arterioles elevate blood pressure, and in the microvas-
culature perturbs glycemia [5, 110–112], all pathophysi-
ological manifestations seen frequently in the setting 
of T2D (Fig.  1& Fig.  2). Elevated circulating FFA levels 
(similar to those in the post-absorptive state in T2D [82] 

or metabolic syndrome [31]) interfere with shear stress-
induced NO production and reduce insulin-mediated 
vasodilation of the conduit and resistance arteries [42], 
blunt insulin-induced increases in FMD and reduction 
in AI [2], as well as induce microvascular insulin resis-
tance in both cardiac and skeletal muscle [2, 108, 109]. 
Findings of lipid-inducing microvascular insulin resis-
tance were similarly reported in a rodent study [113]. In a 
multivariate regression analysis, insulin-mediated muscle 
microvascular perfusion was independently associated 
with insulin-mediated FMD and pulse wave velocity [2]. 
Thus, clinically relevant elevation of plasma FFA concen-
trations induces pan-arterial insulin resistance and the 
outcomes of insulin resistance in various arterial segment 
are interconnected.

The raising plasma levels of FFAs reduces NO flux, 
impairs shear-stress-induced NO production, depresses 

Fig. 2 FFAs impair endothelial function and vascular health. FFAs are released from adipose tissue and enter the bloodstream. Elevated plasma FFAs 
induce endothelial inflammation through upregulation of inflammatory genes and increased ROS production to promote a selective insulin resistance 
in the vascular endothelium, resulting in reduced NO bioavailability, increased arterial stiffness and vascular resistance, less tissue perfusion, and reduced 
capillary substrate supply and exchange. (Abbreviations: FFAs, free fatty acids; ROS, reactive oxygen species; JNK, c-jun N-terminal kinase; IKKβ, inhibitor 
of nuclear factor kappa-B kinase subunit beta; NF-ҡB, nuclear factor kappa-light-chain-enhancer of activated B cells; PPARs, peroxisome proliferator-
activated receptors; IRS, insulin receptor substrate; PI3-K, Phosphatidylinositol 3-kinase; eNOS, endothelial nitric oxide synthase; NO, nitric oxide; MEK, 
mitogen-activated protein kinase kinase; MAPK, mitogen-activated protein kinase; P, phosphorylation.)
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methacholine-induced vasodilation which is endothe-
lium-dependent but not nitroprusside-induced vasodi-
lation which is endothelium-independent suggest that 
NO bioavailability is crucial in FFA-induced endothelial 
insulin resistance and endothelial dysfunction [42, 43]. 
While multiple mechanisms could have contributed to 
FFA-induced reduction in NO bioavailability, the most 
likely culprit is FFA-induced oxidative stress and vascular 
inflammation (Fig.  2) [6, 114, 115]. FFAs are important 
inciters of a chronic, low-grade systemic inflammation 
state seen in insulin resistant conditions such as obesity, 
metabolic syndrome and T2D [42, 43, 87, 108, 109, 116, 
117]. Multiple signaling pathways and factors seem to 
have been implicated in this process, including the endo-
plasmic reticulum stress pathway, PKC pathway, c-Jun 
NH2-terminal kinase (JNK), toll like receptor 4 (TLR4) 
pathway, and inhibitor of nuclear factor kappa B (IκB) 
kinase β (IKKβ) [89, 92, 118–121]. Activation of these 
pathways increases the production of reactive oxygen 
species (ROS) which reduces NO bioavailability. Addi-
tionally, reduced NO production also contributes to low 
NO bioavailability, as raising plasma FFA concentrations 
not only decreases shear stress-induced NO production 
but also blunt insulin-mediated eNOS activation and NO 
production [2, 104, 122].

FFA-induced oxidative stress and inflammation are 
crucial in the pathogenesis of endothelial insulin resis-
tance, specifically in the PI3K/eNOS/NO pathway [64, 
104, 123], and it appears that the endothelium is more 
sensitive to FFA insult than other tissues. Feeding mice 
a HFD for one week decreases insulin signaling in the 
aorta, while taking 8 weeks to do so in the skeletal mus-
cle [65]. Our data suggest that insulin resistance in the 
microvasculature occurs even earlier than that in the 
aorta, as feeding rats a HFD blocks insulin-mediated 
muscle microvascular recruitment in as early as 3 days 
[64]. The inflammation-induced microvascular insulin 
resistance is clearly an early event in diet-induced obe-
sity, as inhibition of the NFκB pathway attenuates micro-
vascular as well as metabolic insulin resistance during 
HFD feeding [64].

FFAs also contribute to capillary rarefaction, a phe-
nomenon well recognized in the insulin resistant tis-
sues, particularly in the muscle [124–126]. The degree 
of reduction in muscle capillary density correlates with 
the severity of insulin resistance [125, 127, 128], possibly 
through the expression and action of the vascular endo-
thelial growth factor (VEGF) family of proteins [129], 
which recruit and differentiate endothelial progenitor 
cells and induce endothelial cell proliferation and migra-
tion, leading to new vessel formation [129]. In the insu-
lin resistant state, VEGF action on muscle vasculature is 
impaired, which triggers muscle capillary regression [124, 
130]. We have shown previously that feeding rats a HFD 

for 4 weeks reduced muscle VEGF expression as well as 
muscle capillary density [131]. In vitro cell culture stud-
ies have clearly demonstrated that FFAs directly lead to 
endothelial cell apoptosis. Incubation of endothelial cells 
with palmitate showed that palmitate dose- and time-
dependently induced apoptosis, likely through a p38 
MAPK-mediated mechanism [107]. However, it is impor-
tant to note that not all FFAs trigger endothelial apop-
tosis. Stearic acid (a SFA), but not oleic acid (a MUFA), 
time and concentration dependently increases endothe-
lial apoptosis [132].

Together, FFAs-induced endothelial dysfunction, endo-
thelial insulin resistance, and endothelial cell apoptosis 
contribute to the pathogenesis of metabolic insulin resis-
tance and the associated cardiovascular complications, 
thus making the vascular endothelium a viable therapeu-
tic target for T2D prevention and management [112]. As 
currently available evidence, both preclinical and clinical, 
link excess saturated but not unsaturated fatty acids with 
the risk of CVD, more studies are needed to optimize 
dietary fatty acid intake for maintaining a good vascular 
health.

Exercise, fatty acid oxidation, and vascular 
function
Exercise engenders myriad metabolic and cardiovascular 
benefits, and delays the development of T2D [133–136]. 
Exercise profoundly impacts the vasculature in health 
and disease by inducing both functional and struc-
tural adaptions throughout the arterial tree. For conduit 
arteries, exercise training improves endothelial depen-
dent dilation, as measured through FMD [137], and this 
change appears to be magnified in those with endothe-
lial dysfunction [138]. Exercise training also improves 
conduit artery wall stiffness, particularly with higher 
aerobic exercise intensity and in participants with greater 
arterial stiffness at baseline [139]. Structurally, exer-
cise induces local and systemic arterial wall remodeling, 
with the localized effects more evident in the remodel-
ing of arterial size whereas arterial wall thickness is more 
affected by systemic factors [140], and the latter appears 
to be unrelated to exercise type [141]. Exercise-induced 
improvement in conduit artery endothelial function 
appear to be mediated through shear stress-induced / 
Akt-dependent eNOS phosphorylation [142]. However, 
the exercise-induced changes in shear rate are not obliga-
tory for arterial wall remodeling [143]. Overall, functional 
adaptations typically precede structural adaptions during 
exercise training [137]. The results of exercise impact on 
resistance arteries are inconsistent in healthy individuals, 
with studies reporting either no change [144, 145] or an 
improvement [146, 147] in resistance artery endothelial 
function measured through forearm strain-gauge pleth-
ysmography. However, the beneficial effect of exercise 
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is clearer in individuals with endothelial dysfunction, 
with an improvement in function and NO bioavailabil-
ity reported in a variety of clinical populations, including 
those with T2D [142, 147–149]. As for the microvascu-
lature, exercise is perhaps the most potent known physi-
ological factor that increases microvascular blood flow in 
the myocardium and skeletal muscle. In the myocardium, 
exercise augments coronary blood flow via dilatation of 
the coronary microvessels to meet the increased oxygen 
demand as oxygen extraction in the coronary circulation 
is nearly maximal at rest (70–80%) [150]. Even a simple 
handgrip exercise potently increases microvascular 
perfusion in the myocardium [151], as well as the skel-
etal muscle [152] in healthy humans. Importantly, this 
exercise- / muscle contraction-induced skeletal muscle 
microvascular perfusion is preserved in humans [153, 
154] as well as in rodents [155–157] with insulin resis-
tance. Exercise also potently stimulates muscle angio-
genesis [158], and well-trained endurance athletes may 
have 3–4 times more capillaries per muscle fiber than 
sedentary individuals [159]. Both shear stress and pas-
sive stretch enhance the expression of angiogenic factors 
and initiation of capillary growth [158, 160, 161]. Among 
all factors, VEGF is central to exercise-induced muscle 
capillary growth. In mice with muscle-specific VEGF 
deficiency, muscle capillary density is reduced by ~ 50% 
and endurance running capacity decreases by 80% [162]. 
Muscle contraction leads to a redistribution of VEGF-
containing vesicles toward the sarcolemma and the 
release of VEGF to the muscle interstitium, which acts 
on the capillary endothelial VEGF receptors to stimu-
late the angiogenic process [158]. Exercise also increases 
VEGF mRNA expression, which allows for replenishment 
of VEGF stores lost through secretion during exercise 
[158]. Together, the functional and structural adaptation 
to exercise training ensures adequate capacity for oxygen 
and nutrients delivery to the exercising muscle. However, 
it is important to note that while exercise augments vas-
cular function in both healthy and insulin resistant states, 
the effect of exercise intensity is equivocal due to differ-
ences in exercise protocols and vascular methodology 
within the existing literature.

Exercise is known to improve insulin sensitivity in both 
insulin sensitive and resistant states [163]. Even moderate 
daily exercise can greatly improve insulin sensitivity, and 
a single bout of exercise increases insulin sensitivity into 
the next day in humans with obesity [164]. While mul-
tiple mechanisms contribute to exercise-mediated insulin 
sensitization, exercise-induced vascular adaptations, par-
ticularly in the microvasculature, play an important role 
[13]. Increased conduit artery blood flow and reduced 
resistance in the resistance arterioles result in higher 
total tissue perfusion, while increased microvascular 
blood flow leads to more oxygen, nutrients and hormones 

delivered to the tissue [165–168]. We have recently deter-
mined the phenotypic traits that foretell human muscle 
microvascular insulin responses using a combination 
of contrast-enhanced ultrasound and hyperinsulinemic 
euglycemic clamp in adult humans, with insulin sensi-
tivity spanning from normal to resistance. Among all 
factors associated with metabolic insulin resistance, we 
found only peak oxygen uptake (VO2peak) predicted 
insulin-induced changes in muscle microvascular blood 
volume [49], suggesting a profound impact of exercise 
capacity on muscle microvascular insulin responses in 
humans. How exercise attenuates microvascular insulin 
resistance remains to be clarified. In HFD fed rodents, 
exercise reduces vascular inflammation, endothelial 
oxidative stress, perivascular macrophage accumula-
tion, and superoxide production in muscle, along with 
increased endothelial nucleus translocation of Nrf2 and 
endothelial AMPK phosphorylation [115]. Additionally, 
exercise induces increased muscle insulin delivery likely 
via increased microvascular perfusion and expanded 
microvascular endothelial surface area available for insu-
lin extraction [155, 169]. Indeed, in rats receiving an 
insulin infusion, muscle contraction markedly increased 
interstitial insulin concentrations compared with the 
non-contracting leg [170].

The exercise induced increase in total tissue blood flow 
and microvascular perfusion, along with the improve-
ment in microvascular insulin sensitivity in the insulin 
resistant states, can profoundly affect fatty acid metabo-
lism. Increased total tissue blood flow leads to more FFAs 
delivered to the muscle, and expanded microvascular 
endothelial surface area enables more FFAs extracted 
from the circulation to the muscle interstitium. At rest, 
skeletal muscle uses lipid oxidation as the primary fuel 
source (~ 60%) but with exercise, both fatty acids and 
glucose are important energy sources for the exercising 
muscle [171, 172]. However, lower intensity [ ≤ ~ 50% 
VO2peak] and prolonged activities rely more on fatty acid 
utilization while during high intensity exercise lipolysis is 
inhibited, the availability of FFAs in the blood declines, 
and the substrate of choice crosses over from fatty acids 
to carbohydrates [173–175].This crossover phenomenon 
is seen in both trained and untrained individuals, with 
the trained individuals experiencing the shift at a higher 
intensity level, helping to “spare” carbohydrates and thus 
delay the depletion of muscle glycogen and development 
of fatigue during exercise [173, 176]. Studies have shown 
peak rates of fat oxidation occur at intensities between 
59% and 64% VO2peak in trained individuals and between 
47% and 52% of VO2peak in untrained individuals [177]. 
In individuals with insulin resistance, fatty acid oxidation 
increases in response to training in both healthy and T2D 
populations [178], and the improvement to lipid metabo-
lism in response to exercise, in healthy individuals as well 



Page 8 of 13Anderson et al. Lipids in Health and Disease            (2025) 24:4 

as those with insulin resistance, appears to be indepen-
dent of weight loss [179]. While the exact mechanism 
remains to be defined, exercise potently increases the 
delivery of fatty acids to skeletal muscle and the proteins 
involved in lipid metabolism, such as transport proteins 
CD36, FATP4, and FABPpm [179]. Data also suggest that 
the ability to efficiently oxidize fatty acids is important 
for glucose homeostasis. One study showed that pre-
prandial fatty acid oxidation is inversely associated with 
insulin-stimulated glucose disposal rate during a hyper-
insulinaemic-euglycaemic clamp in both healthy indi-
viduals and individuals with T2D [180]. Another study 
found that that long-term inhibition of fatty acid oxida-
tion in mice led to hepatic steatosis and whole-body insu-
lin resistance [181]. Therefore, exercise can be a powerful 
tool to improve insulin sensitivity through enhancing 
fatty acid oxidation.

Interestingly, studies comparing the effects of high 
intensity interval training and moderate intensity con-
tinuous training have found comparable results regarding 
fatty acid oxidation [15, 182]. For individuals with insulin 
resistance, both intensities have been shown to improve 
fatty acid oxidation and/or markers of oxidative metabo-
lism [183, 184]. From an exercise-induced microvascu-
lar perfusion perspective, both low intensity and high 
intensity muscle contractions are potent in expanding the 
microvascular blood volume perfusion but higher inten-
sity muscle contraction also increases flow velocity, lead-
ing to higher blood flow [152]. Whether this leads to a 
difference in fatty acid extraction in the microcirculation 
is not known.

Unlike skeletal muscle, the heart primarily uses long 
chain fatty acids as a substrate (~ 70%). However, in 
diabetic cardiomyopathy, the reliance on fatty acids 
increases due to dysfunctional glucose oxidation [185]. 
This leads to increased oxygen consumption and reduced 
myocardial efficiency [186]. Exercise training has been 
shown to induce beneficial cardiac remodeling in both 
healthy and diabetic hearts, including increases in oxi-
dative enzymes and decreased oxidative stress. Further, 
after treadmill training in diabetic mice, the overreliance 
on fatty acids was abolished, due to the restoration of 
peroxisome proliferator-activated receptor-γ coactivator 
(PGC-1α) expression, which is involved in glucose oxida-
tion [187]. Collectively, evidence suggests exercise can 
help restore healthy myocardial function in the insulin 
resistant states.

Glucagon-like peptide-1 (GLP-1), an incretin hormone, 
is of increased interest due the growing popularity of 
GLP-1 receptor agonists (GLP-1RA) offered as weight 
loss and glucose control aids. These drugs profoundly 
affect lipid metabolism by promoting fatty acid oxidation 
and inducing lipolysis [188]. Although data on the effect 
of exercise with or without GLP-1RA administration on 

lipid and glucose metabolism is scarce, one study has 
shown that the combination of both is superior to exer-
cise alone on β-cell secretory function [189] in T2D. We 
have recently shown in rodents that combination of exer-
cise with liraglutide is much more effective in improving 
muscle insulin sensitivity than either exercise or liraglu-
tide alone in rats fed a HFD [115]. Importantly, GLP-
1RA induces significant reduction of lean muscle mass 
in addition to loss of fat mass [190] and supplementing 
GLP-1RA treatment with exercise may be beneficial for 
the preservation of muscle mass. Further studies are 
clearly needed.

Strengths and limitations
This review provides a comprehensive analysis of the 
intricate relationships among fatty acid metabolism, exer-
cise-induced vascular adaptations, and insulin-mediated 
vascular changes, emphasizing their collective impact 
on vascular health and associated mechanisms in both 
healthy and insulin-resistant states. The review includes 
evidence from in vitro cell studies, in vivo rodent models, 
and human studies, enhancing its translational value and 
clinical relevance.

However, the limitations include a relatively limited 
focus on in-depth molecular mechanisms, as this is not 
the primary aim of the review. Additionally, while much 
of the evidence presented is based on preclinical studies, 
further research is necessary to corroborate these find-
ings in human populations. Despite these limitations, the 
review offers valuable insights and guidance for future 
studies exploring the therapeutic potential of targeted 
exercise interventions and fatty acid-focused dietary 
strategies to improve vascular health.

Conclusions and perspective
In conclusion, the intricate relationships and complex 
interplay among fatty acid metabolism, exercise train-
ing-induced vascular adaptation, and insulin-mediated 
vascular changes have a significant impact on vascular 
health, particularly in the context of metabolic disorders 
like obesity, T2D, and CVD (Fig.  3). Fatty acids, as key 
energy sources and signaling molecules, play essential 
roles in cellular homeostasis, but an excess or imbalance 
of certain types - especially SFAs - can disrupt normal 
metabolic pathways. This disruption can lead to vascu-
lar inflammation, endothelial dysfunction, and endothe-
lial insulin resistance, all of which are major contributors 
to vascular dysfunction and disease. Conversely, PUFAs 
might offer protective effects on insulin sensitivity, 
reduce inflammation, and help preserve endothelial func-
tion. Therefore, optimizing fatty acid intake and balance 
through diet may be a critical factor in improving meta-
bolic and vascular health.



Page 9 of 13Anderson et al. Lipids in Health and Disease            (2025) 24:4 

Exercise, a well-established intervention for reduc-
ing T2D and CVD risk, exerts its beneficial effects by 
enhancing fatty acid oxidation, improving insulin sensi-
tivity, and inducing beneficial vascular adaptation. Regu-
lar physical activity promotes favorable shifts in fatty acid 
metabolism, leading to reduced circulating FFAs and 
decreased ectopic lipid accumulation, thus reducing lipo-
toxicity, enhancing insulin action and mitigating vascular 
dysfunction. Exercise further strengthens vascular health 
through improved endothelial function, increased NO 
production, and reduced oxidative stress and inflamma-
tion. By modulating fatty acid utilization and improving 
insulin-mediated vasodilation and overall insulin sensi-
tivity, exercise plays a crucial role in sustaining healthy 
vascular function.

Looking forward, further research is needed to clarify 
the mechanistic pathways linking specific fatty acids to 
vascular insulin resistance, and to understand how exer-
cise may modulate these pathways differentially in the 
vasculature. Additionally, personalized exercise programs 
that consider individual fatty acid metabolic profiles 
could offer targeted benefits for patients with metabolic 
disorders. Investigating the long-term effects of combin-
ing exercise interventions with dietary adjustments to 
optimize fatty acid composition may further unveil com-
prehensive approaches to combat vascular diseases. By 
advancing our understanding of these interconnections, 
we can better address the dual challenges of metabolic 

and cardiovascular health, improving outcomes for indi-
viduals affected by T2D and related conditions.
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