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ABSTRACT

Haematological malignancies are a frequently diagnosed group of neoplasms 
and a significant cause of cancer deaths. The successful treatment of these diseases 
relies on early and accurate detection. Specific small molecular compounds released 
by malignant cells and the simultaneous response by the organism towards the 
pathological state may serve as diagnostic/prognostic biomarkers or as a tool with 
relevance for cancer therapy management. To identify the most important metabolites 
required for differentiation, an 1H NMR metabolomics approach was applied to selected 
haematological malignancies. This study utilized 116 methanol serum extract samples 
from AML (n= 38), nHL (n= 26), CLL (n= 21) and HC (n= 31). Multivariate and univariate 
data analyses were performed to identify the most abundant changes among the studied 
groups. Complex and detailed VIP-PLS-DA models were calculated to highlight possible 
changes in terms of biochemical pathways and discrimination ability. Chemometric 
model prediction properties were validated by receiver operating characteristic (ROC) 
curves and statistical analysis. Two sets of eight important metabolites in HC/AML/
CLL/nHL comparisons and five in AML/CLL/nHL comparisons were selected to form 
complex models to represent the most significant changes that occurred.

INTRODUCTION

Haematological malignancies are clonal diseases. 
Neoplasms of the haematopoietic system are derived 
from myeloid lineage stem or progenitor cells, while the 
tumours of the lymphatic system originate from lymphoid 
lineage precursor or mature cells [1]. The factors 
causing these malignant transformation disorders are 
both genetic and environmental. They lead to abnormal 

signal transduction and gene expression in the cell and 
to disturbances during key haematopoiesis processes, 
such as self-renewal, proliferation and differentiation 
[1]. According to the Polish National Cancer Registry, 
the number of new cases of haematological malignancies 
increased near 2-fold in the past three decades. In 
1990, the incidence rate was estimated as 8.8 / 100000 
(10.4 for men and 7.4 for women), and in 2010 it was 
16.8 / 100 000 inhabitants (18.1 for men and 15.5 for 
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women). An important risk factor for haematological 
disorder is the patient’s age. The one of the most frequent 
haematological disorders, which occur in adults, are 
acute myeloid leukaemia (AML) in the haematopoietic 
system, non-Hodgkin’s lymphoma (nHL) and chronic 
lymphocytic leukaemia (CLL) among lymphatic system 
neoplasms. Most cases (approximately 60%) are recorded 
between 50 and 79 years of age [2, 3, 4]. The 5-year 
survival rates among these haematological malignancies 
are 27% for AML, 70% for nHL and 83% for CLL 
patients [1, 3, 4]. The early diagnosis and effective 
treatment of haematological malignancies continues to 
be an overwhelming challenge. Malignant cells exhibit a 
distinct metabolic phenotype, which may be reflected by 
the release of low molecular weight compounds [5, 6]. 
The analysis of changes in these compounds may serve 
as a diagnostic/prognostic biomarkers not only for the 
malignancies but also as a tool with relevance to cancer 
management, therapy and monitoring [7]. Recently, 
numerous studies have characterized the metabolic 
profiles of a variety of malignant tumors, including 
brain, lung, prostate, pancreatic, breast, ovarian, liver and 
thyroid [8, 9].

The purpose of the study was to determine the 
metabolic profiles of the three common haematological 
malignancies in adults, acute myeloid leukaemia (AML), 
non-Hodgkin’s lymphoma (nHL) and chronic lymphocytic 
leukaemia (CLL), using an metabolomics approach, for 
highlighting potential important influence on organism 
metabolism caused by haematological malignancies and 
indication possible biomarkers.

RESULTS

Altogether, 50 metabolites were assigned (Figure 
1 and Supplementary Table 1) and 18 resonance 
signals were marked as unknown. From the identified 
metabolites, 45  and the 18 unknown signals were used 
for the chemometric models due to their non-overlapping 
signals. The found metabolites exhibited different trends 
in the particular comparisons, such as only increasing, 
only decreasing and with variate trends (Supplementary 
Table 2).

The obtained chemometric models, which 
were based on VIP-PLS-DA, could classify patients’ 
haematological malignancy samples into individual groups 
versus the healthy control group. Comparisons between 
the individual haematologic malignancies were also 
based on VIP-PLS-DA models (calculated separately) and 
showed lower model parameter values than comparisons 
with healthy individuals (Table 1). In general, five of the 
eight models passed the validation test, though most of 
these models did not include CLL.

Analysis of all the studied groups (AML, CLL, 
nHL, and HC)

The analysis of the VIP-PLS-DA models calculated 
for three malignancies units and control group using a set 
of metabolites with the greatest discriminatory potential 
(Figure 2A and 2B). This pool of metabolites included 
(sequentially decreasing VIP values) O-phosphocholine, 
glutamine, phenylalanine, tryptophan, glutamate, 

Figure 1: Representative 1H NMR spectrum with marked resonance signals.  1 - 2-Hydroxyisovalerate, 2 - 2-Hydroxybutyrate, 
3 - Isovalerate, 4 - Isoleucine, 5 - 2-Oxoisocaproate, 6 - Alloisoleucine, 7 - Leucine, 8 - Valine, 9 - Isobutyrate, 10 - 2-Methylglutarate, 
11 - 3-Methyl-2-oxovalerate, 12 - 3-Hydroxybutyrate, 13 - Lactate, 14 - 2-Hydroxyisobutyrate, 15 - Alanine, 17 - Lysine, 18 - Acetate, 
19 - Proline, 20 - Glutamine, 21 - Succinate, 22 - Glutamate, 23 - Citrate, 24 - Methionine, 25 - Dimethylamine, 26 - Sarcosine, 27 - N,N-
Dimethylglycine, 28 - Creatine, 29 - Creatinine, 30- Ornithine, 31 - Dimethyl sulfone, 32 - Choline, 33 - O-Phosphocholine, 34 - sn-Glycero-
3-phosphocholine, 35 - Glucose, 36 - Betaine, 37 - Taurine, 38 - Methanol, 39 - Glycine, 40 - Threonine, 41 - Glycerol, 42 - Serine, 43 - Urea, 
44 - Tyrosine, 45 - Histidine, 46 - Tryptophan, 47 - Phenylalanine, 48 - Hypoxanthine, 49 - Oxypurinol, and 50 - Formate.
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histidine, formate, 2-hydroxyisovalerate, citrate, sn-
glycero-3-phosphocholine, ornithine, 2-oxoisocaproate, 
2-hydroxybutyrate, alanine, 2-methylglutarate, betaine, 
sarcosine, creatine, acetate, proline, and choline.

The loading plot (Figure 2B) of comprehensive model 
allows for metabolite selections and verification, which 
had the most important contribution to the differentiation 
between investigated groups. From the determined 
metabolites, three of the most important for differentiation 
among the identified and unidentified compounds based on 
the closest distance to Y-variable have been selected for the 
HC vs. AML vs. CLL vs. nHL comparison (R2X = 0.401, Q2 
= 0.218). Hence, the following sets of identified compounds 
were chosen: (1) for HC – histidine, O-phosphocholine, 
and glutamine; (2) for AML – phenylalanine, glutamate 
and formate; (3) for CLL – choline, alanine, and proline 
and (4) for nHL– creatine, sarcosine, and acetate. Among 
the unidentified metabolites, unk_4 was important for HC, 
unk_16 for AML, and unk_2 for nHL, while no unidentified 
metabolites were important for CLL. Moreover, using a 
single metabolite in multiple groups was avoided. The 
introduced general comparisons shown in Figure 2A and 
2B demonstrate the ability to distinguish between the 
investigated groups, though it does not accurately reveal 
the metabolite variation between the specific particular 
comparisons, e.g., HC vs. AML. Therefore, more detailed 
chemometric models based on comparisons between two 
groups were calculated (Table 1 and Figures 3 and 6). The 
best classification was achieved for the comparison between 
the HC and AML groups. This model obtained the greatest 
ROC curve (AUCtraining 1.00; AUCtest 0.975) and basic 
parameter values among the models (Table 1 and Figures 
3A and 3B). In contrast, assessment of HC and CLL groups 
showed the lowest model parameters values (AUCtraining 
0.852; AUCtest 0.588) among models based on the HC vs. 
haematologic malignancy group comparisons. However, the 
separation between the selected groups was still observed.

A set of 10 identified metabolites were determined 
for the HC vs. AML model (R2X = 0.512, Q2 = 0.744) 
(Figure 3A) - 2-hydroxybutyrate, 2-methylglutarate, 
3-methyl-2-oxovalerate, betaine, formate, glutamate, 
O-phosphocholine, phenylalanine, tryptophan, and 
histidine were statistically significant and had major 
contributions to the differentiation based on their VIP 
values (Supplementary Table 2). Considering the same 
steps as in the complex model (Figure 2A and 2B), nine 
relative integrals from unspecified resonances signals, 
including unk_3, unk_4, unk_6, unk_7, unk_9, unk_10, 
unk_11, unk_12, and unk_16, were also selected. In the 
HC vs. nHL discrimination model (R2X = 0.614, Q2 = 
0.37) (Figure 3B), four of the resonances were determined 
within the relative integral values. Two of the resonances 
were identified as formate and O-phosphocholine and 
the two unassigned specific metabolites were marked 
as unk_4 and unk_7. In the midst of all the studied 
haematological malignancies, the CLL group showed 
the lowest separation vs. the HC group (R2X = 0.472, Q2 
= 0.248) (Figure 3C) based on the VIP-PLS-DA model. 
Despite of low separation, 4 identified metabolites and 
4 unknowns were determined, including dimethylamine, 
formate, glutamate, N,N-dimethylglycine, unk_3, unk_6, 
unk_7, and unk_9, which significantly affected the 
discrimination between the investigated groups.

Statistical analysis performed for all found 
compounds based on median or mean levels showed that 
six metabolites were statistically significant (M-W or t-
test) in each of three comparisons between HC and the 
haematological malignancies (Figure 4).

Analysis of the haematological malignancy 
groups (AML, CLL, and nHL)

The complex comparisons between the studied 
haematological cancers were based on a chemometric 

Table 1: The VIP-PLS-DA model parameters for each comparison based on serum samples

Comparison Latent 
variables

R2X(cum) R2Y(cum) Q2(cum) CV-ANOVA AUC 
training

AUC test

HC/AML/CLL/
nHL

2 0.370 0.267 0.223 3.96E-12 - -

HC /AML 2 0.512 0.864 0.744 3.18E-05 1.000 0.975

HC/CLL 2 0.472 0.662 0.248 1.05E-01 0.852 0.588

HC/nHL 2 0.614 0.622 0.37 1.08E-02 0.898 0.853

AML/CLL/nHL 2 0.366 0.394 0.315 4.98E-11 - -

AML/nHL 2 0.530 0.692 0.575 7.74E-04 0.929 0.837

AML/CLL 2 0.459 0.719 0.383 6.20E-02 0.879 0.932

CLL/nHL 2 0.582 0.469 0.287 7.84E-02 0.837 0.655
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Figure 2: The VIP-PLS-DA models for all the groups used in the study. For a better representation, only Hotelling’s T2 range is 
shown. (A) The PLS-DA general model with all the sample groups. (B) Loading plot of the VIP-PLS-DA model for all groups and samples 
used in the study. Red pentagon – AML; Orange circle – HC; Green triangle – nHL and Blue box – CLL. The inserted reduced figure serves 
to show outliers related to the variability in the studied groups.

Figure 3: The VIP-PLS-DA models plots with the training (no fill) and test (fill) set samples and ROC curves. The dark 
blue curve represents the training set and the red curve represents the test set. (A) - HC vs AML; (B) - HC vs nHL, (C) - HC vs CLL. Red 
pentagon – AML; Orange circle – HC; Green triangle – nHL and Blue box – CLL.
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VIP-PLS-DA model (R2X = 0.366, Q2 = 0.315) (Figure 
5A and 5B).

The collective comparison of the three diseases 
with the most important metabolites were arranged 
by their decreasing VIP values from the VIP-
PLS-DA models in the following order: histidine, 
O-phosphocholine, glutamine, 2-oxoisocaproate, citrate, 
sarcosine, phenylalanine, ornithine, taurine, tryptophan, 
2-hydroxyisovalerate, choline, lysine, glutamate, 
3-methyl-2-oxovalerate, sn-glycero-3-phosphocholine, 
threonine, glucose, and proline. The unknowns resonance 
signals that were important in this comparison were 

unk_10, unk_4, unk_16, unk_11, unk_15, and unk_13. 
Among the metabolites, three based on loading plots 
were selected for each group. The following metabolites 
were important for the differentiation between the studied 
groups (Figure 5B): (1) AML group – phenylalanine, 
glutamate, and 2-oxoisocaproate; CLL group – choline, 
histidine, and O-phosphocholine; and (3) nHL – sarcosine, 
2-hydroxyisovalerate, and sn-glycero-3-phosphocholine 
(Figure 5B).

Three separate chemometric models were calculated 
to determine accurate differences between the specific 
cancer groups. The metabolites that were statistically 

Figure 4: Boxplots of the statistically important metabolites (p<0.05) between HC and the haematological cancers. 
Braces mark the comparisons where the selected metabolites are statistically important. Whiskers - non-outlier min-max range; * - extreme; 
° - outlier; bar - median; box - Q1-Q3 interquartile range; yellow – HC; red – AML; blue - CLL; and green - nHL.

Figure 5: The VIP-PLS-DA models for all the groups used in study. For a better representation, only Hotelling’s T2 range is 
shown. (A) The VIP-PLS-DA model with the haematological malignancy groups. (B) VIP-PLS-DA loading plot for the haematological 
malignancy groups. Red pentagon – AML; Green triangle – nHL and Blue box – CLL. The inserted reduced figure serves to show outliers 
related to the variability in the studied groups.
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significant and present in the VIP-PLS-DA model after the 
first iteration are shown in Supplementary Table 2.

Eight identified metabolites and 4 unknowns 
were used in the AML vs. CLL comparison (R2X = 
0.459, Q2 = 0.383); phenylalanine, citrate, glutamine, 
O-phosphocholine, dimethyl sulfone, histidne, glutamate, 
choline, unk_11, unk_10, unk_7, and unk_18 are 
sorted in a descending order based on their VIP values 
(Supplementary Table 2 and Figure 6A). For the AML vs. 
nHL comparison (R2X = 0.530, Q2 = 0.575), glutamine, 
2-oxoisocaproate, citrate, proline, sn-glycero-3-
phosphocholine, 2-hydroxyisovalerate, unk_10, unk_11, 
and unk_16 (Supplementary Table 2 and Figure 6B) 
were selected, while glucose, O-phosphocholine, and 
tryptophan were used for the CLL vs. nHL comparison 
(R2X = 0.582, Q2 = 0.287) (Supplementary Table 2 and 
Figure 6C).

Among the differentiating metabolites, compounds 
that were statistically significant in at least two 
comparisons between the haematological cancers groups 
in M-W or T tests (dependent on Shapiro Wilk test results) 
are presented in Figure 7.

Pathway analysis

Pathway analysis was performed on the overall data, 
which contained the HC, AML, CLL, and nHL groups, and 
indicated the importance of the most changed biochemical 
pathways. The determined major changes are associated 
with the following pathways (Impact > 0.1; p Holm adjust 
<0.05): (1) D-glutamine and D-glutamate metabolism, (2) 
histidine metabolism, (3) alanine aspartate and glutamate 
metabolism, (4) arginine and proline metabolism, 
(5) glyoxylate and dicarboxylate metabolism, (6) 
aminoacyl-tRNA biosynthesis, (7) methane metabolism, 
(8) phenylalanine metabolism, (9) glycine serine and 
threonine metabolism, and (10) tryptophan metabolism.

DISCUSSION

Clinical significance

Haematological malignancies are a frequently 
diagnosed group of neoplasms and a significant cause 
of death induced by cancer [13, 14]. The successful 

Figure 6: The VIP-PLS-DA model plots with the training (no fill) and test (fill) set samples and ROC curves. The dark 
blue curve represents the training set and the red curve represents the test set. (A) - AML vs CLL; (B) - AML vs nHL, (C) - nHL vs CLL. Red 
pentagon – AML; Green triangle – nHL and Blue box – CLL.
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treatment of these diseases is determined by early and 
accurate diagnosis. There are several cytologic, genetic 
and molecular tools used in diagnostic and monitoring 
hematological malignancies such as flowcytometry, 
FISH and PCR. Their sensitivity and clinical application 
however is heterogeneous.

In AML cytogenetic and molecular abnormalities 
are included in European Leukemia Net (ELN) 
prognostic classification [15]. The isolated mutation 
of NPM1 is related with favorable outcome whereas 
FLT3 ITD mutation is a poor prognosis factor. Recently, 

Gerstung et al. showed that more personal approach is 
needed and combination of several driver mutations 
play important role in clinical course of the disease [16]. 
Prognosis in CLL patients with del 17p by FISH remains 
poor.

Both in AML and CLL another important tools for 
measurement of minimal residual disease (MRD) is flow 
cytometry with high sensitivity. There is several studies 
showing that progression-free survival (PFS) and overall 
survival (OS) in patients MRD(-) is longer compared to 
MRD(+).

Figure 7: Boxplots for the identified statistically important metabolites (p<0.05) between the haematological cancer 
groups. Braces show that the comparisons with the selected metabolites are statistically important. Whiskers - non-outlier min-max range; 
* - extreme; ° - outlier; bar - median; box - Q1-Q3 interquartile range;
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Most of methods mentioned need to be validated in 
prospective clinical trials. Moreover, introduction of new 
drugs - FLT3 inhibitors, BCR inhibitors, bcl2 inhibitors 
may abrogate prognostic value of cytogenetic and 
molecular abnormalities. Therefore more comprehensive 
approach including molecular and metabolomics tools 
may lead to personally tailoring cancer management.

Moreover, information about disease development 
could be valuable and supportive. The evaluation of 
changes in metabolite composition could be important 
for diagnosis, cancer stratification and as prognostic 
compounds with relevance for managing cancer therapies 
[17-20]. The objective of this study was to identify 
differences in metabolic changes between the healthy 
control group and the haematological malignancies groups 
with determination of the possible disturbances in the 
particular biochemical pathways. These findings might 
allow to better understand the nature of haematological 
disorders and enabling patient discrimination. Moreover, 
this approach could serve as supporting tool for earlier 
diagnoses and could lead to more suitable medical 
treatments.

According to acquired medical data (Supplementary 
Table 3) and clinical symptoms, AML is the most 
aggressive studied haematological malignancy. It causes 
the most visible changes to the serum metabolite profile 1H 
NMR spectrum. This is reflected in the multivariate data 
analysis and statistics tests (Tables 1 and Supplementary 
Table 2, Figures 3 and 6). In nHL group less differentiating 
results in all data analysis was obtained, in comparison 
to AML, which also supports the trend of groups 
aggressiveness (Supplementary Table 3). Moreover, the 
CLL group compared to healthy control group also follow 
this trend and highlights more subtle than in the both cases 
-AML or nHL group vs HC (Table 1).

Nevertheless, it is evident that some of the 
metabolites were essential for all three haematological 
cancers (Supplementary Table 2).

The detailed analysis of the average survival 
time (Supplementary Table 3) showed that the studied 
haematological malignancies could have been sorted as 
follows: the most aggressive is AML (avg. 2.74 ± 13.11 
months), followed by nHL (avg. 7.35 ± 16.51 months), 
and ending with CLL (avg. 12.61 ± 13.40 months). This 
observation has been supported by the quality of the 
chemometric models, specifically the most aggressive 
cancer revealed the best separation from the HC group and 
the best chemometrics model parameters (Table 1).

The results obtained in our study compared well 
with previously reported data in the literature [17, 19]. 
The AML group is mostly consistent with overlapping 
in both studies statistically significant metabolites in the 
HC vs. AML comparison (Figure 3A and Supplementary 
Table 2), specifically the increase trends in phenylalanine 
in the AML group and the decrease in PC/GPC, choline, 
glutamine, and alanine were observed. The exception in 

our study (HC vs. AML) is the decrease in citric acid [17]. 
However, in another study based on GC-MS method, this 
metabolite was statistically significant and decreasing in 
the AML vs. HC comparison as in our study [19].

In literature there are not many scientific reports 
focused on investigating variations in low molecular 
weight compounds in nHL serum with general subgroups 
(Figure 3B and Supplementary Table 2) [21]. In this 
work all subgroups along with B lymphomas (with 
exclusion of CLL) were constituted one nHL group. 
Among the highlighted metabolites only phenylalanine 
matched with our study in the HC vs. nHL comparison 
[21]. In this study, this metabolite was increased for 
nHL but was not statistically significant. Moreover, 
only one literature reference is available and includes a 
metabolomics approach based on MALDI-TOF analysis 
of urine samples [22]. This publication highlights role 
of hypoxanthine as a main compound, which allows 
for nHL screening. The hypoxanthine levels in the 
nHL were significantly lower than in HC and permitted 
the differentiation of the selected groups. The finding 
obtained in our study shows highly elevated serum 
hypoxanthine (not statistically significant, VIP score > 
0.8) in the nHL group, which is opposite to the results 
obtained by B.C. Yoo et al. [22]. The differences in these 
two studies [22] could be associated with differences in 
used type of biological material [23].

In the comparison between the CLL and control 
group, our results only partially overlap with the 
literature data (Figure 3C and Supplementary Table 2) 
[18]. Previously reported outcomes by MacIntyre et al. 
highlighted increased pyruvate, glutamate, and proline 
concentrations and decreased isoleucine level. Our 
results, which rely on statistically significant metabolites, 
only matched with one compound – glutamate. The other 
metabolites were not statistically significant in our study, 
and only proline followed the same trend. In contrast, 
isoleucine was slightly increased in the CLL group. The 
main difference between literature data and this study was 
inability to detect a pyruvate signal for quantification, 
pyruvate was reported as the most important metabolite 
for separation in the mentioned work [18]. In context of 
this data, observed higher glucose levels in the CLL group 
could be related to a potential comorbidity of the high-age 
patient group [18]. Analysis of the co-morbidities in our 
study showed that 5 out of 25 patients in the CLL group 
and 3 out of 28 in the HC group could potentially have 
disturbances in glucose levels (Supplementary Table 4). 
Therefore, in our opinion a consequence of the raised 
glucose level, which was statistically significant in the 
HC vs. CLL comparison, could be directly associated 
with development of CLL, though this requires further 
verification.

In spite of both being haematological malignancies, 
the AML and CLL groups significantly differed from one 
another [17, 18]. The alterations between the compounds 
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in the different studies, which enabled their separation, 
could be caused by different disease stages or variability 
present in the taken control group. In case of CLL and 
nHL the separation was much less effective with coincides 
with the usual clinical presentation.

A recent study has reported that difficulties in cancer 
diagnosis could be due to the occurrence of co-morbidities 
in patients/healthy subjects and similar organism responses 
for different disease types [21]. It is known that additional 
factors related to immune system response may lead to 
more complex models that reflect the changes occurring in 
the cross-section of population [21]. Thus, it appears that 
important information from a diagnostic research could 
be obtained by comprehensive comparison of more than 
one disease with similar clinical symptoms or by having a 
more diverse control group.

Biochemical insights into disease mechanism

To focus on the most important metabolites 
that allowed for the differentiation of studied groups, 
metabolites obtained from the complex model (HC vs. 
AML vs. CLL vs. nHL) were adopted, even when the 
model parameters were not as good as in the detailed 
comparisons (between two groups) (Supplementary 
Table 2). The group of metabolites was selected based on 
the K-W test (-log10(p) > 4.00) and VIP analysis (VIP 
value > 1.00) and includes O-phosphocholine, glutamine, 
phenylalanine, tryptophan, glutamate, histidine, formate, 
and 2-hydroxyisovalerate.

Throughout all the comparisons, O-phosphocholine 
appears to be one of most important metabolite, as 
it is widely considered to be a compound associated 
with the carcinogenic processes. O-phosphocholine is 
involved in glycerophospholipid metabolism, which 
is coupled to cancer cell metabolism and development 
[24]. Interestingly, this compound was considerably 
decreased in AML, displayed its lowest value among 
the haematological malignancies compared to the 
HC group. The second in O-phosphocholine level 
order in hetamological disorders is nHL and then 
CLL group with most similar value to HC (PC level 
HC>CLL>nHL>AML). The increased demand for 
glycerophospholipid metabolism compounds may be 
required for leukaemic cell proliferation. This suggests 
that the aggressiveness of the hematological diseases 
shows a decreasing trend among studied groups 
(AML>nHL>CLL) (Supplementary Table 3) [25, 26].

According to the list of the most influential 
metabolites examined in this study, glutamine was at the 
second position. In the literature, glutamine is reported as 
an essential compound for cancer development [27]. One 
of the most abundant uses of glutamine in biochemical 
pathways is its conversion to glutamate, which was also 
meaningful in our study. Glutamate is also transformed 
to α-ketoglutarate and is involved in powering the TCA 

cycle. It was important that glutamine (CLL> HC> NHL> 
AML) and glutamate (AML> NHL> CLL> HC) showed 
complementarity or a negative correlation, in the relative 
integrals, between each other (Figure 7, Supplementary 
Table 2). This may indicate an extensive intensification 
in the glutamine–glutamate biochemical transformation. 
These two compounds might be also associated with 
haematological cancer aggressiveness and use of these 
metabolites in TCA cycle amplification accompanied by 
other cancer development processes. In the literature, 
glutaminase inhibition highlights possible negative effects 
of cancer progression by interrupting the glutamine-
glutamate pathway [28, 29]. Moreover, increased 
conversion of glutamine to glutamate may be essential for 
functioning of immune system cells [30].

Among amino acids, a decrease in tryptophan 
levels (HC> CLL> AML> nHL) could indicate increased 
tryptophan catabolism, which might be connected to 
degradation via the kynurenine pathway. This has been 
linked to local shutdown of the immune system response 
by indoleamine 2,3-dioxygenase (IDO) to promote 
malignant cell proliferation [31, 32, 33, 34]. Interestingly, 
the levels of the intermediate product - formate, is 
increased (Supplementary Table 2) and showed an 
opposing trend to tryptophan (AML>nHL>CLL>HC). 
This finding could support the changes, that occur 
throughout the mentioned biochemical pathway by 
accelerating tryptophan breakdown to kynurenine [35]. 
The expression of the IDO enzyme was reported in the 
literature for the AML group [32]. Interestingly, the nHL 
groups had the most intense changes in tryptophan levels. 
Non-Hodgkin’s lymphomas are a heterogeneous group 
of lymphoid malignancies that are usually present in the 
lymph nodes, spleen and bone marrow. nHLs, most often 
among studied units, can infiltrate tissue and organs, 
which could lead to many local changes and favourable 
immunosuppressive microenvironments. Recent research 
shown that utilization of an IDO inhibitor can be a 
promising agent in the treatment of nHL patients [36].

Another remarkable low molecular weight 
compound from the amino acids group in the 
haematological malignancies was phenylalanine. Its 
relative integral increased in all three haematological 
disorders groups AML>nHL>CLL>HC and it could 
be related to protein breakdown. The BCAAs typically 
associated with this process are not statistically significant 
and do not cover the same order. Moreover, phenylalanine 
could amplify the requirement for fuelling tricarboxylic 
acid cycle for more aggressive haematological malignance 
through phenylalanine, tyrosine and tryptophan 
metabolism [37].

Our results showed that histidine negatively 
correlated with increased hematological diseases 
aggressiveness levels (CLL>HC>nHL>AML), which 
could be connected with inflammation processes [38, 39]. 
The histidine metabolism pathway also participates in 
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glutamate biosynthesis. Thus, the increased transformation 
of histidine into glutamate may be cause of lower level in 
haematological patients.

The identification of 2-hydroxyisovalerate 
levels (nHL>CLL>HC>AML) in serum extracts of the 
haematological units was an unexpected observation, 
as it is most frequently assigned in urine as a potential 
indicator of lactic acidosis [40]. It was shown that lactic 
acidosis is a significant disturbance in the functioning 
of biochemical pathways in some haematological 
disorders studies [41, 42]. The main approach to 
determining the mentioned pathophysiological state 
was measuring lactate levels in blood. Compared to 
our results, elevated lactate levels were also observed 
in each unit, with the highest concentration visible in 
AML and nHL, which corresponds well with lactic 
acidic levels reported in the literature data [41, 42].

Considering the data originating from the general 
comparisons between the diseases (AML vs. CLL vs. 
nHL) (Figures 5D and 5E and Table 1) and beside 
the metabolites discussed earlier, we observed that 
2-oxoisocaproate, citrate, sarcosine, ornithine, and taurine 
were the most important in second complex model.

2-oxoisocaproate (ketoleucine) is a short-
chain keto acid, it along with other keto acids may be 
connected to kynurenine aminotransferase functioning 
as an amino group acceptor. However, its levels 
(AML>CLL>nHL>HC) were greatly increased in both 
of the leukaemia groups, though not in the lymphoma 
group (Supplementary Table 2) [43], which highlights 
the differences in the functioning of the selected 
haematological cancers.

The tricarboxylic acid cycle essential metabolite 
citrate (nHL>HC>CLL>AML) had the lowest relative 
integral in AML among investigated groups, indicating the 
ability of increased TCA cycle functioning to be related 
to the increased activation of carcinogenesis processes. 
Despite the different values in the CLL and nHL groups, 
neither displayed the considerable citrate reduction 
observed in the AML group. This suggests that differences 
in the levels of this compound could be associated with 
the increased energy demand correlated with the rapid 
development of AML [19].

The metabolism of sarcosine (nHL>HC>CLL>AML) 
leads to the rapid degradation to glycine, which demonstrates 
that serine and glycine metabolism may have an important 
impact on CLL and AML progression in contrast to nHL, it 
could also lead to betaine metabolism [44, 45].

Ornithine (HC>AML>CLL>nHL) is one of the main 
compounds in the urea cycle. The relative integral of this 
metabolite was lower in all three studied haematological 
cancers compared to the healthy control group. However, 
in the nHL samples, the ornithine levels differences were 
significantly higher than in the AML and CLL groups. 
Ornithine is mostly produced from arginine in the urea cycle, 
but could be also biosynthesized from proline and glutamine 

[46, 47]. In the literature, ornithine has been reported as an 
important agent for active T-cells. It can also lead to changes 
in biological pathways that involve ornithine usage and 
could be more prominent in nHL patients [46, 48].

The nHL group also had the lowest levels of taurine 
(CLL>HC>AML>nHL), and displayed significant 
differences from the other two studied groups. It has been 
reported that taurine could be early biomarker of tumour 
formation in breast cancer [49]. The literature data has 
reported that it is associated with a reduction of cancer 
development [50, 51]. Therefore, the decreased taurine 
levels in the nHL group correspond to its extensive 
utilization for reducing malignant cell proliferation [52].

The described changes can be responses amplified 
by tumour cells as well as global reactions by the entire 
organism to pathological conditions influenced by a variety 
of metabolites. The overall interpretation of the changes in 
the compound levels in serum samples could be difficult due 
to fact that metabolites within their biochemical pathways 
may intertwine and overlap during homeostasis disturbances 
and changes directly caused by cancer cell metabolism.

Summing up discrimination of the studied 
cancers was possible based on the detailed chemometric 
calculation between healthy control and cancer groups as 
well as between them. The found list of compounds may 
be key to understand the metabolite biochemical changes 
occurring in selected cancers, but also potentially allow 
for the classification and discrimination of haematological 
malignancies, based on differences in small molecular 
compounds composition.

Obtained models parameters were connected 
with the clinical symptoms assumptions and increased 
aggressiveness of the haematological units (AML survival 
time avg. 2.74 ± 13.11 months, nHL avg. 7.35 ± 16.51, 
CLL avg. 12.61 ± 13.40), and amplified by the changes 
in the biochemistry of metabolites. The discrimination 
based on the metabolomics approach was greater for the 
more aggressive units, which seems to be logical. This 
assumption was confirmed by the visible correlation 
between the quality and significance of the chemometric 
models compared to the average survival time in the groups 
(AML>nHL>CLL).

Hypothetically, the obtained results showed that 
this metabolomics approach could allow for the additional 
verification of diagnosis or even faster assignment of 
individuals to specific cancers in the future. However more 
accurate and detailed biochemistry studies are required to 
understand the changes in metabolism and their functions 
in the selected haematological cancers.

MATERIALS AND METHODS

Sample collection

Peripheral venous blood samples were drawn from all 
the participants after overnight fasting for at least 8 hours. 
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Blood samples were collected using Sarstedt S-Monovette 
system serum tubes (Sarstedt AG & Co., Germany) that 
were centrifuged at 1000 x g for 15 minutes at 4°C. The 
serum samples serum were stored in 1,5 ml Eppendorf safe-
lock tubes and maintained at -80°C until analysis.

The study group included 116 patients with 
an established diagnosis of one of three different 
haematological malignancies. There were 38 patients with 
acute myeloid leukaemia (AML), 26 patients with non-
Hodgkin’s lymphoma (nHL, CLL subgroup was excluded 
forming separate group) and 21 patients with chronic 
lymphocytic leukaemia (CLL). All the subjects were 
patients at the Haematology Clinic of Wroclaw Medical 
University in Poland. All recruited patients were in the 
active phase of the disease. All of the subjects had never 
been treated for their cancers. The serum samples were 
taken prior to the initiation of chemotherapy.

The control group consisted of 31 volunteers who 
were mainly recruited from familial doctors and from the 
Internal Diseases Clinic of Wroclaw Medical University 
in Poland. The volunteers were matched for age, sex, co-
morbidities (arterial hypertension, diabetes, ischaemic heart 
disease, and hypercholesterolemia) and smoking habits to 
the haematological groups. Baseline demographic and 
medical characteristics for the haematological groups and 
controls are presented in Supplementary Tables 3, 4 & 5.

The study protocol was approved by the Bioethical 
Committee of Wroclaw Medical University (KB - 
41/2011) and each subject gave written informed consent.

Sample preparation for proton NMR 
spectroscopy

The collected serum samples were thawed at room 
temperature and vortexed. Then, 300 μl of serum was 
transferred to a new Eppendorf tube and mixed with 
700 μl of cold methanol for protein precipitation. Next, 
the samples were homogenized (Qiagen, Tissuelyser 
LT) for 10 min at 50 Hz and then incubated for 20 min 
in -20°C. The homogenization step and incubation were 
then repeated. Subsequently, mixtures of serum-methanol 
were centrifuged for 30 min at 15 000 rpm at 4°C. 
Afterwards, 700 μl of supernatant was transferred to a 
new Eppendorf tube and then evaporated to dryness in a 
vacuum centrifuge (JWElectronic WP-03) for 5 h at 1500 
rpm at 40°C. The dry precipitate was dissolved in 600 μl 
PBS (0.5 M, pH = 7.2, 20% D2O, and 330 μM TSP) and 
then 550 μl of the mixture was transferred to an NMR tube 
(SP, 5 mm ARMAR Chemicals). Samples were maintained 
at 4°C before the measurements were taken.

1H NMR measurements

The NMR spectra of the serum were recorded at 
300 K using an Avance III spectrometer (Bruker, GmBH, 
Germany) operating at a proton frequency of 600.58 MHz. 

The NMR spectra of the were recorded by using a cpmg1dpr 
pulse sequence with water presaturation in Bruker notation. 
For each sample, 128 continuous scans were collected with 
a spin-echo delay of 400 μs; 80 loops; a relaxation delay 
of 3.5 s; an acquisition time of 2.73 s; a time domain of 
64k; and a spectral width of 20.01 ppm. Two-dimensional 
NMR experiments (2D NMR) were recorded and processed 
for selected samples. Experiments performed included 
1H−1H correlation spectroscopy (COSY), total correlation 
spectroscopy (TOCSY), and 1H−13C heteronuclear single 
quantum correlation (HSQC). For the metabolomics 
workflow, the 1D spectra were processed with a line 
broadening of 0.3 Hz, manually phased, baseline-corrected 
using the MestReNova software (Mestrelab Research v 
11.0) and referenced to a TSP signal δ = 0.0 ppm for the 
serum samples. Methanol and water resonance signals 
were removed from the data matrix. All the spectra were 
normalized to a TSP resonance signal. The alignment of the 
resonance signals was completed via a correlation optimized 
warping algorithm (COW) [10] and the icoshift algorithm and 
implemented in MATLAB (v R2014a, Mathworks Inc.) [11].

Pre-processing of variables for analysis

A total 50 metabolites and 18 unknown resonance 
signals from the serum sample 1H NMR spectra were 
assigned. The metabolite resonances were identified based 
on assignments published in the literature, the Chenomx 
software (v 8.2 Chenomx Inc.) and on-line databases 
(Biological Magnetic Resonance Data Bank (www.
bmrb.wisc.edu) and Human Metabolome Data Base, 
(www.hmdb.ca). The NMR-measured metabolites were 
obtained as relative signal integrals of the non-overlapping 
resonance signals.

Multivariate data analysis

Multivariate data analysis was performed using 
the SIMCA software (v 14.0, Umetrics). The sample 
order in the dataset was randomized. All the variables 
were scaled to unit variance (UV), and the samples for 
model calculation were split into two sample sets (training 
and test) based on the Kennard and Stone algorithm. 
The discriminant version of the Partial Least Squares 
regression (PLS-DA) with a default k-fold cross validation 
procedure was utilized to identify differences between 
the subgroups. To improve the obtained models, variable 
selection was conducted using VIP-plots with a confidence 
interval 0.95. Variables having VIP values below 0.8 were 
removed from the analysis. A single iteration was used 
to minimalize the overfitting models. New models were 
re-built based on selected variables, and their reliability 
were tested with a CV-ANOVA at a level of significance 
of p<0.05. The prediction performance of the VIP-PLS-
DA models was estimated based on receiver operating 
characteristic (ROC) curves and area under curve 

http://www.bmrb.wisc.edu
http://www.bmrb.wisc.edu
http://www.hmdb.ca
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(AUC) values. For this purpose, a perfcurve function 
from the Matlab statistical tool-box (Matlab v. R2014a, 
Mathworks, Inc.) was adopted. Specificity and sensitivity 
were determined according to sample class prediction 
using the 7-fold cross-validated predicted values from the 
fitted Y-predcv (implemented in SIMCA-14 software) for 
observations in the model.

Pathway analysis

The MetaboAnalyst 3.0 platform with selected 
features was used for metabolite data analysis. Pathway 
Analysis was performed on a relative integral matrix with 
only identified metabolites. All the data were scaled with 
Auto Scaling; the Pathway Enrichment Analysis was set 
on Global Test and the Pathway Topology Analysis was 
set on Relative-betweenness Centrality [12].

Statistical data analysis

The percent difference (PD) and relative standard 
deviation (RSD) for each assigned resonance signal were 
calculated. The percent difference was calculated based 
on the mean values of the metabolite’s relative integral in 
each group. Data set with a relative integral were tested 
for the type of distribution based on the Shapiro-Wilk test. 
All assigned resonance signals were tested for statistical 
significance using an appropriate disturbance type test, 
either the Mann–Whitney–Wilcoxon or Student t test 
using STATISTICA 12 (Statsoft Inc.). The K-W test was 
calculated for limitation to most influential metabolites 
in discus section. K-W test was performed on the 
metaboanalyst platform for this purpose and all data were 
auto-scaled (http://www.metaboanalyst.ca) [12].
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