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Dental caries is a common disease that not only destroys the rigid structure of the teeth but
also causes pulp necrosis in severe cases. Once pulp necrosis has occurred, the most
common treatment is to remove the damaged pulp tissue, leading to a loss of tooth vitality
and increased tooth fragility. Dental pulp stem cells (DPSCs) isolated from pulp tissue
exhibit mesenchymal stem cell-like characteristics and are considered ideal candidates for
regenerating damaged dental pulp tissue owing to their multipotency, high proliferation
rate, and viability after cryopreservation. Importantly, DPSCs do not elicit an allogeneic
immune response because they are non-immunogenic and exhibit potent
immunosuppressive properties. Here, we provide an up-to-date review of the clinical
applicability and potential of DPSCs, as well as emerging trends in the regeneration of
damaged pulp tissue. In addition, we suggest the possibility of using DPSCs as a resource
for allogeneic transplantation and provide a perspective for their clinical application in pulp
regeneration.

Keywords: regeneration medicine, dental pulp stem cells, dental pulp regeneration, immunomodulation, allogeneic
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INTRODUCTION

Dental pulp is a tissue in the center part of the tooth, surrounded by dentin, and plays a crucial role in
maintaining the vitality of teeth by supplying essential factors through the apical foramen. The neural
network distributed in the pulp tissue through the apical foramen plays a role in protecting the teeth
by recognizing harmful stimuli, and the blood vessels in the pulp tissue supply nutrients to the teeth
and remove waste products. Dental pulp has high functional regenerative capacity as it is responsible
for the maintenance as well as the repair of periodontal tissue in response to various types of damage.
Dental pulp cells proliferate when periodontal tissue is damaged, migrate to the damaged site, then
differentiate into odontoblasts to form reparative dentin (Tziafas et al., 2000; Dimitrova-Nakov et al.,
2014). Dental caries is one of the most prevalent diseases worldwide and has maintained its
prevalence and incidence over the past two decades (Kassebaum et al., 2015). According to the most
recent epidemiological data, the overall prevalence of total caries among youth aged in the
United States is 45.8% (Fleming and Afful, 2018). There are no symptoms in the initial stages of
caries, and symptoms begin only when the carious lesion grows and progresses to the dentin (Selwitz
et al., 2007). When dental caries progresses and an inflammatory reaction occurs in the dental pulp,
pulp tissue ischemia with severe pain occurs. The current common clinical treatment involves
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removing the damaged dental pulp tissue, disinfecting it, and then
filling it with artificial fillings (Morotomi et al., 2019). Although
initial root canal treatment (RCT) has a high success rate and a
predictable prognosis after treatment, the possibility of
reinfection still exists (Salehrabi and Rotstein, 2004;
Torabinejad et al., 2007; de Chevigny et al., 2008). Even if the
treatment is successful, the vitality of the pulp is lost, and the
perception and immune function completely disappear, reducing
the resistance to external stimuli and weakening the teeth (Miran
et al., 2016). Moreover, when reinfection occurs and retreatment
is performed, the success rate decreases, and repeated RCTmakes
the teeth more fragile and prone to cracking or even fracture of
the roots (Van Nieuwenhuysen et al., 1994; Imura et al., 2007; Ng
et al., 2008). To solve these problems, a tissue regeneration
approach that replaces damaged pulp with healthy pulp is an
ideal treatment option. Therefore, novel strategies for
regenerating functional pulp are essential as pulp stem cells
are emerging as promising candidates.

Mesenchymal stem cells (MSCs) are multipotent cells that can
differentiate into all types of cells derived from the three
embryonic germ layers, including osteoblasts, chondroblasts,
and adipocytes. MSCs have been found in various tissues, such
as bone marrow, adipose tissue, and dental tissues (Pittenger
et al., 1999; Bianco et al., 2001). Because of these characteristics,
MSCs have been recognized as a promising source of stem cells in
regenerative therapy. However, their application has limitations
such as safety and accessibility issues; thus, MSC-like cells isolated
from dental tissues have begun to attract attention. MSC-like cells
isolated from dental tissues have the advantage of being easily
accessible from extracted teeth or from periodontal tissues that
come with the extracted teeth (Gronthos et al., 2000; Gronthos
et al., 2002; Miura et al., 2003). In addition, they can differentiate
into nerves and blood vessels, which are necessary structures
constituting the pulp tissue, and can be cryopreserved to store
cells. Importantly, they may not elicit an immune response in
allogeneic transplantations because they are non-immunogenic
and have strong immunosuppressive properties (Kwack et al.,
2017). With these advantages, DPSCs are the most important
source of stem cells for pulp tissue regeneration because they exist
in the original dental pulp and are prone to repair the damaged
dental pulp (Zhang et al., 2017). In this review, we focus on
DPSCs and provide an up-to-date review of their potential,
including their immunosuppressive properties. In addition, the
latest clinical methods for the regeneration of pulp tissue and the
clinical applicability/strategies of DPSCs have also been
discussed.

DENTAL CARIES/PULPITIS

Dental caries is a common disease worldwide; however, it shows
no symptoms until certain degree of progression. Untreated
caries in permanent teeth are the most prevalent worldwide,
and the prevalence and incidence of dental caries has been
steadily maintained (Kassebaum et al., 2015). Dental caries is
caused by complex interactions between the dietary supply of
fermentable carbohydrates, acid-producing bacteria, and many

host factors, including saliva and teeth (Selwitz et al., 2007). As a
result of these interactions, the bacteria form a biofilm and cause
demineralization of the outermost hard part of the tooth, the
enamel, by acidogenic byproducts of bacterial metabolism. As
enamel demineralization continues, dentin is exposed to bacterial
invasion, resulting in further demineralization and cavitation. If
caries progresses untreated, they turn to deep caries that penetrate
the entire thickness of the dentin with specific pulp exposure.
When dental pulp cells are exposed to dental caries, they respond
directly by expressing various chemokines and cytokines to
promote cellular defense processes and attempt repair (Farges
et al., 2015). Fibroblasts, the principal cells of the pulp, can secrete
factors important for the recruitment of stem cells, and the
recruited stem cells are directly involved in repair (Frozoni
et al., 2012; Jeanneau et al., 2017). In addition, bone marrow
fibrocytes play a role in early wound healing by migrating to the
damaged pulp site (Yoshiba et al., 2018). Several progenitor cell
populations, including DPSCs, migrate to injured pulp sites and
differentiate into odontoblast-like cells during reparative
dentinogenesis (Gronthos et al., 2002). To undergo such a
pulpal repair process, low-grade inflammation must progress
to stimulate the regenerative response (Cooper et al., 2010). If
inflammation is not removed despite a series of repair processes,
it will eventually lead to an inflammatory pulpal reaction,
resulting in pulp necrosis and abscesses (Reeves and Stanley,
1966; Bergenholtz et al., 1982).

Direct pulp capping or pulpotomy is clinically performed
when the pulp is exposed to inflammation to maintain the
vitality of the pulp. Direct pulp capping with dental
biomaterial was performed to protect the exposed vital pulp
by promoting restorative dentin formation (Figure 1A).
Therefore, the primary purpose of pulp capping is to protect
the exposed pulp tissue from external stimuli, such as bacteria.
Therefore, pulp capping does not involve any process to remove
the pulp tissue. In contrast, pulpotomy involves the removal of an
exposed area (2–3 mm) of the infected pulp tissue (European
Society of Endodontology, 2006) (Figure 1B). Pulpotomy is a
treatment method based on histological research findings that
irreversible pulpitis causes inflammation of the coronal pulp,
whereas inflammation of the pulp tissue in the root chamber is
rare (Ricucci et al., 2014). Although pulp chamber pulpotomy is
mainly used to allow apexogenesis in immature teeth, recent
reports suggest that it may have promising long-term results in
mature teeth as well (Simon et al., 2013; Taha and Khazali, 2017).
However, if the bacterial infection and inflammatory reaction of
the pulp continue without proper treatment, the pressure inside
the pulp chamber increases significantly, resulting in ischemia of
the pulp tissue with severe pain. To reduce the patient’s pain by
lowering the pressure inside the pulp chamber, pulpectomy was
performed to remove all pulp tissue (Figure 1C).

MESENCHYMAL STEM CELLS

MSCs, which have the potential for self-renewal and multiple
differentiation, play an essential role in organ development and
repair (Uccelli et al., 2008; Bianco et al., 2013; Frenette et al.,
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2013). In various studies involving animal models and clinical
trials, MSCs have received significant attention in regenerative
medicine because of their tremendous potential to regenerate
damaged tissues, including bones and teeth (Volponi et al., 2010;
Daley, 2012; Grayson et al., 2015; Trounson and McDonald,
2015). MSCs have been proposed as an attractive cell source
because of their ability to differentiate into osteoblasts or
odontoblasts, to cryopreserve, and to modulate systemic
immunity as well as avoid ethical disputes during the
harvesting process, (Volponi et al., 2010; Daley, 2012; Grayson
et al., 2015; Gao et al., 2017). Moreover, MSCs grow easily in vitro
and are thus suitable for conducting various experiments in the
field of regenerative medicine. MSCs can be identified by
expressing cell surface markers such as CD73, CD90, and
CD105 without expressing hematopoietic cell markers such as
CD11b, CD34, and CD45 (Dominici et al., 2006). Human MSCs
are multipotent cells isolated from various tissues, but the most

common source tissues are bone marrow and adipose tissue
(Haynesworth et al., 1992; Pittenger et al., 1999; Halvorsen
et al., 2000; Zuk et al., 2001).

Bone marrow-derived MSCs have been extensively studied for
bone regeneration because they strongly regulate bone homeostasis
by regulating osteoblast differentiation and osteoclast activity
(Frenette et al., 2013; Liu et al., 2014; Fernandes and Yang, 2016;
Guo et al., 2018). With regard to bone homeostasis, cytotherapy or
tissue engineering techniques have demonstrated therapeutic
potential for the treatment of bone marrow-derived MSCs in
osteopenia and bone defects (Shang et al., 2014; Liu S. et al.,
2015; Sui et al., 2016; Sui et al., 2017). The iliac crest is mainly
used to collect MSCs from bone marrow, and because bone marrow
is renewable, it can be freely collected without ethical issues.
However, harvesting the bone marrow is not readily accessible, as
it requires conscious sedation and anesthesia, which requires
monitoring by an anesthesiologist.

FIGURE 1 | Schematic diagram of the current concept of pulp therapy. (A) Direct pulp capping. Pulp capping is a method used to prevent necrosis of the dental
pulp when it is slightly exposed to the pin-point. Direct pulp capping covers the exposed dental pulp with a base that protects the pulp and prevents infection to maintain
dental pulp vitality. (B) Pulpotomy. Pulpotomy is a minimally invasive method that is clinically considered when there is pulpitis in the absence of root pathology. (C)
Pulpectomy. Pulpectomy refers to a root canal treatment that removes irreversibly infected or necrotic pulp tissue.
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MSCs isolated from dental-related tissues exhibit typical MSC
characteristics and have been found in various dental tissues, such
as extracted teeth and adherent tissues (Gronthos et al., 2000;
Gronthos et al., 2002; Miura et al., 2003; Seo et al., 2004). Unlike
MSCs isolated from bone marrow, MSCs isolated from dental
tissues are easily accessible because they can be isolated from
wisdom teeth or healthy teeth that have been extracted for
orthodontic purposes. It has been reported that the frequency
of extraction of the four first premolars among orthodontic
patients is as high as 8.9%–13.4% (Jackson et al., 2017). In
addition, based on the dentist’s value and empirical evidence,
many asymptomatic third molars are extracted for prophylactic
purposes prior to orthodontic treatment (Bastos Ado et al., 2016).
Considering these points, MSCs isolated from dental-related
tissues can be obtained more easily than MSCs isolated from
bone marrow. The easily accessible dental-derived MSCs include
periodontal ligament stem cells, stem cells from apical papilla,
dental follicle cells, stem cells from human exfoliated deciduous
teeth, and DPSCs.

Periodontal Ligament Stem Cells
The periodontal ligament is a fibrous connective tissue that plays
an important role in supporting teeth by anchoring them to the
alveolar bone (Chen et al., 2012). Periodontal ligament stem cells
isolated from the periodontal ligament are known to play a role in
maintaining the function of periodontal tissue and regenerating
the structure (Seo et al., 2004). In vitro experiments showed that
periodontal ligament stem cells expressed cementoblast/
osteoblast markers in culture and could be mineralized. In
case of periodontal tissue defects, locally transplanted
periodontal ligament stem cells migrate to and repair the
defect, suggesting the possibility of periodontal tissue
regeneration (Liu et al., 2008; Ding et al., 2010).

Stem Cells from the Apical Papilla
The apical papilla tissue is located at the tip of the growing tooth
root because it exists only during the development of the tooth
root (Sonoyama et al., 2006; Huang et al., 2008; Sonoyama et al.,
2008). The differentiation of stem cells from the apical papilla
into odontoblasts and osteoblasts was confirmed in vitro, and the
possibility of regeneration into cementum and periodontal
ligament-like complexes was indicated in vivo (Han et al., 2010).

Dental Follicle Cells
The dental follicle is a loose connective tissue derived from the
ectomesenchyme that surrounds the dental papilla and the
enamel of the developing tooth germ before eruption. Dental
follicle cells, including progenitors of cementoblasts, periodontal
ligaments, and osteoblasts, were found to differentiate into
cementum in vitro (Kemoun et al., 2007; Yao et al., 2008) and
in vivo in an experiment that used implants (Handa et al., 2002).
In addition, dental follicle cells not only regenerate periodontal
ligament-like tissues upon transplantation in vivo but also
regenerate periodontal tissues through epithelial–mesenchymal
interactions (Yokoi et al., 2007; Bai et al., 2011). Dental follicle
cells are attracting attention in regenerative medicine because
they maintain the characteristics of MSCs and form periodontal

tissues even when sub-cultured more than other stem cells (Guo
et al., 2012).

Stem Cells from Human Exfoliated
Deciduous Teeth
A cell population exhibiting the characteristics of MSCs was
isolated from the pulp tissue of human exfoliated deciduous teeth
and named “stem cells from human exfoliated deciduous teeth”
(Miura et al., 2003). Stem cells from human exfoliated deciduous
teeth can differentiate into osteoblasts in vitro (Su et al., 2016),
and their differentiation into dentin-like tissues upon
transplantation in vivo indicates that they have the potential
for pulp regeneration (Miura et al., 2003; Shi et al., 2005; Cordeiro
et al., 2008). Notably, stem cells from human exfoliated deciduous
teeth showed a higher proliferation rate, osteogenic
differentiation ability, and osteo-inductive potential compared
to those of DPSCs and bone marrow-derived MSCs (Nakamura
et al., 2009; Kunimatsu et al., 2018). Moreover, stem cells from
human exfoliated deciduous teeth are considered an attractive cell
source for bone and tooth regeneration because they can
cryopreserve and maintain their differentiation potential even
after cryopreservation (Ma et al., 2012).

Dental Pulp Stem Cells
DPSCs are cells with MSC-like characteristics isolated from
dental pulp that play a role in periodontal tissue repair and
regeneration (Gronthos et al., 2000). DPSCs play an essential role
in dentin repair and postnatal tooth homeostasis by
differentiating into odontoblasts (Gronthos et al., 2002; Shi
and Gronthos, 2003; Laino et al., 2005). Furthermore, because
DPSCs are of neural origin, they can differentiate into glial cells
and neurons and have also been shown to exhibit the ability to
secrete neurotrophic factors that play a role in neurite outgrowth
and neuroprotection (Arthur et al., 2008; Ratajczak et al., 2016)
(Figure 2). Importantly, DPSCs possess a strong angiogenic
capacity to generate capillary-like structures by secreting
angiogenesis regulators under certain environmental
conditions (Ratajczak et al., 2016) (Figure 2). Taken together,
DPSCs with excellent neurodifferentiation and strong angiogenic
potential, which are the most important factors for functional
pulp regeneration, are the optimal cell source for dental pulp
regeneration.

DENTAL PULP STEM CELLS AS A SOURCE
OF PULP REGENERATION

The pulp tissue receives blood vessels from the apical foramen to
maintain vitality and is innervated to provide sensation to the
teeth. Therefore, the strong angiogenic and neurogenic potential
of MSCs is essential for the successful regeneration of pulp tissue.
Therefore, the regenerated pulp tissue must 1) have a cell density
and structure similar to those of the original pulp, 2) generate new
dentin at a controlled rate similar to that of the original pulp, 3)
have blood vessels formed and connected, and 4) innervated
nerves (Fawzy El-Sayed et al., 2015). DPSCs have distinctive
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neurovascular differentiation characteristics, suggesting that they
may serve as the best candidates for pulp tissue regeneration
(Gronthos et al., 2000). In addition, the pulp microenvironment
maintains dynamic homeostasis, and these microenvironments
must be closely mimicked during pulp regeneration. Thus,
DPSCs surrounding the neurovascular bundle may be most
suitable for pulp tissue regeneration (Shi and Gronthos, 2003;
Zhao et al., 2014). Therefore, we focused on DPSCs and
summarized their stemness, clinical application,

immunomodulatory properties, and cryopreservation
characteristics.

Stemness
DPSCs are ectoderm-derived MSCs originating from the cranial
neural crest cells. DPSCs have MSC-like properties, including
fibroblast-like morphology and the ability to adhere to and
proliferate on plastic surfaces, and exhibit MSC-like colony
formation (Dominici et al., 2006; Martens et al., 2013). Similar

FIGURE 2 | Characteristics of dental pulp stem cells (DPSCs). DPSCs can be isolated from dental pulp tissue and express markers similar to those on
mesenchymal stem cells (MSCs). DPSCs can undergo self-renewal and have the potential to differentiate into ectoderm, mesoderm, and endoderm.
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to MSCs, DPSCs express specific markers such as CD73, CD90,
CD105, and STRO-1 but not hematopoietic markers such as
CD11b and CD19 (Mattei et al., 2015). However, DPSCs are a
heterogeneous population that also express a variety of other
markers (Figure 2).

For successful tissue engineering, forming a rapid vascular
network with the host circulatory system to supply the necessary
oxygen and nutrients and remove waste products is essential (Jain
et al., 2005). In relation to angiogenesis, DPSCs significantly
upregulate pericyte markers such as NG2, platelet-derived growth
factor receptor β (PDGFRβ), and α-smooth muscle actin (α-
SMA) but do not express endothelial markers such as von
Willebrand factor or CD31 (Janebodin et al., 2013). It has
been reported that DPSCs support angiogenic and
vasculogenic processes not only by secreting pro-angiogenic
factors but also by direct differentiation into pericytes and
endotheliocytes. Angiogenic potential has been established
through pro-angiogenic factors like vascular endothelial
growth factor (VEGF), platelet-derived growth factor (PDGF),
monocyte chemoattractant protein-1 (MCP-1), basic fibroblast
growth factor (bFGF), and endothelin-1 (EDN1) secreted by
DPSCs, and through these factors, DPSCs act as pericyte-like
cells to stabilize blood vessels (Bronckaers et al., 2013; Janebodin
et al., 2013).

The co-transplantation of endothelial progenitor cells and
perivascular cells can form functional micro-vessels in vivo
(Melero-Martin et al., 2007). Moreover, further administration
of DPSCs can stabilize the pre-existing vasculature-like structure
formed by human umbilical vein endothelial cells (HUVECs) and
increase their longevity (Dissanayaka et al., 2012). When co-
injected with HUVECs, DPSCs showed perivascular
characteristics that contributed to angiogenesis (Nam et al.,
2017). As such, it has been established that DPSCs are often
closely associated with blood vessels, adopting the location and
function of pericytes.

DPSCs derived from the cranial neural crest have neural
properties, and in this regard, they are known to express
nestin, a neural progenitor marker, and glial fibrillary acidic
protein (GFAP), a glial marker (Davidson, 1994). DPSCs can
differentiate into neural cells (Stevens et al., 2008) and glial cells
(Gronthos et al., 2002) as well as neuronal nuclei (NeuN),
neuron-specific markers that indicate neuronal differentiation
capacity under neuronal induction conditions (Gronthos et al.,
2002). DPSCs cultured in neuronal inductive media containing
growth factors such as glial cell line-derived neurotrophic factor
(GDNF) and brain-derived neurotrophic factor (BDNF), are
known to differentiate into neuron-like cells (Chang et al.,
2014). Moreover, it was recently reported that optogenetic
stimulation not only increases the vitality of DPSCs but also
promotes differentiation to neuron-like cells (Niyazi et al., 2020).

In DPSCs, like other stem cells, side population (SP) cells
characterized by a low level of Hoechst33342, a DNA-binding
fluorescent dye, were found. Among the SP populations, the
CD31−/CD146− population is considered a promising population
owing to the high expression of neurotrophic factors such as
BDNF and nerve growth factor (NGF) and angiotrophic factors
such as VEGF-A (Nakashima et al., 2009).

Therefore, DPSCs have cell characteristics suitable for
angiogenesis and neurogenesis, which are essential for pulp
regeneration.

Immunomodulation Properties
Autologous DPSCs are considered a suitable source of cells for
cell-based regenerative medicine but have limitations in that the
uninfected teeth must be extracted and cryopreserved in a timely
manner and used within the cryopreservation period. In contrast,
using allogeneic cells has the advantage that when clinically
applicable DPSCs are secured, a cell bank can be created and
appropriately applied to patients in need at any time. However,
allogeneic cell use can induce immune rejection by the host
immune system due to a major histocompatibility complex
(MHC) mismatch. DPSCs have effective and potent
immunomodulatory functions to address immune rejection,
suggesting their potential for regenerative medicine using
allogeneic cells. Studies have primarily demonstrated the
immunosuppressive properties of DPSCs through in vitro cell
co-culture. Co-culture of stimulated T cells with DPSCs inhibits
T-cell proliferation through the formation of regulatory T cells
(Tregs), suggesting that Tregs may play a pivotal role in the
immunosuppressive properties of DPSCs (Pierdomenico et al.,
2005; Demircan et al., 2011; Hong et al., 2017) (Figure 3).
Another study reported that DPSCs suppressed Th1 and Th2
subsets of CD4+ T cells while increasing the proliferation of Treg
and Th17 subsets (Ozdemir et al., 2016) (Figure 3A). In contrast,
our group reported that Tregs are not directly related to the
immunosuppressive properties of DPSCs. We reported that
T cells are activated to secrete IFN-γ, which primes DPSCs to
release TFG-β, thereby exhibiting immunosuppressive activity
(Kwack et al., 2017) (Figure 3B). There was also a report that the
Fas ligand expressed in DPSCs induces T-cell apoptosis through
the Fas apoptotic pathway, resulting in the immunosuppressive
property of DPSCs (Zhao et al., 2012). DPSCs participate in
immune responses by interacting with macrophages and natural
killer (NK) cells in addition to T cells. Transplanting DPSCs into
unilateral hindlimb skeletal muscle showed that DPSCs could
interact with macrophages to promote polarization toward the
anti-inflammatory M2 phenotype (Omi et al., 2016). NK cells are
considered important mediators in cell therapy because they
efficiently lyse transplanted autologous and allogeneic MSCs
(Spaggiari et al., 2006). However, DPSCs have been shown to
increase resistance to NK cell lysis by overexpressing hypoxia-
inducible factor 1 alpha (HIF-1α), thereby increasing the
potential in vivo lifespan of transplanted DPSCs (Martinez
et al., 2017).

DPSCs are known to modulate inflammatory factors, which
downregulate the production of pro-inflammatory factors such
as TNF-α, while upregulating the secretion of anti-
inflammatory factors such as TGF-β (Demircan et al., 2011).
Among them, TGF-β has been reported to be expressed in
DPSCs as an immunosuppressive regulator and anti-
inflammatory factor. It has been reported that DPSCs
promote nerve repair and regeneration by releasing TGF-β
in response to nerve damage and suppressing the acute
immune response (Luo et al., 2018). These findings suggest
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that DPSCs may be a suitable source for allogeneic
transplantation, as they not only exhibit
immunomodulatory properties by regulating immune cell
proliferation and cytokine production but are also involved
in regulating inflammation.

However, activating immune cells in vitro is an artificial
process and has a limitation in that it can hardly represent
complex immune responses that are actually generated in vivo.
The immunomodulatory properties of DPSCs are strongly
influenced by the surrounding microenvironment and are
generally not observed in steady-state quiescent DPSCs. MSCs
are primed by inflammatory cytokines such as TNF-α and IFN-γ,
which are released by activated immune cells. Primed MSCs, in
turn, greatly enhance their immunosuppressive potential.
Likewise, our group emphasized the importance of the
surrounding microenvironment by demonstrating that the
immunosuppressive effect disappeared when DPSCs were
incubated with IFN-γ antibody to neutralize IFN-γ (Kwack
et al., 2017). Further research is needed to understand the
exact mechanism of the immunosuppression of DPSCs that
occurs in vivo. However, according to a recent preclinical
study of allogeneic transplantation of DPSCs after pulpectomy
of canine incisors, the absence of side effects following
transplantation of allogeneic mismatched DPSCs suggests that
it exhibits immunosuppressive ability even in vivo (Iohara et al.,
2018). Moreover, a recent report that the immunomodulatory
effect of undifferentiated DPSCs is maintained during osteogenic
differentiation supports the strong immunomodulatory ability of
DPSCs (Hossein-Khannazer et al., 2019).

Cryopreservation
Although DPSCs have regenerative activity for clinical
applications, it is known that DPSCs isolated from the teeth of
elderly patients or patients with systemic diseases such as
systemic lupus erythematosus, rheumatoid arthritis, or diabetes
have reduced bioactivity (Zhang J. et al., 2015). In particular, in
elderly patients, not only does the pulp tissue shrink due to
physiological secondary dentinogenesis and pathological tertiary
dentinogenesis but also mineralization, such as pulpal stone,
limits the acquisition of DPSCs, thus limiting its use. In
addition, it is almost impossible to obtain and use the dental
pulp of uninfected young patients on an as-needed basis.
Therefore, cell banking is an essential technology for storing
DPSCs in clinically appropriate conditions with minimal cell or
tissue damage and applying them through immediate cell
expansion when clinically needed (Woods et al., 2009).
Cryopreservation is the process of maintaining cell viability by
freezing and storing them at extremely low temperatures where
biochemical reactions do not occur (Mullen and Critser, 2007).
However, since cells are easily exposed to stressful conditions
during cryopreservation, which leads to cryoinjury, research on
how to prevent damage has been in progress for a long time.
Cryoinjury can occur either through direct mechanical action due
to the formation of ice crystals or by secondary effects due to
changes in osmotic homeostasis (Pegg, 2015). To prevent such
damage, cryoprotectants are used, of which the most widely used
is dimethyl sulfoxide (DMSO), which penetrates through the cell
cytoplasmic membrane and prevents the formation of ice crystal
nuclei. However, because DMSO itself adversely affects cells

FIGURE 3 | Schematic diagram of the immunosuppressive potential of dental pulp stem cells (DPSCs). (A)DPSCs can inhibit the proliferation of natural killer (NK), T
helper 1 (Th1), and T helper 2 (Th2) cells and the secretion of pro-inflammatory factors such as TNF-α. In addition, DPSCs induce the proliferation of regulatory T cells
(Tregs)/T helper 17 (Th17) cells and differentiation toward macrophage M2 phenotype and secrete anti-inflammatory factors such as TGF-β. (B) Fas ligand expressed in
DPSCs induces T-cell apoptosis through Fas apoptotic pathway. IFN-γ secreted from hyper-activated T cells primes DPSCs to secrete TGF-β, resulting in
immunosuppressive ability.
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(causes cytotoxic effects), it is necessary to limit the concentration
used for cell preservation. In general, it is recognized that a
concentration of 10% or less is slightly toxic, and studies on the
concentration of DMSO suitable for preservation of DPSCs are
being conducted.

Importantly, for the application of DPSCs in regenerative
medicine, cryopreservation should not affect their stemness
features and multipotency. Several studies have shown that
DPSCs can be cryopreserved while retaining their stem cell
properties (Zhang et al., 2006; Gioventu et al., 2012). A recent
study showed that DPSCs did not impair viability, proliferation,
stemness, or differentiation capacity after cryopreservation at
−80°C for 1 year (Pilbauerova et al., 2021). Despite these
advantages, DPSCs can be cryopreserved only when an
appropriate number is obtained by isolating and culturing
DPSCs from pulp tissue after tooth extraction. This method
takes a long time for cryopreservation, resulting in excessive
labor and other costs, and there is even a risk of potential
contamination by microorganisms. Therefore, there are studies
moving from cell-level cryopreservation to tissue-level
cryopreservation. There was no significant change in cell
proliferation rates, cell growth morphology, and stem cell
characteristics when pulp tissue was stored in liquid nitrogen
for more than 1 year and then cultured (Han et al., 2017).
Another study reported that the time lapse for cellular
outgrowth was significantly reduced when 5% DMSO was
used for cryopreservation of pulp tissue compared to when
10% DMSO was used without affecting other conditions (Yan
et al., 2020). Therefore, it may be better to choose tissue
cryopreservation over cell cryopreservation in that it positively
affects the vitality of cells by reducing the time until
cryopreservation, reducing the possibility of contamination,
and reducing the direct toxic effects of DMSO on cells. Pulp
tissue has been used as a scaffold for dental pulp regeneration (Hu
et al., 2017; Song et al., 2017; Matoug-Elwerfelli et al., 2020;
Bakhtiar et al., 2021), and cryopreservation as a tissue can be a
good method for preserving the scaffold. In addition to these
characteristics, DPSCs themselves have immunosuppressive
properties (Kwack et al., 2017), and long-term
cryopreservation weakens their immunogenicity (Yokomise
et al., 1996), suggesting the possibility of allogeneic pulp tissue
transplantation.

Therapeutic Potential of Dental Pulp Stem
Cells Related to Neurovascular Properties
Owing to the angiogenic and neurogenic potential of DPSCs,
they are being studied for the treatment of various systemic
diseases. In a study showing the neurodifferentiation
properties of DPSCs, ectopic implantation of pulp tissue
into the anterior chamber of rats resulted in innervation
and upregulation of catecholaminergic nerve fiber density in
the iris (Nosrat et al., 2001). In the same study, implantation of
pulp tissue into hemisected spinal cords showed an increase in
the number of surviving motor neurons, indicating that this
effect is orchestrated by dental pulp-derived neurotrophic
factors that functioned by rescuing motoneurons. Dental

pulp-derived neurotrophic factors have been reported to
have neuroprotective effects in Parkinson’s disease by
protecting dopaminergic neurons from MPP+ or rotenone
toxicity in vitro (Nesti et al., 2011; Gnanasegaran et al.,
2017). Moreover, DPSCs have been shown to have
neurotrophic effects in Alzheimer’s disease and Parkinson’s
disease (Apel et al., 2009; Martens et al., 2013; Zhang X.-M.
et al., 2021). In particular, human dental pulp cells express a
neuronal phenotype and produce neurotrophic factors such as
NGF, GDNF, BDNF, and bone morphogenetic protein (BMP)-
2, suggesting that they may be potential candidates for cell-
based therapy.

The angiogenic potential of DPSCs has also been studied in
several disease models. Functional revascularization was
induced by transplantation of the CD31− CD146− SP of
DPSCs isolated from porcine pulp tissue into the mouse
hindlimb ischemia site (Iohara et al., 2008). The SP of
DPSCs not only induces angiogenesis but also promotes the
migration and differentiation of endogenous neural
progenitors, thereby improving ischemic brain injury after
middle cerebral artery occlusion (Sugiyama et al., 2011). In
addition, the angiogenic potential of DPSCs can be determined
from the study results that human DPSCs induce angiogenesis
and alleviate infarction in rats with acute myocardial infarction
(Gandia et al., 2008). The angiogenic potential of DPSCs was
also shown in a model of muscular dystrophy, where DPSCs
were engrafted into the host muscle, resulting in histological
improvement by enhancing angiogenesis (Pisciotta et al.,
2015). In dystrophic mouse models, human dental pulp
pluripotent-like stem cells were engrafted into skeletal
muscle and showed integration in muscle fibers and blood
vessels by secreting several growth factors involved in
angiogenesis (Martinez-Sarra et al., 2017).

THE CLASSICAL CONCEPT OF PULP
TISSUE ENGINEERING

Traditionally, infected dental pulp undergoes RCT in which all
dental pulp is removed, and the pulp space is filled with
artificial inorganic materials. However, teeth treated with
the RCT method lose their vitality and become brittle,
making them susceptible to postoperative fracture.
Therefore, maintaining the vitality of dental pulp is an
appropriate treatment to solve these problems. With the
development of tissue engineering technology and
regenerative medicine, efforts are being made to regenerate
pulp tissue to maintain the vitality of teeth.

The three classical elements traditionally required in
regenerative medicine are stem cells, scaffolds, and signaling
molecules (growth factors), and the same concept has been
used for dental pulp regeneration. Briefly, the concept is to
isolate and culture stem cells in vitro, load them onto
scaffolds, and apply them in vivo with signaling molecules that
can help stem cells to properly differentiate.

The scaffold primarily serves as a tool to support stem cells,
but it can also play a role in attracting cells or promoting
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differentiation into specific cells by additionally loading growth
factors or drugs (Brittberg et al., 1994). From a classical point of
view, scaffolds are important for structural support, allow them to
interact with their surrounding microenvironment, and can
influence the signal pathway required for regeneration. To
achieve this classical purpose, the scaffold must mechanically
maintain its integrity, thereby supporting the adhesion and
differentiation of stem cells to the implantation site.
Additionally, the scaffold must mimic the original extracellular
matrix of the tissue from which it is generated (Goldberg and
Smith, 2004; Du and Moradian-Oldak, 2006).

Various exogenous growth factors have been demonstrated
to enhance the migration, proliferation, and differentiation of
DPSCs in vitro. Factors with excellent potential to induce the
migration of DPSCs include bFGF (Suzuki et al., 2011;
Takeuchi et al., 2015), stromal-derived factor-1 (SDF-1)
(Suzuki et al., 2011; Yang et al., 2015) and granulocyte-
colony stimulating factor (G-CSF) (Takeuchi et al., 2015).

In addition, wnt3a (Hunter et al., 2015), G-CSF, and bFGF
have been reported to promote the proliferation of DPSCs.
Several factors are known to induce differentiation of DPSCs,
and in particular, BMP-2 has been reported to induce their
differentiation into odontoblasts (Oshima and Tsuji, 2014).
Moreover, although BMP-7 had no significant effect on the
recruitment of DPSCs, it induced mineralization of DPSCs
(Suzuki et al., 2011), and TGF-β stimulated mineralization by
differentiating DPSCs into odontoblast-like cells (Oshima and
Tsuji, 2014). G-CSF was also a factor inducing dentinogenesis
in DPSCs (Takeuchi et al., 2015); importantly, G-CSF is known
to induce the migration, differentiation, and mineralization of
DPSCs, as well as neurogenesis and angiogenesis, suggesting
that it is an essential factor for pulp regeneration (Takeuchi
et al., 2015). However, since the multiple actions of one factor
may interfere with the sophisticated differentiation regulation
for dental pulp regeneration, detailed mechanistic studies
should be conducted.

FIGURE 4 | Schematic diagram of current approaches for pulp tissue regeneration. (A)Classical endodontic treatment. (B)Pulp revascularization. (C)Cell-homing-
based regenerative endodontic treatment (RET). (D) Cell-transplantation-based RET.
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CURRENT APPROACHES FOR PULP
TISSUE REGENERATION

If decayed teeth progress without proper treatment, pulp necrosis
and abscesses accompanied by inflammatory pulp reactions
occur. To save the infected tooth, an RCT was performed in
which the entire infected pulp tissue was removed and
disinfected, and the empty space was filled with artificial
material (Figure 4A).

Pulp Revascularization
Pulp revascularization is a procedure that regenerates the infected
pulp tissue into pulp-like tissue by filling the root canal space with
a blood clot after disinfection (Figure 4B). Because this procedure
must induce a blood clot from the apical foramen, it can be used
on immature teeth where the apical foramen has not yet closed.
Attempts to regenerate pulp tissue by inducing blood clots into
the root canal were first made in the 1960s (Ostby, 1961). If
revascularization is successfully performed in immature teeth,
root development of immature teeth can be completed; therefore,
it has been actively studied in the field of traumatology (Skoglund
et al., 1978; Galler, 2016). Many studies have been conducted,
including the first case report on regenerative root canal
treatment, and this treatment was adopted by the American
Dental Association in 2011 and is now widely used in clinical
practice (Iwaya et al., 2001; Banchs and Trope, 2004). Although
pulp revascularization is similar to conventional root canal
treatment in that it removes infectious agents, there are some
differences in the basic concept. In RCT (or pulpectomy), to
prevent re-infection, an aggressive disinfection process is
performed, and artificial materials are filled in. In contrast, in
pulp revascularization, mechanical debridement using an
endodontic file is contraindicated to prevent damage to the
root canal wall and induce the influx of stem cells located on
the apical side to maintain the vitality of the tooth (Cvek, 1992;
Iwaya et al., 2001). For this reason, in pulp revascularization, the
use of intracanal medicaments along with the application of
sufficient chemical disinfection is recommended instead of
mechanical debridement. However, even if chemical
disinfection is performed to protect the root canal wall, it is
necessary to consider the balance between disinfection and
cytotoxicity in stem cells. Thorough disinfection is important
to prevent re-infection; however, an appropriate
microenvironment for stem cell adhesion and differentiation is
also needed for stem cell regeneration. Sodium hypochlorite, a
representative chemical disinfectant, is known to be cytotoxic at a
concentration of 3% or more and interferes with stem cell
adhesion (Chang et al., 2001; Ring et al., 2008; Martin et al.,
2014). Accordingly, the American Association of Endodontists
recommends the use of a low concentration of sodium
hypochlorite for pulp revascularization. Pulp revascularization
faithfully follows the classical concept of tissue engineering. By
inducing bleeding, MSCs from the apical side are delivered into
the root canal (Lovelace et al., 2011), and the blood clot acts as a
scaffold as well as a signaling molecule because of the presence of
many growth factors (Shah et al., 2008; Nosrat et al., 2012).
Reportedly, ethylenediaminetetraacetic acid (EDTA) can

promote the differentiation of DPSCs into odontoblast-like
cells by releasing various growth factors entrapped in dentin
(Galler et al., 2011). Therefore, EDTA is recommended as the
final irrigant. However, pulp revascularization has several
limitations. As mentioned earlier, this method can only be
used for immature teeth. Moreover, histological studies have
shown that most tissues formed through pulp
revascularization are not original pulp-like tissues but contain
tissues such as periodontal, cementum, and bone-like tissues
(Becerra et al., 2014). Therefore, further studies are needed to
promote the formation of pulp-like tissue and to apply this
method to mature teeth.

Cell-Homing-Based Regenerative
Endodontic Treatment
The basic concept of cell homing for dental regeneration is to
achieve tissue regeneration through chemotaxis of host
endogenous cells to damaged pulp tissue via signaling
molecules, just as our body does for damaged tissue repair
(Kim et al., 2010) (Figure 4C). Pulp revascularization and cell-
homing-based RET is considered cell-free RET, as it is performed
without exogenous cell transplantation. In pulp revascularization,
blood acts not only as a scaffold but also as a source for signaling
molecules, but cell homing can be applied to a scaffold that is
advantageous for stem cell migration and proliferation and can
load desired signaling molecules together. Because the cell-
homing strategy is to create a suitable environment for the
induction, differentiation, and proliferation of endogenous
stem cells capable of regenerating pulp-dentin, it is important
to identify endogenous cell sources from a therapeutic point of
view. Because stem cells (DPSCs) are present in the dental pulp,
the source of the cells depends on whether the vital pulp is
preserved in the root canal. Pulpotomy is a dental procedure that
removes the pulp of a tooth in the crown and leaves the pulp in
the root canal as intact vital pulp. It has been mainly used for the
normal development of the root by preserving pulp in immature
teeth; however, it can also be performed on mature teeth. If the
cell-homing strategy is used after pulpotomy, the DPSCs that
exist in the immediate vicinity are mainly homing and can
regenerate pulp dentin, an intrinsic ability under the influence
of signaling molecules (Shi et al., 2020). However, it is known that
in pulpectomy, which extirpates the entire pulp tissue, stem cells
from apical papilla, and periodontal ligament stem cells, which
are mainly located in the apical foramen, are homed (Liu J.-Y.
et al., 2015; He et al., 2017).

The pulp tissue regeneration experiment using the cell-
homing-based technique is mainly performed by transplanting
human teeth into animal models. Briefly, after RCT of human
extracted teeth, different types of signaling molecules are
combined on various scaffolds and applied to empty root
canals. The grafts are transplanted into animal models to
evaluate pulp regeneration. Early studies mainly focused on
signaling molecules. Pulp-like tissue has been reported to be
regenerated in a mouse model using a combination of bFGF,
PDGF (factors for cellular chemotaxis), NGF (for neural growth),
VEGF (for angiogenesis), and BMP7 (for odontoblast
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differentiation and mineralization) (Kim et al., 2010). Although
the study by Kim et al. (2010) used an ectopic model, it is
significant as a starting point for demonstrating a clinically
accessible cell-homing approach for pulp regeneration in
humans. Experiments were then conducted using a single
molecule to determine which signaling molecule is most
essential for pulp regeneration. Early research showed that
pulp-like tissue was regenerated by injecting bFGF alone,
suggesting that the signaling molecule that triggers stem cell
recruitment plays the most important role (Suzuki et al., 2011).
Another study found that there was no significant difference in
the pulp regeneration effect between bFGF and G-CSF
application and reported that bFGF could be replaced with
G-CSF (Takeuchi et al., 2015). As a result of these studies,
research was conducted mainly on signaling molecules that
can home stem cells to the empty pulp space, and factors such
as SDF-1 (Yang et al., 2015; Zhang L. X. et al., 2015) and stem cell
factor (SCF) (Ruangsawasdi et al., 2017) have also been reported
to be effective.

Cell-homing strategies have the advantage of not requiring
isolation or manipulation of stem cells in vitro, making them
more economical and may be easier to perform clinically.
However, the cell-homing strategy also has some limitations. If
the apical papilla or follicle is damaged due to severe
inflammation accompanied by pulpal necrosis, it may be
difficult to sustain the root development of immature teeth
because there are not enough stem cells to support
odontoblast differentiation or dentin formation. Likewise, even
when cell-homing-based RET is performed on mature teeth,
treatment may not be successful if there are not enough stem
cells, and the outcome of treatment cannot be predicted because it
is impossible to determine the status of stem cells in the apical
papilla or dental follicle. Therefore, numerous aspects still need to
be addressed to obtain applicable and predictable results in
clinical practice. Despite the great advances in dental pulp
regeneration through cell-homing-based RET over the past few
years, further investigation and development are needed.

Cell-Transplantation-Based Regenerative
Endodontic Treatment
The basic concept of cell-transplantation-based RET is the
transplantation of exogenous stem cells onto scaffolds with
signaling molecules for tissue regeneration (Demarco et al.,
2011) (Figure 4D). For RET, a cell transplantation strategy
based on the classical concept of tissue engineering was first
proposed for pulp tissue regeneration and has made remarkable
progress. Based on the classical concept of tissue engineering,
early experiments and continuous animal studies have been
conducted to investigate the effect of stem cell implantation
on pulp regeneration (Dissanayaka et al., 2015; Abbass et al.,
2020; Ahmed et al., 2020). In a preliminary study in which
autologous DPSCs were transplanted together with Gelfoam as
a scaffold for immature permanent incisors of canines, it was
found that pulp-like tissues, including dentin-like tissues and
blood vessels, were regenerated (Wang et al., 2013). Another
study reported that autologous DPSCs with platelet-rich fibrin

promoted the regeneration of pulp-dentin like tissue in dogs
(Chen et al., 2015). Further animal studies have shown that
human DPSCs, along with platelet-derived growth factor, have
successfully induced pulp-like tissue by applying them to the
empty pulp space of rats (Cai et al., 2016). A study in which a
chitosan hydrogel scaffold containing autologous DPSCs and
growth factors was applied to immature necrotic permanent
teeth with apical periodontitis in dogs confirmed that root
maturation was complete histologically and radiologically, as
well as regeneration of pulp and dentin-like tissues (El Ashiry
et al., 2018).

In cell-transplantation-based RET, various scaffolds have been
used to allow the applied stem cells to promote attachment,
proliferation, and differentiation. Gelfoam was used as a scaffold
for applying autologous DPSCs in dogs (Wang et al., 2013), and
an injectable nanopeptide hydrogel was also used to apply porcine
DPSCs (Mangione et al., 2017). In addition, it was reported that
the gelatin-based scaffold was histologically and radiologically
more effective than the fibrin-based scaffold when human DPSCs
were placed on gelatin- or fibrin-based scaffolds and transplanted
into minipigs (Jang et al., 2020). Furthermore, to use the tissue
most similar to the original tissue as a scaffold, decellularized
swine dental pulp tissue was used as a scaffold and applied to
human DPSCs, and the regeneration of pulp-like tissue was
confirmed histologically (Hu et al., 2017). In addition,
scaffold-free RET, which can replace the role of scaffolds by
constructing cells in three dimensions, is being studied. Pulp-like
tissue regeneration was achieved by transforming canine DPSCs
into cell sheet fragments and applying them along with the
signaling molecule platelet-rich fibrin (Chen et al., 2015). In
addition, it was confirmed that the pulp-like tissue was
regenerated by subcutaneously implanting human DPSCs into
three-dimensional (3D) cell constructs without signaling
molecules or scaffolds in immunodeficient mice (Itoh et al.,
2018). A recent study revealed that 3D cell sheets could
enhance the therapeutic potency of MSCs, suggesting the
possibility that cell sheets could replace scaffolds (Bou-
Ghannam et al., 2021).

In cell-transplantation-based RET, autologous stem cells have
been used inmany animal studies, and all clinical trials performed
using this method yielded successful results (Kim, 2021).
Therefore, the cell-transplantation-based RET method appears
to be the most appropriate for clinical applications. In addition,
because stem cells with suitable characteristics are directly applied
together to induce pulp-like tissue, the limitation of stem cell
induction, as in cell-homing-based RET, can be overcome.
However, a major obstacle to autologous stem cell
transplantation is the availability of pulp tissue. The ethically
best available methods for isolating DPSCs required for pulp
regeneration are wisdom teeth or orthodontic extraction teeth. It
is difficult to extract wisdom teeth or perform orthodontic
treatment to treat irreversible pulpitis. In addition, the
scaffolds and signaling molecules used in each study were
slightly different; therefore, more research on the best
combination is needed. Collectively, cell-transplantation-based
RET in dentistry for dentin pulp tissue regeneration still faces
challenges. Future strategies should be directed toward creating a
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suitable regenerative microenvironment using an ideal
combination of signaling molecules and scaffolds that are most
suitable for pulp tissue regeneration (Mangione et al., 2017).

ALLOGENEIC TRANSPLANTATION

Stem cell therapy has been proposed as an effective regenerative
technology to restore the function of teeth that have lost function
due to pulpitis. Several specific regeneration methods have been
introduced, and autologous transplantation of a subpopulation of
DPSCs (pulp-derived CD31− SP cells and pulp-derived CD105+

cells treated with SDF-1) have been successful in demonstrating
the possibility of pulp regeneration (Iohara et al., 2011; Ishizaka
et al., 2012). Subsequently, transplantation of DPSCs with
autologous platelet-rich fibrin successfully regenerated pulp-
like tissue and induced the deposition of regenerated dentin
(Chen et al., 2015). In a preclinical study, the safety and
efficacy of autologous DPSC transplantation therapy were

demonstrated by harvesting and culturing DPSCs under good
manufacturing practice conditions and applying them along with
G-CSF (Iohara et al., 2013). Moreover, a recent human clinical
study suggested that autologous DPSC transplantation is safe and
may effectively induce pulp regeneration (Nakashima et al.,
2017). Although autologous DPSC transplantation has
demonstrated some efficacy and potential for tissue
regeneration, certain limitations still need to be overcome, the
biggest limitation being the presence of unnecessary teeth, such as
wisdom teeth, to regenerate the pulp of a specific tooth with
autologous DPSC transplantation. This limitation is particularly
noticeable in elderly patients since there is a high probability that
elderly patients do not already possess unneeded teeth. Even if
elderly patients have usable teeth for transplantation, their DPSCs
may show dysfunction due to aging. A recent study reported that
DPSCs exhibit typical senescence features, such as reduced
proliferation, reduced differentiation potential, and enlarged
cell shape with aging (Yi et al., 2017). In addition, osteogenic
potential decreases in aged human DPSCs (Yi et al., 2017; Iezzi

FIGURE 5 | A proposed strategy using allogeneic DPSC transplantation for pulp regeneration. 1) Dental pulp tissue is removed from an uninfected orthodontic
extraction tooth or wisdom tooth (donor). 2) After isolating and culturing DPSCs from dental pulp, cryopreservation of DPSCs or dental pulp itself is performed. 3) DPSCs
are expanded using cryopreserved DPSCs or dental pulp tissues according to the patient’s treatment plan for pulpectomy. 4) Signaling molecules and DPSCs are added
to the appropriate scaffold and applied to the disinfected pulp space.
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et al., 2019), and the expression of dentin matrix acidic
phosphoprotein 1 and dentin sialophosphoprotein, key
markers of odontogenic differentiation, decreases with age
(Iezzi et al., 2019). Various studies have proven that
neurogenic potential, which is one of the essential factors for
pulp regeneration, also decreases with age (Martens et al., 2012;
Feng et al., 2013). However, it is not efficient for individual
patients to bank DPSCs at an early age and store them until
needed. Moreover, the storage, safety, and quality control costs
are high. Therefore, allogeneic DPSC transplantation, which is
stored whenever unwanted teeth are found in young patients and
applied to patients in need, saves time and cost, and is beneficial
for quality control (Collart-Dutilleul et al., 2015). Therefore, cell
banks are essential to overcome the limitations of autologous
transplantation and to successfully perform allogeneic
transplantation. Many studies have shown that DPSCs can be
cryopreserved without significant cell damage (Zhang et al., 2006;
Gioventu et al., 2012). In addition, tissue cryopreservation, which
is economically advantageous because it reduces the time and
money required to isolate and incubate cells, has been shown to
have no effect on cells (Han et al., 2017). Moreover, tissue
cryopreservation for more than 1 year is likely to significantly
reduce the cost of autologous cell-transplantation-based RET.
Notably, systematizing the collection, banking, and application of
pulp tissue are expected to reduce costs and simplify clinical
application procedures.

A concern with the use of allogeneic cells is that immune
rejection may occur in the host due to a MHC mismatch. The
reason that allogeneic MSCs can be applied despite these
concerns is that MSCs themselves have low immunogenicity
and immunosuppressive properties. The low immunogenicity
of MSCs is attributed to the low expression of class I MHC
(MHC-I) proteins and costimulatory molecules and lack of
expression of MHC-II proteins (Pittenger et al., 1999; Le Blanc
et al., 2003). Therefore, MSCs do not exhibit cytotoxic effects
on host immune cells (Jones and McTaggart, 2008) and have
the advantage of being able to perform transplantation without
considering MHC (Ankrum et al., 2014). MSCs and DPSCs
exhibit low immunogenicity and can induce immune tolerance
in the host (Iohara et al., 2018). Moreover, although the
mechanism is still controversial, the immunomodulatory
properties of DPSCs increase their potential as a source for
allogeneic transplantation. This immunosuppressive property
suggests that even if the host’s immune response occurs during
allogeneic transplantation by other factors, it can be overcome,
and transplantation can be successful. Based on these
characteristics of DPSCs, it was recently reported that the
transplantation of allogeneic DPSCs in dogs was successfully
performed (Iohara et al., 2018). In this study, allogeneic
transplantation DPSCs mismatched with dog leukocyte
antigen (DLA) did not show toxicity and showed similar
effects to DLA-matched DPSCs in pulp tissue regeneration.
Thus, allogeneic “off-the-self” therapies can achieve the goal of
clinical stem cell-based therapy to maintain long-term stability
by inducing universal cell donor adoption, banking donated
cells, and timely delivery of appropriate cells for patients in
need (Telukuntla et al., 2013; Heathman et al., 2015).

CONCLUSION

One of the challenges facing modern dentistry is not only to
remove the infected pulp but also to maintain the pulp so that
it can regain vitality (Miran et al., 2016; Yang et al., 2016). The
goal of pulp regenerative treatment for infected pulp is to
restore it functionally by reconstituting the pulp–dentin
complex (Mao et al., 2012; He et al., 2019), but it seems
difficult to achieve this goal with current clinical protocols
(Kim et al., 2018). With the development of regenerative
medicine using stem cells, cell-transplantation-based
regeneration protocols for pulp regeneration have been
steadily developed. The discovery and characterization of
dental MSCs, especially DPSCs, raise expectations for pulp
regeneration in RET in the future. Transplantation of DPSCs,
which induce neuroangiogenesis, has achieved complete pulp
regeneration in several studies (Murakami et al., 2015;
Nakashima et al., 2017), with the crucial achievement of
regeneration of neuroangiogenesis to achieve functional
restoration of dental pulp. Nevertheless, it should be noted
that current pulp regeneration is based only on autologous
DPSCs. Transplantation with allogeneic DPSCs or pulp tissue
from cryo-preserved cells or tissue banking clouds is an ideal
clinical approach for pulp regeneration against infected pulp,
especially in aged patients (Figure 5). Optimizing disinfection
procedures as well as the application of proper scaffolds and/or
factors for promoting neuroangiogenesis should also be key
factors for allogeneic transplantation-induced pulp
regeneration. Given the scientific evidence to date, cell-
transplantation-based RET for pulp regeneration has been
accepted as a promising treatment protocol. In addition, a
functional pulp regeneration strategy through
neurovascularization has the potential to become an
innovative model for regenerative medicine and not only for
dental pulp regeneration.
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