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Abstract: Among the key components of a smart grid, advanced metering infrastructure (AMI)
has become the preferred target for network intrusion due to its bidirectional communication and
Internet connection. Intrusion detection systems (IDSs) can monitor abnormal information in the AMI
network, so they are an important means by which to solve network intrusion. However, the existing
methods exhibit a poor ability to detect intrusions in AMI, because they cannot comprehensively
consider the temporal and global characteristics of intrusion information. To solve these problems,
an AMI intrusion detection model based on the cross-layer feature fusion of a convolutional neural
networks (CNN) and long short-term memory (LSTM) networks is proposed in the present work.
The model is composed of CNN and LSTM components connected in the form of a cross-layer; the
CNN component recognizes regional features to obtain global features, while the LSTM component
obtain periodic features by memory function. The two types of features are aggregated to obtain
comprehensive features with multi-domain characteristics, which can more accurately identify
intrusion information in AMI. Experiments based on the KDD Cup 99 and NSL-KDD datasets
demonstrate that the proposed cross-layer feature-fusion CNN-LSTM model is superior to other
existing methods.

Keywords: smart grid; advanced metering infrastructure (AMI); intrusion detection system (IDS);
convolutional neural networks (CNN); long short-term memory (LSTM)

1. Introduction

As the core component of the smart grid, advanced metering infrastructure (AMI)
has been strongly developed in recent years [1–3]. It uses a bidirectional communication
network to connect power companies and customers, collect user consumption data and
other information, and implement necessary control measures [4]. However, bidirectional
communication networks also provide new avenues for network intrusion; attackers can
more easily tamper with or intrude meters through these networks [5]. Tampering with
meter readings will cause major economic losses to power companies, and intrusion into
the meter will cause the loss of user privacy information, which will seriously affect
people’s lives.

In relevant studies, intrusion detection systems (IDSs) have developed as an important
means by which to protect the communication security of AMI, and can dynamically detect
any offending entity and trigger an alarm [6]. IDSs can be divided into misuse detection
and anomaly detection according to the detection technology [7]. Misuse detection mainly
identifies attacks by matching features or rules, but it cannot detect unknown attacks.
Anomaly detection is a behavior-based detection, which first defines the behavior of the
subject’s normal activities and then determines whether the actual behavior of the subject
deviates from the normal activities. Therefore, anomaly detection is more suitable for the
complex communication environment in AMI.
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With the application of artificial intelligence, anomaly detection methods based on
artificial intelligence have become a hotspot in IDS research. As an important branch of
artificial intelligence, traditional machine learning (ML) has been applied in AMI intrusion
detection due to its advantages including automatic feature extraction, independence from
prior knowledge, and easy design and construction [8–11]. However, intrusion detection
methods based on ML cannot process large amounts of nonlinear high-dimensional data,
so they are difficult to adapt to the increasingly complex and diversified attack environment
of AMI. Deep learning (DL) is a subclass of ML. It uses a deep neural network to express
features and perfectly solves the defects in ML, such as its low accuracy, inability to process
complex data, and poor classification effect, and has therefore been gradually applied in
AMI intrusion detection research [12–15].

Considering the periodic, high-traffic, and nonlinear characteristics of AMI communi-
cation, a new DL model for AMI intrusion detection is proposed in the present work. The
proposed model is composed of a combination of convolutional neural network (CNN)
and long short-term memory (LSTM) components via cross-layer feature-fusion. The CNN
component can extract global features, while the LSTM component can extract period-
ical features. After the two types of features are fused via a feature fusion component,
multi-scale and multi-domain abnormal information can be detected. This model com-
bines the advantages of both the CNN and LSTM, so it exhibits good performance in AMI
intrusion detection.

The main contributions of this paper are as follows:

1. A cross-layer feature-fusion CNN-LSTM intrusion detection model is proposed. Com-
pared with other models, the proposed model combines the characteristics of the
CNN and LSTM and can more effectively identify intrusion information in AMI;

2. The fusion feature is adopted to represent the multi-domain characteristics of the data.
This avoids the limitations of single features and achieves the complementation of
advantages among different features;

3. The proposed model was evaluated on the KDD Cup 99 and NSL-KDD datasets,
both of which are rich in samples and contain all possible types of attacks of AMI.
The Experimental results demonstrate that the proposed cross-layer feature-fusion
CNN-LSTM intrusion detection model exhibits better performance than traditional
intrusion detection models.

The remainder of this paper is arranged as follows. Section 2 summarizes the relevant
studies. Section 3 introduces the system components of the cross-layer feature-fusion
CNN-LSTM intrusion detection model. Section 4 describes the analysis and preprocessing
of the dataset. Finally, Section 5 presents the experimental process and results.

2. Related Work

The concept of intrusion detection has been widely implemented since it was first put
forward by Anderson [16]. Most initial intrusion detection methods in the field of AMI
intrusion detection used statistical techniques [17,18]. However, with the development of
artificial intelligence technology, increasingly more ML and DL methods have been applied.

2.1. AMI Intrusion Detection Based on Traditional Machine Learning

ML can be divided into supervised learning and unsupervised learning. Most ML
models are shallow-layer models with simple structures and strong generalization ability,
so they are widely used in AMI intrusion detection.

Jokar et al. [19] put forward a detection model of electricity theft based on consump-
tion patterns. This model applies ML classification and clustering technology, and was
combined with a transformer instrument to monitor customers with abnormal electricity
consumption. It was found to exhibit high accuracy and maintain strong robustness. Addi-
tionally, a real-time distributed intrusion detection system (DIDS) suitable for AMI was
proposed by Alseiari et al. [20]. This model uses unsupervised online small-batch k-means
clustering technology to monitor the data flow in AMI. Vijayanand et al. [21] used an IDS
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constructed with a multi-support vector machine (SVM) classifier to conduct the early
detection of threats in AMI. Each classifier detects only a specific attack, which solves the
problem of the weak multi-classification ability of SVMs. A power theft detection scheme
based on a decision tree (DT) and SVM was proposed by Jindal et al. [22]. The combined
DT-SVM classifier is capable of accurately detecting real-time power theft at all levels of
power transmission and distribution. Li et al. [23] proposed an AMI intrusion detection
model based on the online sequence extreme learning machine (OS-ELM). This model
can utilize online sequence training and achieves a faster detection speed while ensuring
accuracy. To address the “black hole attack” of AMI, Boumkheld et al. [24] proposed an
intrusion detection model based on a naive Bayesian network that can effectively solve this
challenge. Jokar et al. [25] proposed a Zigbee-based intrusion detection model for AMI. The
model uses an intrusion detection system based on Q-learning to protect the network from
attacks and learns the best strategy to deal with attacks by interacting with the environment.
A two-level network intrusion protection system for AMI was proposed by Almakrami
et al. [26]. In the phase of intrusion detection, the SVM is used as the detection algorithm
to find suspicious events in AMI. Khan et al. [27] proposed a hybrid intrusion detection
model, which balances the dataset with an improved K-nearest neighbor (KNN) algorithm.
The Bloom filter is then used to detect abnormal data within the AMI system.

However, ML methods generally exhibit disadvantages including easy overfitting,
poor performance on multi-classification tasks, and low accuracy. These disadvantages
limit the use of ML for intrusion detection in AMI.

2.2. AMI Intrusion Detection Based on Traditional Deep Learning

DL is composed of feature extraction components and deep neural networks. It can
directly learn features from a large amount of data, does not rely on feature engineering,
and has an excellent multi-classification ability. Therefore, DL is becoming a research
hotspot in the field of AMI intrusion detection.

In the research by He et al. [28], the conditional deep belief network (DBN) was
adopted to identify false injection attacks in a smart grid. This detection model requires
few external conditions and can achieve high accuracy. A wide and deep CNN model for
the detection of electricity theft was proposed by Zheng et al. [29]. The model consists of
a deep component and a wide component, which are, respectively, used to identify the
periodicity of electricity consumption and capture the global characteristics of electricity
consumption data. Ullah et al. [30] proposed a hybrid deep neural network (HDNN)
intrusion detection model by combining the CNN, the gated recursive unit (GRU), and
the particle swarm optimization (PSO) algorithm. The model uses the CNN for feature
selection and extraction, and GRU-PSO technology is used to classify the provided data.
The system can automatically perform the processes of feature extraction and classification.
In the research by Liu et al. [31], a CNN was used to identify an intrusion, and the accuracy
of the model was improved via data enhancement technology. Xiao et al. [32] adopted
an auto-encoder (AE) to reduce the dimension of the data to decrease the interference
of redundant features, and a CNN was adopted to identify the intrusion information.
In the research by Yang et al. [33], an improved CNN was adopted to identify intrusion
information. The CNN is improved to extract features across layers, and feature fusion
is used to obtain comprehensive features. Shen et al. [34] applied an extreme learning
machine (ELM) to intrusion detection, which was found to improve the detection speed
and generalization ability of the model. In the research by Zhang et al. [35], a smart
grid intrusion detection model that combines the genetic algorithm (GA) and ELM was
proposed. The model retains the advantages of the ELM, and the GA is introduced to
ensure the optimal parameters of the model. Staudemeyer et al. [36,37] introduced LSTM
into the field of intrusion detection, explored the correlation of the temporal domain of
intrusion information, and effectively reduced the rate of false positives. A bidirectional
GRU (BiGRU) was used in the research of Xu et al. [38] to detect abnormal data. Compared
with LSTM, the BiGRU is more efficient and exhibits higher accuracy and lower false-
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positive rates. Hasan et al. [39] combined a CNN and LSTM, and proposed a serial
CNN-LSTM electricity-stealing detection model to simultaneously consider the local and
periodic characteristics of electricity information. A hierarchical spatiotemporal features-
based intrusion detection system was proposed by Wang et al. [40]. It uses use CNN and
LSTM to simultaneously learn the low- and high-level spatiotemporal characteristics of
packet bytes to complete intrusion detection. Vinayakumar et al. [41] connected CNN and
LSTM and showed a serial CNN-LSTM intrusion detection system model to extract high
level feature representations that represents the abstract form of low level feature sets of
network traffic connections.

Compared with ML intrusion detection, single DL models have achieved significant
progress in accuracy improvement, multi-classification ability enhancement, and overfitting
reduction, but they still have disadvantages, such as single identification features, their
ease of falling into the local optimum, and their slow convergence speed. While serial
CNN-LSTM combines the advantages of different models, the input of the LSTM network is
processed by the CNN, which will lead to the loss of some periodic features; thus, the effect
is not ideal. To solve these problems, this paper proposes an intrusion detection model
based on the cross-layer feature fusion of CNN and LSTM components. The model utilizes
CNN and LSTM components to respectively extract global and periodic features, and
exhibits better intrusion detection performance. In addition, the depth of the cross-layer
feature-fusion CNN-LSTM neural network is shallower, which can effectively avoid the
problem of gradient disappearance during the backpropagation process.

3. System Components

In AMI, the characteristic distribution of normal electricity information is very reg-
ular [35] and has obvious periodicity [29], while abnormal electricity information does
not have these characteristics. Therefore, this paper proposes a cross-layer feature-fusion
CNN-LSTM intrusion detection model, the architecture of which is illustrated in Figure 1.
The model is mainly composed of data preprocessing, CNN, LSTM, and feature fusion
components. In the data preprocessing component, the input is numerically processed and
normalized to meet the requirements of the neural network. The CNN component consists
of convolutional layers, pooling layers, and fully connected (FC) layers, and its main
function is to extract local features and detect whether the feature distribution of electricity
consumption information is normal. The LSTM component is composed of several LSTM
cells, and it is mainly used to detect the periodicity of electricity information via its memory
function. The feature fusion component is composed of multi-layer perceptrons (MLPs),
which are mainly used to fuse the features extracted from the CNN and LSTM components
and to normalize the classification probability to obtain the final result.

3.1. Convolutional Neural Networks Component

The CNN is composed of five parts, namely an input layer, convolutional layer, pooling
layer, FC layer, and output layer [42]. Different CNNs have different layer configurations.
The structure of the CNN used in the present study is shown in Figure 2, and is composed
of an input layer, four convolutional layers, two pooling layers, and two FC layers.

The function of the convolutional layer is to extract features from the data. It contains
multiple layers of convolution kernels, each of which corresponds to a weight and a
deviation coefficient. When the convolution kernel i is in operation, the weight coefficient
is assumed to be wi, the deviation quantity is bi, and the input of convolutional layer i is
Xi−1. The convolution process can be expressed as:

Xi = f (wi ⊗ Xi−1 + bi), (1)

where Xi is the output result of convolution kernel i, ⊗ represents the convolution operation,
and f (x) represents the activation function.
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Figure 2. Convolutional neural networks architecture.

The convolution kernel regularly sweeps the input data to extract the characteristic
information. Additionally, ReLU is adopted as the activation function of the convolutional
layer. Compared with the sigmoid, tanh, and other activation functions, the derivation of
the ReLU activation function is easier, which can speed up model training and effectively
prevent gradient disappearance. ReLU can be expressed as:

ReLU(Xi) =

{
Xi (Xi > 0)
0 (Xi ≤ 0)

, (2)

The main function of the pooling layer is to realize invariance and reduce the com-
plexity of the CNN by eliminating redundant information via downsampling. There are
two main ways to complete pooling, namely average pooling and max pooling. Average
pooling means that the average value in the calculation area is taken as the pooling result
of the area, while max pooling means that the maximum value in the area is chosen as
the pooling result. Compared with average pooling, max pooling can retain more critical
information; therefore, the max pooling method is adopted in the present study. Max
pooling can be represented as:

Qj = Max(P0
j , P1

j , P2
j , P3

j . . . Pt
j ), (3)

where Qj represents the output result of the pooling region j, Max is the max pooling
operation, and Pt

j is the element t of the pooling region j.
FC layers act as “classifiers” in the entire CNN. Their main function is to weight

the features of the convolutional and pooling layers mapped to the hidden-layer space,
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and re-map them to the sample-marker space. In the FC layer, a corresponding dropout
operation is set up to randomly discard neurons to prevent the occurrence of over-fitting.

3.2. Long Short-Term Memory Networks Component

The recurrent neural network (RNN) is the most famous model for training temporal
data, but the traditional RNN is difficult to train due to gradient explosion or disappearance.
To solve these problems, LSTM uses units with a memory function to replace the hidden
units in the RNN [43]. LSTM has long-term memory due to its slow weight changes
over time, and can also activate short-term memory in a short-range form. The LSTM
structure used in the present study is shown in Figure 3. The core information of the LSTM
is transmitted along the horizontal line, and the LSTM forgets the old information and
learns the new information via the three gate structures of the forget gate, input gate, and
output gate.
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Figure 3. Long short-term memory architecture.

The forget gate determines how much information is forgotten. Its inputs are ht−1
and xt, and the gate outputs a number in the interval [0,1] to the current cell state Ct−1;
1 indicates “completely retained”, and 0 indicates “completely discarded”. The specific
expression of the forget gate can be expressed as follows:

ft = σ(Wf·[ht−1,xt] + bf), (4)

where ht–1 represents the output of the previous cell, xt is the input of the current cell, σ is
the sigmoid function, and Wf and bf are the weight and bias, respectively.

The input gate determines the update status of the information and consists of two
main steps:

(1) The sigmoid function is used to determine which contents need to be updated;
(2) The tanh function is used to generate alternative contents for updating.

Finally, the results of these two steps are combined to update the cell state. The ex-
pression forms of these two steps are, respectively, as follows:

it = σ(Wi·[ht−1,xt] + bi), (5)

∼
Ct = tanh(Wc·[ht−1, xt] + bc). (6)

When the cell state is updated from Ct−1 to Ct, the relevant information must first

be discarded and then combined with it ×
∼
C to generate a new cell state. The specific

expression is as follows:

Ct = ft × Ct−1 + it ×
∼
Ct, (7)

The output gate determines the final output, which is based on the current cell state,
and is also an input for the next cell state. It consists of two main steps:
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(1) The sigmoid function is used to determine what content will be output;
(2) The tanh function is used to propose the cell state and obtain the final output of the

output gate.

The specific expressions of the output gate are as follows:

ot = σ(Wo[ht−1,xt] + bo), (8)

ht = ot × tanh(Ct). (9)

3.3. Feature Fusion Component

The feature-fusion component used in this study is the MLP structure. As shown in
Figure 4, an MLP is usually composed of an input layer, output layer, and several hidden
layers. A full connection is adopted between adjacent layers, and a corresponding activation
function is set to realize nonlinearity. The features extracted by the CNN and LSTM
components are combined into comprehensive features with multi-domain characteristics
after flattening treatment and contact operation. The comprehensive features enter the
MLP through the input layer, and nonlinear mapping is performed in the hidden layer.
Finally, the output layer outputs the predicted classification results. After comparison with
the real results, the parameters of each layer are corrected via the back propagation of loss,
and model training is completed after several parameter corrections.
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3.4. Model Training

Model training primarily includes the two processes of forward propagation and back
propagation, which are completed by the following three steps.

(1) Data preprocessing and two-dimensional mapping. First, the input is numerically
processed and normalized to facilitate CNN and LSTM processing. The preprocessing
results meet the requirements of LSTM. However, the input form of the CNN in
this work is a two-dimensional structure, so the standardized data are processed
by two-dimensional mapping. Finally, the data are input into the CNN and LSTM
components. The specific process is described in detail in Section 4.

(2) Feature extraction and fusion. The features are, respectively, extracted by the CNN
and LSTM components, and the fusion of global and periodic features is completed by
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the feature fusion component. High-dimensional mapping is then completed in the
hidden layer of the MLP, and the softmax classifier is used to identify different intrusion
behaviors. The softmax classification model is the extension of the logistic regression
model in a multi-classification problem, and maps the output of multiple neurons to
the interval (0,1). The equation is given by Equation (10), where z represents the input
of the softmax layer and C represents the input dimension.

S(z)i =
ezi

∑C
j=1 ezj

, i = 1, . . . , C, (10)

(3) Backpropagation and parameter updating. After classification by softmax, the cross-
entropy loss function is first used to calculate the loss between the predicted and
actual values. The cross-entropy loss function is given as follows:

H(p, q) = −
n

∑
i=1

p(xi) log(q(xi)), (11)

where p(xi) and q(xi), respectively, represent the real and predicted distributions of
sample i, and H represents the final loss value. Back-propagation is then carried out
according to the loss value. The Adam optimizer is adopted for the back-propagation
process to update the weight and bias of each layer.

4. Dataset Selection and Preprocessing
4.1. Dataset Selection

AMI is composed of a wide area network (WAN), home area network (HAN), and
neighborhood area network (NAN), which are connected with household appliances,
smart electricity meters, concentrators, data processing centers, and other critical nodes.
Wired or wireless communication is adopted for bidirectional communication between the
equipment. From the perspective of the communication rate, the internal communication
method of the HAN is mainly low-speed and short-distance communication, and the
intelligent appliances in the HAN are connected to the Internet, and are therefore more
vulnerable to denial-of-service (DOS) and probe attacks. The NAN also adopts low-speed
and short-distance communication. Its internal collection of data is uploaded by the HAN,
and it is characterized by low computing and storage capabilities; therefore, it cannot
effectively defend against intrusions, so it is more vulnerable to user-to-root (U2R) attacks.
The WAN is mainly based on high-speed and long-distance communication, and the data it
transmits are sensitive and private. Once the WAN is attacked, the operation of the power
grid will be seriously affected, so it is more vulnerable to remote-to-local (R2L) attacks.

The KDD Cup 99 dataset is widely used in the IDS field [44]; it is rich in samples, and
includes 4,898,431 pieces of data. The NSL-KDD dataset is an improved version of the KDD
Cup 99 dataset in which redundant data were removed, making the distribution of the
dataset more balanced and reasonable [45,46]. Although some of the features in these two
datasets are character-based features that cannot be processed by the deep learning model,
and although some features differ too much or are not conducive to the final classification of
intrusion detection, numerical, normalized, and feature-screening processing can alleviate
these problems. In addition, these two datasets include the four categories of DOS, probe,
U2R, and R2L attacks and 39 attack subclasses, covering all possible attack types of the
AMI, and the data distribution has corresponding periodic characteristics. Considering the
comparability of experiments, 10% of the training data was selected from the KDD Cup 99
and NSL-KDD datasets as AMI intrusion detection datasets, and the training set and test
set were divided according to the 10-fold cross-validation method. The distribution results
are shown in Tables 1 and 2.
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Table 1. Distribution of KDD Cup 99.

Type of Label
10%KDD Cup 99 Training Set Test Set

Quantity Ratio (%) Quantity Ratio (%) Quantity Ratio (%)

Normal 97,277 19.69 87,467 19.67 9813 19.86
Dos 391,458 79.24 352,405 79.26 39,053 79.06

Probing 4107 0.83 3685 0.83 422 0.85
R2L 1126 0.23 1018 0.23 108 0.22
U2R 52 0.01 45 0.01 7 0.01
Total 494,020 100 444,617 100 49,403 100

Table 2. Distribution of NSL-KDD.

Type of Label
NSL-KDD Training Set Test Set

Quantity Ratio (%) Quantity Ratio (%) Quantity Ratio (%)

Normal 67,343 53.46 60,659 53.50 6684 53.05
Dos 45,927 36.46 41,323 36.45 4604 36.55

Probing 11,656 9.25 10,461 9.23 1195 9.49
R2L 995 0.79 884 0.78 111 0.88
U2R 52 0.04 48 0.04 4 0.03
Total 125,973 100 113,375 100 12,598 100

4.2. Dataset Preprocessing

Each piece of data in these datasets contains 42 features, 38 of which are numerical
features, three of which are symbolic features, and one of which is a label. However, the
CNN and LSTM are unable to process symbolic features, and the CNN in this paper is a
two-dimensional structure; therefore, the data in the dataset must first be preprocessed,
mainly via numerical, one-hot, normalization, and dimension reduction processing.

4.2.1. Numerical and One-Hot Processing

During data preprocessing, the function of numerical and one-hot processing is to
transform the symbolic features into numerical eigenvectors. The main features that
require numerical and one-hot processing are the protocol_type, service, and flag features in
these datasets. Protocol_type has three attributes, namely the transmission control protocol
(TCP), user datagram protocol (UDP), and Internet control message protocol (ICMP). After
numerical and one-hot processing, they can respectively be represented by the 1 × 3
dimensions vectors (0,0,1), (0,1,0), and (1,0,0). Similarly, service and flag contain 70 and
11 attributes, respectively, which can respectively be represented by 1 × 70 dimension and
1 × 11 dimensions vectors.

After numerical and one-hot processing, these three symbolic features are mapped
to 1 × 84 dimensions numerical features, which are combined with the original 1 × 38
dimensions numerical features to ultimately obtain 1 × 122 dimensions numerical features.

In addition, the labels of the symbol type must also be numerically processed. There
are five types of labels in these datasets, which respectively represent one type of normal
behavior (Normal) and four types of attacks (DOS, Probing, R2L, and U2R). The label
numerical processing results are presented in Table 3.

Table 3. Label numerical results.

Type of Label Numerical Result

Normal 0
Dos 1

Probing 2
R2L 3
U2R 4



Sensors 2021, 21, 626 10 of 17

4.2.2. Normalization

After numerical and one-hot processing, the high numerical characteristics will be
amplified if the original value is used directly. To eliminate the influence of excessively
large feature differences, the features in the datasets must be normalized and mapped
uniformly in the interval [0,1]. The specific normalization equation can be expressed
as follows:

x =
X − MIN

MAX − MIN
, (12)

where X is the original eigenvalue, MIN represents the minimum value of the feature, MAX
represents the maximum value of the feature, and x is the normalized result.

4.2.3. Dimension Reduction

The data input into the CNN have a two-dimensional structure, while the numerical
results have 1 × 122 dimensions, which is a one-dimensional structure. Daweri et al. [47]
pointed out that a portion of the features in the KDDCup 99 dataset are redundant, which is
not conducive to the realization of classification. Therefore, the discrete cuttlefish algorithm
(D-CFA) is used to carry out feature screening to retain the most effective 1 × 100 dimension
features. After that, the reserved features are mapped into a 10 × 10 matrix to adapt to
CNN processing.

5. Experiments and Results
5.1. Experimental Environment and Hyper-Parameter Setting

In this research, the training and testing of the model were completed in the Win-
dows operating system, and TensorFlow in the Python DL library was used to realize the
programming of the proposed cross-layer feature fusion CNN-LSTM intrusion detection
model. The specific hardware and software configurations are reported in Table 4.

Table 4. Software and hardware configuration.

Project Environment/Version

Operating System Windows 10
CPU i7-10700

Memory 32 G
GPU GTX 2070 Super

Development Environment Spyder3.0 (Python3.6)

Regarding the parameter settings, the learning rate was set as 0.007, and the dropout
rate was set as 50%, i.e., half of the neurons were randomly discarded. Additionally, the
number of experimental epochs was 100. All the hyper-parameter settings are presented in
Table 5.

Table 5. Setting of hyper-parameter.

Hyper-Parameter Filter/Neurons

Conv + ReLU 8/16
LSTM hidden nodes 80

LSTM activation function ReLU
Dense (Conv/LSTM) 128

Dense 256
Softmax 5

Cost function Cross entropy
Batch size 128

Epoch 100
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5.2. Evaluation Metrics

In the intrusion detection process, metrics such as the accuracy (ACC), precision
(P), detection rate (DR), F-measure (F), and false-positive rate (FPR) are usually used to
evaluate the effect of the model [48]. ACC refers to the ratio of the number of correctly
classified samples to the total number of samples. When the dataset is balanced, ACC is an
appropriate indicator. Because the dataset used in this research is unbalanced, ACC is used
as an auxiliary index to evaluate the performance, and its specific calculation is as follows:

ACC =
TP + TN

TP + FP + TN + FN
, (13)

In the Equation (13), TP (true positive) represents the number of correctly identi-
fied abnormal samples, FP (false positive) represents the number of incorrectly identified
abnormal samples, TN (true negative) represents the number of correctly identified nor-
mal samples, and FN (false negative) represents the number of incorrectly identified
normal samples.

P is defined as the ratio between the number of correctly identified abnormal samples
and the true number of abnormal samples. It represents the confidence of attack detection,
and its specific calculation is expressed as follows:

P =
TP

TP + FP
, (14)

DR is defined as the ratio between the number of correctly identified abnormal samples
and the predicted number of abnormal samples. The DR reflects the ability of the model to
identify attacks, which is an important indicator in IDSs. Its specific calculation is expressed
as follows:

DR =
TP

TP + FN
, (15)

F is defined as the average harmonic value of P and DR, and its specific calculation is
expressed as follows:

F =
2∗P ∗ DR
P + DR

, (16)

FPR is defined as the ratio of the number of misidentified abnormal samples to the
predicted number of normal samples. Its equation is given as follows:

FPR =
FP

TN + FP
, (17)

To comprehensively evaluate a model, multiple metrics are often used simultaneously
in intrusion detection research. In this work, ACC, P, F, DR, and FPR were selected to
evaluate the performance of the proposed cross-layer feature fusion CNN-LSTM intrusion
detection model in multiple experiments.

5.3. Experimental Design and Results

To evaluate the performance of the model, the following three groups of experiments
were conducted on the KDD Cup 99 and NSL-KDD datasets.

Experiment 1: The datasets were used to train the cross-layer feature fusion CNN-
LSTM intrusion detection model, its convergence ability and classification ability of dif-
ferent attack types (DOS, probe, R2L, U2R) were tested, and its ACC, DR, and FPR values
were calculated.

Figure 5 presents the relationship between the training loss and the number of epochs
of the proposed cross-layer feature fusion CNN-LSTM model. It can be seen from the figure
that with the increase of the number of epochs, the training loss gradually decreased and
became stable in the 10th epoch. This demonstrates that the structural design and hyper-
parameter settings of the model are reasonable, and that it exhibited good convergence
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ability. The trained model was tested, and the obtained confusion matrices are shown in
Figure 6a,b.
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Figure 6. Confusion matrix on KDD Cup 99 and NSL-KDD.

The evaluation parameters of the four types of attacks obtained from the confusion
matrices are shown in Figure 7a,b. On the KDD Cup 99 and NSL-KDD datasets, the ACC
values of the model were, respectively, 99.95% and 99.79%, and the P values of the DOS and
probe attacks were also greater than 99%. However, the detection capabilities of the model
for U2R were 71.43% and 50%, respectively, mainly because the number of training samples
of U2R was limited, accounting for only 0.01% and 0.04% of the entire datasets, respectively.

To verify the experimental results, a five-fold cross-validation experiment was also
carried out for the proposed model, and the experimental confusion matrixes are shown in
Figure 8. The P, DR, and FPR values of the five communication types in these two datasets
were obtained from the confusion matrixes, as shown in Figure 9a,b. In the five-fold cross-
validation experiment, the P values of the proposed model for the three communication
types of Normal, DOS, and Probing were greater than 99%, which is consistent with the
previous experimental results.

The results of Experiment 1 demonstrate that the proposed cross-layer feature fusion
CNN-LSTM intrusion detection model exhibited good performance in terms of P, DR, and
FPR for different types of attacks.

Experiment 2: The cross-layer feature fusion CNN-LSTM, CNN, LSTM, NLP, and
serial CNN-LSTM models were, respectively, trained and tested, the DR and F measures
of these five models were determined, and the performance improvement effect of the
proposed model was compared.
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Figure 7. The evaluation parameters of cross-layer feature fusion CNN-LSTM.
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Figure 8. Confusion matrixes on the KDD Cup 99 and NSL-KDD datasets in the five-fold cross-validation experiment.
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In Experiment 2, the DR and F measure were selected to evaluate the performance
improvement of the proposed cross-layer feature fusion CNN-LSTM model. The two
datasets were used to train and test the CNN, LSTM, MLP, and serial CNN-LSTM mod-
els, respectively, and the test results were compared with those of the proposed model.
Figures 10–13, respectively, present the DR and F measure of the different models on the
two datasets. Taking the KDD Cup 99 dataset as an example, compared with the best
performance of the serial CNN-LSTM, the detection performances of the proposed model
for the four types of attacks were improved, especially for the detection of U2R; the DR
value of the proposed model was increased from 37.50% to 71.43%, and the F measure was
increased from 50% to 76.92%.
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The results of Experiment 2 demonstrate that the cross-layer feature fusion resulted
in obvious improvements compared to the single models and serial CNN-LSTM, and
effectively avoided the limitation of extracting features from a single model and the feature
loss of serial CNN-LSTM. This result was also proven on different datasets.

Experiment 3: The proposed model was compared with methods proposed in previous
studies. The comparison results are shown in Table 6. Compared with the previous
methods, the performance of the proposed cross-layer-aggregated CNN-LSTM intrusion
detection model was improved in terms of ACC, DR, and FPR. However, these results are
not absolute, as the randomness of the training set and test set selection may have led to
different final results. Nevertheless, it is believed that the proposed model is better than
existing models proposed in previous studies.

Table 6. Performance comparison.

Systems
KDD Cup 99 NSL-KDD

Accuracy (%) DR (%) FPR (%) Accuracy (%) DR (%) FPR (%)

AE-CNN [32] 93.99 77.94 6.82 / / /
LSTM [36] 94.11 77.07 0.18 / / /

LSTM-RNN [37] 96.93 98.88 10.04 / / /
GA-ELM [35] 98.90 99.16 1.36 / / /

CNN-LSTM [41] 99.70 99.60 / / / /
ELM [34] 98.94 98.37 0.72 97.58 97.69 2.22

ICNN [33] / / / 95.36 96.99 0.76
CNN [31] / / / 97.07 97.14 0.87

Proposed 99.95 99.91 0.03 99.79 99.92 0.34

6. Conclusions

In this paper, an intrusion detection model based on cross-layer feature-fusion CNN-
LSTM was proposed for the detection of intrusions in AMI. The model is composed
of CNN and LSTM components, which can respectively detect the local and periodic
characteristics of electricity data. The KDD Cup 99 and NSL-KDD datasets were used to
train and test the model. The experimental results demonstrated that the performance of
the proposed model was superior to those of a single DL component and models proposed
in previous studies, and can therefore guarantee AMI communication security. Future
research should mainly focus on the following aspects. (1) Due to the limited number
of samples in the datasets, the detection effect of the U2R attack was not ideal; thus,
research on small-sample intrusion detection should be considered. (2) There remains
a certain difference between experimental datasets and real AMI communication data,
so a real AMI communication dataset should be constructed, and the model should be
improved according to the experimental results to better meet the requirements of AMI
intrusion detection.
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