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A B S T R A C T   

Comorbidities in COVID-19 patients often lead to more severe outcomes. The disease-specific molecular events, 
which may induce susceptibility to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection, 
are being investigated. To assess this, we retrieved array-based gene expression datasets from patients of 30 
frequently occurring acute, chronic, or infectious diseases. Comparative analyses of the datasets were performed 
after quantile normalization and log2 transformation. Among the 78 host genes prominently implicated in 
COVID-19 infection, ACE2 (receptor for SARS-CoV-2) was positively regulated in several cases, namely, leuke-
mia, psoriasis, lung cancer, non-alcoholic fatty liver disease (NAFLD), breast cancer, and pulmonary arterial 
hypertension (PAH). FURIN was positively regulated in some cases, such as leukemia, psoriasis, NAFLD, lung 
cancer, and type II diabetes (T2D), while TMPRSS2 was positively regulated in only 3 cases, namely, leukemia, 
lung cancer, and T2D. Genes encoding various interferons, cytokines, chemokines, and mediators of JAK-STAT 
pathway were positively regulated in leukemia, NAFLD, and T2D cases. Among the 161 genes that are positively 
regulated in the lungs of COVID-19 patients, 99–111 genes in leukemia (including various studied subtypes), 77 
genes in NAFLD, and 48 genes in psoriasis were also positively regulated. Because of the high similarity in gene 
expression patterns, the patients of leukemia, NAFLD, T2D, psoriasis, and PAH may need additional preventive 
care against acquiring SARS-CoV-2 infections. Further, two genes CARBONIC ANHYDRASE 11 (CA11) and 
CLUSTERIN (CLU) were positively regulated in the lungs of patients infected with either SARS-CoV-2, or SARS- 
CoV or Middle East Respiratory Syndrome Coronavirus (MERS-CoV).   

1. Introduction 

Coronavirus disease (COVID-19) caused by Severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) is the most dreaded pandemic of 
recent times. As per the global data released on December 25, 2020, by 
COVID-19 dashboard of the World health organization, SARS-CoV-2 has 
infected 77,920,564 people of which 1,731,901 people have died. A 
significant proportion of the COVID-19 patients have been reported to 
suffer from other pathophysiological conditions as well. For instance, in 
a cohort of 1590 COVID-19 patients from China, Guan et al. (2020) 
reported that 399 patients (25.1%) were having at least one comorbid-
ity, while 130 patients (8.2%) had two or more comorbidities [1]. They 
reported that hypertension, diabetes, cardiovascular diseases, and 

chronic kidney diseases were among the most frequent comorbidities, 
which occurred in 16.9%, 8.2%, 3.7%, and 1.3% of all COVID-19 pa-
tients, respectively. Also, COPD and malignancy were identified as 
critical risk factors associated with severe COVID-19 conditions. 
Another study by Chen et al. (2020) reported that in a cohort of 99 
COVID-19 patients in China, 50 patients (51%) suffered from chronic 
medical illnesses [2]. The reported comorbid diseases were cardiovas-
cular or cerebrovascular diseases (40.4%), diabetes (12%), digestive 
system disease (11%), and malignant tumor (0.01%) that were identi-
fied in 40, 12, 11, and 1 patient, respectively. Similarly, others have also 
reported cancer of lungs [3] and of blood [4], NAFLD [5], and HIV in-
fections (Human Immunodeficiency Virus) [6], as frequently occurring 
comorbidities that often worsen the outcome and increase the risk of 
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mortality in COVID-19 patients. 
Similarly Dolan et al. (2020) have reported comorbidities in severe 

forms of COVID-19 [7]. These included cardiovascular diseases, dia-
betes, hepatitis, lung disease, and kidney disease in addition to the 
previously mentioned comorbidities. However, the molecular mecha-
nisms underlying COVID-19 associated comorbidities are poorly un-
derstood and are still being investigated. The aim of this study was to 
decipher such diseases and their associated gene expression patterns 
that may induce susceptibility to SARS-CoV-2 infection. We performed a 
meta-analysis with gene expression datasets in 30 widely prevalent 
acute, chronic, and infectious diseases to identify the gene expression 
signatures that could promote the pathogenesis of SARS-CoV-2. We 
found that the gene expression pattern in leukemia patients was most 
similar to SARS-CoV-2 cases, followed by the patients of chronic dis-
eases, namely, non-alcoholic fatty liver disease (NAFLD), psoriasis, type 
II diabetes (T2D), and pulmonary arterial hypertension (PAH). Our 
study could serve as a guide for understanding the gene expression 
signatures underlying COVID-19 associated comorbidities. 

2. Dataset, methods, and techniques 

2.1. Data retrieval 

Publicly available datasets of human acute, chronic, infectious dis-
eases, and various types of cancer were retrieved from NCBI’s GEO 
database [8]. We favored the expression profile GSEids with highest 
number of samples while focussing on the tissue of origin, and devoid of 
any treatments or other afflictions. We retrieved datasets of patients and 
controls for the following conditions: Asthma (GSE64913), Chronic 
Obstructive Pulmonary Disorder (COPD, GSE112811), Cardiovascular 
diseases (GSE109048), Hypertension (GSE113439), NAFLD (GSE49541, 
GSE107037), Atherosclerosis (Athero, GSE28829), T2D (GSE15653, 
GSE25462, GSE38642, GSE27949), Polycystic Ovary Syndrome (PCOS, 
GSE124226), Multiple Sclerosis (MS, GSE21942), Psoriasis (GSE78097), 
Blood Cancer or Leukemia (GSE51082, GSE9476), Breast Cancer 
(GSE65194), Cervical Cancer (GSE63514), Multiple Myeloma (MM, 
GSE85837), Lung Cancer (GSE136043), Lung adenocarcinoma or 
Non-small cell lung cancer (NSCLC, GSE118370), Liver Cancer 
(GSE88839), Pancreatic Ductal Adenocarcinoma (PDAC, GSE101448), 
AIDS (GSE73968), Tuberculosis (TB, GSE139825), Malaria 
(GSE119150), Acute Kidney Injury (AKI, GSE30718), and COVID-19 
(GSE150316). In order to identify the common differentially expressed 
genes in different viral infections, we analyzed the datasets from the 
patients infected with either SARS-CoV (GSE1739), SARS-CoV-2 
(GSE150316), MERS-CoV (GSE100496), H1N1 (GSE21802), or other 
influenza viruses (GSE22319; H7N1, H5N1, H3N2, H5N2). Further-
more, we studied six subtypes of leukemia that were retrieved from the 
GSE51082 and GSE9476 datasets, namely Acute myeloid leukemia 
(AML), B-cell chronic lymphocytic leukemia (BCLL), Chronic myeloge-
nous leukemia (CML), Myelodysplastic syndrome (MDS), B-acute 
lymphoblastic leukemia (BALL), and T-cell acute lymphoblastic leuke-
mia (TALL). The dataset on cardiovascular diseases included an equal 
number of patients suffering from coronary artery disease (CAD) and 
acute myocardial infarction (AMI), and the dataset of breast cancer 
included both breast cancer and triple-negative breast cancer tissues 
(TNBC) samples. Of the 29 samples in the GSE28829 dataset of 
atherosclerosis (Athero), 16 samples were from advanced atheroscle-
rotic plaque (ATHERO-Adv), and 13 samples were from early athero-
sclerotic plaque (ATHERO-Early) regions. In the cases of leukemia and 
NAFLD, we obtained expression profiles of diseased and control samples 
from separate GSEids. Therefore, we used a data-integration strategy as 
previously explained by Hamid et al. (2009) for data analysis in leuke-
mia and NAFLD cases [9,10]. The platform of microarray experiment, 
type of tissue sample, sample size, experimental design, and data pro-
cessing strategy, are summarized in Table 1. 

2.2. Data normalization 

The datasets used in this study were all quantile normalized, and 
log2 transformed in R [11]. Briefly, raw expression values were quantile 
normalized using the normalize Quantiles function of LIMMA package in 
R, irrespective of their normalization status to maintain uniformity [12]. 
Subsequently, the average expression value of all probes for each gene in 
all the disease and control samples was obtained using collapse Rows 
function of WGCNA R package [13]. The normalized values were sub-
sequently log2-transformed, provided the dataset was not already 
log2-transformed. 

2.3. Data analysis 

Principal Component Analysis (PCA) is a dimensionality reduction 
technique that identifies patterns in data, and highlights their similar-
ities and differences. Elucidation of the principal components is based on 
identifying the variables most strongly correlated with each component. 
We used ‘prcomp’ function in R base package for PCA to analyze the 
segregation of datasets based on linear correlation and variance in gene 
expression values of 10,296 genes for all subjects in each disease [14]. 
The ‘ggbiplot’ function of ggplot2 package in R was used for graphical 
representation of PCA results [15]. 

Literature mining was carried out to identify 78 genes, which in-
cludes those encoding receptors, proteases, and others that are impli-
cated in the replication and pathogenesis of one or other human 
infecting coronaviruses including SARS-CoV-2. The fold change values 
in the expression of these genes were computed and used to generate a 
clustered heatmap using pheatmap R package [16]. In addition, another 
heatmap was prepared using the gene expression values of 182 differ-
entially expressed genes (at fold change > 2 or < 0.5 and p < 0.05) in 
COVID-19 patients compared to healthy controls. We used student’s 
t-test (p < 0.05 as the level of significance) to analyze the gene 
expression data from SARS-CoV-2 infected human lung tissue. Addi-
tionally, the p-adjusted values (FDR<0.05) were used for identifying the 
highly significant dysregulated pathways in different disease cases. The 
data has been plotted as mean ± standard error from mean, and each dot 
represents individual reading. The graphical representation of gene 
expression values was obtained using GraphPad Prism (version 8.0.0) 
software. The overall methodology of this study is shown in Fig. 1 
(Created with BioRender.com). 

2.4. Co-expression analysis 

Co-expression analysis describes the correlation pattern in gene 
expression across different samples and it is frequently used for identi-
fying the clusters (or modules) of highly correlated genes. We have used 
the weighted gene correlation network analysis (WGCNA) technique 
using WGCNA R package for identifying the highly correlated modules 
[13]. For co-expression analyses of individual disease cases, we have 
used the quantile normalized log2 values of gene expression in disease 
samples. For co-expression analysis of multiple diseases, we have used 
log2(FC) values. To ensure a scale-free topology of the network, 
soft-threshold power (ranged between 6 and 10) was chosen as per the 
Power Estimate value provided by pickSoft Threshold function in 
WGCNA R package. The pathway analysis for the genes in the identified 
modules were performed using DAVID [17]. The networks were drawn 
using Cytoscape 3.8 [18]. 
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Table 1 
Details of Expression Datasets taken from GEO for the study.  

Disease 
Type 

Disease/Condition GSE ID Platform Tissue Experimental Design Data Processing 

Chronic Asthma GSE64913 GPL570 [HG- 
U133_Plus_2] 
Affymetrix 

Epithelial brushings 
from central and 
peripheral airways 

42 healthy volunteer, 28 
asthmatic patients 

Preprocessed: Normalization and 
log2 transformation by GCRMA 
method 

Chronic Obstructive 
Pulmonary Disorder 

GSE112811 GPL570 [HG- 
U133_Plus_2] 
Affymetrix 

Blood 20 COPD patients, 22 healthy 
volunteers before 
administration of LPS or saline 

Preprocessed: Normalization and 
log2 transformation by RMA 

Cardiovascular GSE109048 GPL17586 [HTA- 
2_0] Affymetrix 

Blood platelets 19 Healthy donors, 19 CAD 
patients, 19 AMI patients 

Preprocessed: SST-RMA 
normalization and log2 
transformation 

Hypertension GSE113439 GPL6244 [HuGene- 
1_0-st] Affymetrix 

Lung 15 patients with Pulmonary 
Arterial Hypertension and 11 
normal controls 

Preprocessed: Normalization and 
log2 transformation by RMA 

Non-Alcoholic Fatty 
Liver Disease 

GSE49541 GPL570 [HG- 
U133_Plus_2] 
Affymetrix 

Liver 72 patients with NAFLD Preprocessed: Normalization and 
log2 transformation by GCRMA 
method 

GSE107037 GPL570 [HG- 
U133_Plus_2] 
Affymetrix 

Liver 33 healthy liver donors Preprocessed: Normalization and 
log2 transformation by RMA 

Atherosclerosis GSE28829 GPL570 [HG- 
U133_Plus_2] 
Affymetrix 

Carotid artery Samples from atherosclerotic 
carotid artery segments of 29 
patients 

Preprocessed: Normalization and 
log2 transformation by RMA 

Type 2 Diabetes GSE15653 GPL96 [HG- 
U133A] Affymetrix 

Liver 4 type 2 diabetes and 5 control 
subjects 

Preprocessed: MAS5.0 signal 
intensity. 

GSE25462 GPL570 [HG- 
U133_Plus_2] 
Affymetrix 

Muscle 10 subjects with type 2 diabetes 
and 15 healthy subjects 

Preprocessed: MAS5.0 signal 
intensity. 

GSE38642 GPL6244 [HuGene- 
1_0 -st] Affymetrix 

Pancreas 54 non-diabetic and 9 diabetic 
cadavers 

Preprocessed: Normalization and 
log2 transformation by RMA 

GSE27949 GPL570 [HG- 
U133_Plus_2] 
Affymetrix 

Adipose 12 Normal and 11 T2D subjects Preprocessed: Normalization and 
log2 transformation by RMA 

Polycystic Ovary 
Syndrome 

GSE124226 GPL570 [HG- 
U133_Plus_2] 
Affymetrix 

Adipose 4 PCOS women and 4 control 
subjects 

Preprocessed: Normalization and 
log2 transformation by RMA 

Multiple Sclerosis GSE21942 GPL570 [HG- 
U133_Plus_2] 
Affymetrix 

PBMCs 12 MS patients and 15 controls Preprocessed: Normalization 
GCRMA method 

Psoriasis GSE78097 GPL570 [HG- 
U133_Plus_2] 
Affymetrix 

Skin 6 normal skin tissues and 27 
psoriatic skin lesions 

Preprocessed: Normalization 
GCRMA method 

Cancer Blood Cancer 
(Leukemia) 

GSE51082 GPL96 [HG- 
U133A] Affymetrix 

Bone Marrow 37 AML, 41, BCLL1, 22 CML, 
10 MDS, 17 B-ALL, 12 T-ALL 

Preprocessed: Normalization and 
log2 transformation by RMA 

GSE9476 GPL96 [HG- 
U133A] Affymetrix 

Bone Marrow 38 healthy donors Preprocessed: Normalization and 
log2 transformation by RMA 

Breast Cancer GSE65194 GPL570 [HG- 
U133_Plus_2] 
Affymetrix 

Breast sample 11 control breast sample, 98 
breast cancer samples, 55 
TNBC samples 

Preprocessed: Normalization and 
log2 transformation by GCRMA 
method 

Cervical Cancer GSE63514 GPL570 [HG- 
U133_Plus_2] 
Affymetrix 

Cervix 24 normal and 28 cancer 
specimens 

Preprocessed: Normalization and 
log2 transformation by GCRMA 
method 

Multiple Myeloma GSE85837 GPL10558 Illumina 
HumanHT-12 V4.0 

Bone Marrow 9 control and 9 multiple 
myeloma patients with bone 
lesion 

Preprocessed: Robust spline 
normalization and log2 
transformation by lumi R package 

Lung Cancer GSE136043 GPL13497 Agilent- 
026652 

Lung 5 lung cancer tissue and 5 lung 
non-tumor tissues 

Preprocessed: Normalization by 
Agilent Feature Extraction Software 

Lung adenocarcinoma 
(Non-small cell lung 
cancer) 

GSE118370 GPL570 [HG- 
U133_Plus_2] 
Affymetrix 

Lung 6 invasive lung 
adenocarcinoma tissues and 6 
normal lung tissues 

Preprocessed: Normalization and 
log2 transformation by MAS5.0 
algorithm 

Liver Cancer GSE88839 GPL570 [HG- 
U133_Plus_2] 
Affymetrix 

Liver 35 HCA liver tumours and 3 
normal liver samples 

Preprocessed: Normalization by 
RMA 

Pancreatic Ductal 
Adenocarcinoma 

GSE101448 GPL10558 Illumina 
HumanHT-12 V4.0 

Pancreas 18 with pancreatic tumor and 
13 non-tumor pancreatic tissue 
samples 

Preprocessed: Normalization and 
log2 transformation by Illumina’s 
BeadStudio Data Analysis Software 

Infectious AIDS GSE73968 GPL6244 [HuGene- 
1_0-st] Affymetrix 

T Cells 9 healthy control and 6 HIV 
positive patients 

Preprocessed: Normalization and 
log2 transformation by RMA 

Tuberculosis GSE139825 GPL10558 Illumina 
HumanHT-12 V4.0 

Alveolar Macrophages Alveolar Macrophages from 5 
TB patients and 5 control 
subjects 

Preprocessed: Normalization and 
log2 transformation by lumi R 
package 

Malaria GSE119150 GPL15207 [Prime 
View] Affymetrix 

Blood 6 falciparum malaria and 6 
normal subjects 

Preprocessed: Normalization and 
log2 transformation by RMA 

Acute Acute Kidney Injury GSE30718 Kidney Preprocessed: Normalization and 
log2 transformation by RMA 

(continued on next page) 
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3. Results 

3.1. Human genes implicated in the pathogenesis of COVID-19 are 
upregulated in leukemia, psoriasis, NAFLD, and type II diabetes cases 

In leukemia and NAFLD condition, there were more than one dataset, 
namely one GSEid for samples and another GSEid for controls. In 
addition, in leukemia and breast cancer, the sample size of individual 
datasets was large. Therefore, we performed a principal component 
analysis (PCA) on the expression values of 10296 genes to explore the 
variability between datasets. We observed that the gene expression 
profile of datasets in a given disease correlated with each other, and each 
disease produced isolated galaxies of points closely spaced to each other 
(Fig. 2A). We then investigated the differential gene expression in a set 
of chronic, acute, and infectious disease conditions to identify the gene 
expression patterns that may induce susceptibility to SARS-CoV-2 
infection. The molecular details of SARS-CoV-2 infection and spread 
are still under active research, and some steps in the pathogenesis of 
SARS-CoV-2 have been reported as either identical or similar to that of 
other pathogenic human coronaviruses (HCoVs), namely, SARS-CoV and 
MERS-CoV. Since gene expression pattern is characteristically correlated 
with the pathogenesis of diseases [19,20], we examined the expression 
patterns of human genes, which are implicated in the replication and 

pathogenesis of SARS-CoV-2 or other HCoVs, in different disease con-
ditions. To this end, we performed a literature mining exercise and 
identified 78 genes that were reported to have important implications in 
the entry and pathogenesis of HCoVs. These genes are enlisted in Sup-
plementary Table 1. Some of these genes have been identified with key 
roles in promoting the pathogenesis of SARS-CoV-2, namely ACE2, 
FURIN, and TMPRSS2. The heatmap of log2(FC) fold changes in 
expression values of these 78 genes, in all 30 disease cases including 
COVID-19, is shown in Fig. 2B. It is evident that several of these genes 
are upregulated in patients with SARS-CoV-2 infection and patients of all 
the studied subtypes of leukemia (hereafter, collectively referred to as 
leukemia; 45–50 genes), NAFLD (32 genes), psoriasis (22 genes), breast 
cancer (17 genes), cervical cancer (12 genes), NSCLC1 (7 genes), and 
type II diabetes liver (7 genes). It is noteworthy that the differential gene 
expression pattern was particularly pronounced in leukemia (log2(FC) in 
the range 2–6) and NAFLD (log2(FC) in the range 2–5). 

Further, to investigate any prospective covet genetic feature, we 
performed the co-expression analysis of 78 genes, which are implicated 
in the pathogenesis of coronaviruses, in these diseases. First, we exam-
ined the disease samples separately for each disease and identified the 
co-expressed genes in each case. Herein, we obtained a single module 
(turquoise) each for SARS-CoV-2, leukemia, psoriasis, PAH, and T2D 
Liver (Supplementary Figs. 1–5). 38 genes were observed to co-express 

Table 1 (continued ) 

Disease 
Type 

Disease/Condition GSE ID Platform Tissue Experimental Design Data Processing 

GPL570 [HG- 
U133_Plus_2] 
Affymetrix 

28 transplants with AKI to 11 
pristine protocol biopsies of 
stable transplants 

COVID-19 GSE150316 GPL18573 Lung 16 lung samples with COV2 
positive and 5 control lung 
samples 

Preprocessed: DEseq2 normalized  

Fig. 1. Flow diagram of the study.  
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in each of these disease types (Supplementary Fig. 6). We obtained 
different hub genes in each of these diseases, namely, MAPK1 in SARS- 
CoV-2, PCSK6 in leukemia, NFΚB1 in PAH, TYK2 in psoriasis, and CTSD 
in T2D liver (Supplementary Figs. 7–11). However, in the case of 
NAFLD, we did not obtain any module of co-expressed genes. 

Thereafter, we performed another co-expression analysis using in-
tegrated log2(FC) values for SARS-CoV-2, leukemia (6 subtypes were 
considered separately), NAFLD, psoriasis, PAH, and T2D Liver (Sup-
plementary Fig. 12). We obtained two modules with 62 and 16 genes, 
however, only one module was significant wherein PCSK6 was identified 
as the hub gene (Supplementary Fig. 13). Pathway analysis with these 
genes showed the prominent enrichment of Toll-like receptor signaling, 
JAK/STAT signaling, TNF signaling and NF-κB signaling pathways 
(Supplementary Table 2). 

3.2. The expression of ACE2, FURIN, and TMPRSS2 is increased in 
leukemia, NAFLD, and psoriasis patients 

The earliest steps in establishing COVID-19 include cellular entry of 
SARS-CoV-2, which is critically dependent on the host’s ACE2 receptor 
and serine proteases FURIN and TMPRSS2. ACE2 functions as the re-
ceptor for the entry of SARS-CoV-2 by binding to the viral spike protein, 

whereas, the FURIN and TMPRSS2 proteases are essential for processing 
the spike protein that facilitates viral entry into the cells [21,22]. 
Therefore, we investigated the expression patterns of ACE2, FURIN, and 
TMPRSS2 in the distinct disease cases (as identified in Fig. 2B), namely 
breast cancer, cervical cancer, leukemia, NAFLD, NSCLC1, psoriasis, and 
T2D. The expression of ACE2 was upregulated in leukemia, psoriasis, 
NAFLD, lung cancer, breast cancer, and cervical cancer patients 
(Fig. 3A). The expression of FURIN was upregulated in leukemia, pso-
riasis, NAFLD, lung cancer, and in T2D liver whereas it was down-
regulated in breast cancer (Fig. 3B). We observed that TMPRSS2 was 
upregulated in leukemia, lung cancer, and T2D, but it was down-
regulated in psoriasis, NAFLD, lung cancer, breast cancer, and cervical 
cancer (Fig. 3C). It is worthwhile to mention that after the interaction of 
the viral spike protein with ACE2 receptor, the host’s FURIN protease 
cleaves the spike protein at the interface of two subunits of the trimeric 
spike. Thus, the protease activity of FURIN is critical in promoting spike 
mediated entry of SARS-CoV-2 and it is also known to be crucial for 
protein processing in other infectious diseases and in cancer [23]. 
Similar to FURIN, the proteolytic cleavage of spike protein by TMPRSS2 
is critical for its fusogenic activity. 

3.3. Disease-associated dysregulation of innate and adaptive immune 
response in patients with other diseases 

Following entry, the presence of viral RNA in cellular milieu evokes 
an immune response in the host. Apart from the receptors and proteases, 
the heatmap in Fig. 2B also shows the differential expression of genes, 
which are involved in the innate and acquired immune responses to 
SARS-CoV-2 invasion. The genes Interferon-alpha and Interferon-beta 
(IFNA2, IFNA8, IFNA10, IFNA14, IFNA16, IFNA21, and IFNB1) are the 
initial response elements of the innate immune signaling pathway. These 
responses activate several interferon-stimulated genes (ISGs) via JAK1/ 
STAT1 pathway, which leads to early clearance of the viral load [24]. 
We prepared a heatmap of the log2(FC) of the expression of the in-
terferons that were differentially expressed in any of the 30 diseases (p 
< 0.05, Fig. 4A). We also examined the expression of genes encoding 
cytokines that underlie the anti-viral immune responses, namely IL6, 
CXCL10, JAK1, and STAT1 (Fig. 4B–E). The genes IFNA2, IFNA8, 
IFNA10, IFNA14, IFNA16, IFNA21, and IFNB1 were upregulated in leu-
kemia (log2(FC) ranged from 1.003 to 4.63) and in NAFLD (log2(FC) 
ranged from 1.009 to 1.93), whereas they were downregulated in T2D 
liver (log2(FC) ranged from − 1.09 to − 1.61). The expression of JAK1 
was slightly decreased (log2(FC) ranged from − 0.63 to − 0.94) in leu-
kemia except in BCLL cases, whereas STAT1 was slightly decreased in 
TALL (log2(FC) − 0.41) and was unchanged in other types of leukemia. 
Both JAK1 and STAT1 were increased in NAFLD (log2(FC) ranged from 
1.52 to 1.96) and in T2D muscles (log2(FC) ranged from 1.52 to 3.88). 
The initial interferon-mediated response is followed by a specific 
cell-mediated adaptive immune response to clear viral invasion. To this 
end, the cytokines IL6 and CXCL10 are produced by helper T cells and 
macrophages that promote the migration of immune cells to the site of 
infection. They are also associated with the cytokine storm observed in 
COVID-19 associated mortalities [25]. We observed that the expression 
of IL6 and CXCL10 was upregulated in leukemia (log2(FC) ranged from 
1.92 to 3.55). But the expression of IL6 was slightly decreased in NAFLD 
(log2(FC) − 0.4). The expression of CXCL10 was increased in NAFLD 
(log2(FC) 5.23) and PDAC (log2(FC) 2.095). 

3.4. The patterns of differential gene expression are similar in SARS-CoV- 
2, leukemia, and NAFLD 

We analyzed the expression pattern of 193 differentially expressed 
genes from 16 SARS-CoV-2 infected patients. Out of these 193 differ-
entially expressed genes, we found that the expression values for only 
182 genes were available in the datasets of all disease types included in 
our study. Therefore, we generated a clustered heatmap (Fig. 5A) and a 

Fig. 2. (A) Principal Component Analysis of 10,296 gene expression values in 
the datasets used in this study for 30 disease conditions and their respective 
controls. Individual datasets are represented by separate points. To categorize 
and differentially color different disease types, we have inserted the prefixes 
“Can,” “Chr,” and “Inf” to identify the clusters of various types of cancer, 
chronic diseases, and infectious diseases, respectively. (B) Clustered heatmap 
depicting fold change (log2(FC)) in the expression of 78 host genes in COVID-19 
patients and in other 30 studied disease patients. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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scatter plot (Supplementary Fig. 14) depicting the expression of these 
182 differentially expressed genes in 30 diseases and COVID-19 condi-
tions. It is evident from the heatmap that the pattern of gene expression 
is similar in COVID-19 and PDAC, which are segregated together in the 
heatmap. Similarly, lung cancer and NSCLC also clustered together. 
Among the 161 genes upregulated in the lungs of COVID-19 patients 
(log2(FC) ranged from 1 to 3.45), 99–111 genes in leukemia (log2(FC) 
ranged from 1 to 5.86), 77 genes in NAFLD (log2(FC) ranged from 1 to 
5.58), and 48 genes in psoriasis (log2(FC) ranged from 1 to 6.27) were 
upregulated. Pathways enrichment analysis of these 182 genes using 
DAVID [26,27] showed significant enrichment of the host’s immune 
response to viral infection or infection-related immune pathways 
(Fig. 5B). Furthermore, we inferred the expression of 10 topmost 
significantly altered up- and down-regulated genes in COVID-19 patients 
and compared them to the disease cases showing similar pattern of gene 
expression, namely, T2D liver, NAFLD, psoriasis, leukemia, PDAC, lung 
cancer, NSCLC, TNBC, breast cancer, and cervical cancer (Supplemen-
tary Fig. 15). We observed that three genes, namely RAMP3 (Receptor 
Activity Modifying Protein 3), S100A2 (S100 Calcium Binding Protein 
A2), and CLCA2 (Chloride Channel Accessory 2) with a functional role in 
calcium signaling, were prominently upregulated in at least 7 studied 
disease types (including all subtypes of leukemia). 

3.5. Pathogenic HCoVs differentially regulate the expression of 
CARBONIC ANHYDRASE 11 and CLUSTERIN gene 

We extended our investigation to identify the genes, whose expres-
sion may be commonly altered by the dreaded viruses of recent times. 
We analyzed the differential gene expression in patients with different 
viral infections, namely, SARS-CoV, SARS-CoV-2, MERS-CoV, H1N1, 
and other influenza viruses (H7N1, H5N1, H3N2, and H5N2). We 
observed that no gene was commonly altered in these viral infections (at 
a fold change > ±2, p < 0.05; Fig. 6A). However, two genes, namely 
CARBONIC ANHYDRASE 11 (CA11) and CLUSTERIN (CLU) were 
commonly altered in the patients infected by pathogenic HCoVs, namely 
SARS-CoV, SARS-CoV-2, and MERS-CoV (at a fold change > ±2, p <
0.05; Fig. 6B). Based on the similarities in the patterns of differential 
gene expression in COVID-19 and other 30 diseases, we examined the 
expression of CA11 and CLU in breast cancer, cervical cancer, leukemia, 
NAFLD, NSCLC1, psoriasis, and T2D patients. The expression of CA11 
was significantly upregulated in COVID-19 and leukemia (Fig. 6C), 
whereas CLU was upregulated in COVID-19 only (Fig. 6D). 

4. Discussion 

COVID-19 associated comorbidities have been reported with several 
acute and chronic diseases, which lead to poor outcomes. For instance, 
diabetes, cardiovascular disease, renal and pulmonary diseases, are 
frequently observed comorbidities that increase the case fatality rate in 

Fig. 3. Quantitative representation of gene expression values of (A) ACE2, (B) FURIN, and (C) TMPRSS2 in patients and in their respective controls from 14 selected 
diseases wherein these genes were differentially regulated. Each point represents the gene expression values of controls (Blue) and of patients (Red) in individual 
disease cases. Bars depict standard error of mean. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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acute respiratory diseases caused by SARS-CoV [28], MERS-CoV [29, 
30], and SARS-CoV-2. Our study revealed that the characteristic gene 
expression patterns in the disease cases, namely, leukemia, NAFLD, 
psoriasis, T2D, and PAH are highly similar to that of COVID-19. It is 
likely that the similarities in gene expression pattern offer a favorable 
environment to SARS-CoV-2 infection. 

ACE2 is the functional receptor of three human infecting coronavi-
ruses, namely NL-63, SARS-CoV, and SARS-CoV-2 [21,31]. Previous 
reports suggest that the expression of ACE2 is moderate in lung alveolar 
epithelium cells, high in enterocytes of the small intestine, and to a lesser 
extent in the vascular endothelial and smooth muscle in several organs 
including kidney, liver, bone marrow, skin, and brain [32]. Through 
ACE2, these organs may provide an easy port of entry for SARS-CoV-2, 
and the gene expression data suggests that more severe symptoms 
could develop upon SARS-CoV-2 infection particularly in the respiratory 
tract and the gut. The degree of ACE2 expression, in association with a 
10–20 fold higher binding affinity of SARS-CoV-2 spike compared to 

SARS-CoV spike, could underlie the efficient cellular entry and higher 
infectivity of SARS-CoV-2 compared to SARS-CoV [33,34]. We observed 
that the basal expression of ACE2 was significantly high in many path-
ological conditions, namely leukemia, cancer of lungs, breasts, and 
cervix, NAFLD, psoriasis, and PAH. Hence, the increased number of 
available cellular receptors that facilitate viral entry can account for the 
increased susceptibility of these disease cases to SARS-CoV-2 infection. 

Following the initial interaction of viral spike with ACE2 receptors, 
the pre-activation of viral spike by cleavage at polybasic S1/S2 site in 
the spike is mediated by proprotein convertase FURIN that enables a 
second cleavage by the cellular serine protease TMPRSS2. Both these 
proteolytic cleavages are important in facilitating viral entry. Inactiva-
tion of either FURIN [22] or TMPRSS2 [21] has been reported to inhibit 
cell-cell fusion and entry of SARS-CoV-2 in lung cells. Other cellular 
proteases such as TMPRSS4 [35] Cathepsin B and L [34] may have a 
cumulative effect on the FURIN-mediated promotion of SARS-CoV-2 
entry into enterocytes or liver or lungs cells. Except in CLL, BALL, and 

Fig. 4. (A) Clustered heatmap of log2(FC) fold change values in the expression of genes encoding interferons that are differentially expressed in COVID-19 and 30 
other studied disease patients. Quantification of (B) IL6, (C) CXCL10, (D) JAK1, and (E) STAT1 expression in patients and in their respective controls from 12 selected 
diseases including COVID-19 wherein these genes were found to be differentially regulated. Each point represents fold changes from individual patient or control. 
Bars depict standard error of mean. 
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TALL, wherein CATHEPSIN A, B, and D were downregulated, we 
observed that majority of the host proteases were highly upregulated in 
other subtypes of leukemia. Although cathepsins have an additive effect, 
they may not be indispensable for viral entry. Yet their increased 
expression along with that of FURIN and TMPRSS2 can promote the 
processing of viral spike and enhance cellular entry of SARS-CoV-2 [21]. 
Taken together these data suggest that the patients of leukemia are 

highly prone to SARS-CoV-2 infection. Similarly, the expression of 
FURIN was observed to be higher in NAFLD and psoriasis patients. 
Recently the abundance of either FURIN or TMPRSS2 was shown to be 
sufficient in promoting the cellular entry of SARS-CoV-2 [21]. Although 
the relevant information on psoriasis is missing in the literature, Dong 
et al. (2020) have recently observed NAFLD comorbidity in COVID-19 
patients [5]. Therefore, we propose that the increased expression of 

Fig. 5. (A) Clustered heat map of log2(FC) fold change in the expression of 182 genes significantly altered in SARS-CoV-2 infected patients and in the 30 studied 
disease patients. (B) Bubble plot depicting the Pathways using 182 genes altered in COVID-19, leukemia, lung cancer, psoriasis, NAFLD, NSCLC, PDAC, and in T2D 
liver disease patients. Highly significant pathways in these diseases are highlighted with encircled bubbles according to p-adjusted values (FDR < 0.05). 

M.K. Singh et al.                                                                                                                                                                                                                                



Computers in Biology and Medicine 130 (2021) 104219

9

ACE2 and FURIN could result in COVID-19 associated comorbidities. 
However, studies aimed at testing the redundancy of proteases are 
required to arrive at a definite conclusion. 

Following the proteolytic cleavage of viral spike, the viral envelope 
fuses with host membrane and subsequently evokes the primary defense 
response of the host. This response is composed of the interferon- 
mediated innate immune response [36]. The production and binding 
of type I and type III interferons to their respective cellular receptors 
culminate into activating JAK1/STAT1 mediated transcription of 
several anti-viral interferon-stimulated genes [37]. It has been reported 
that the JAK1 deficient mice exhibit poor lymphoid development, and 
defective response to cytokines and interferons and die perinatally [38]. 
Similarly, mice with disrupted expression of STAT1 have compromised 
innate immunity [39] and are prone to viral infections [40]. Somatic 
mutations and dysregulation of JAK1 mediated signaling have been 
frequently observed in acute lymphoblastic leukemia [41,42]. Also, the 
deficiency of TYK2 (tyrosine kinase 2) in humans, which constitutes a 
key component of type I and type III interferon response, was shown to 
induce cytokine signaling defects and susceptibility to infection [43]. 
We observed that the expression of IFNA2, IFNA8, IFNA10, IFNA14, 
IFNA16, IFNA21 and IFNB1 were increased, whereas that of JAK1, 
STAT1, and TYK2 did not change significantly in leukemia patients. 
Thus, the increased interferon response in leukemia patients may 
involve components other than JAK1, STAT1, and TYK2. In contrast, in 
NAFLD patients the increased expression of JAK1 and STAT1 corre-
sponds well with the increased expression of the interferons encoding 
genes, namely, IFNA2, IFNA8, IFNA10, IFNA14, IFNA16, IFNA21 and 
IFNB1. On the other hand, the expression of JAK1 and STAT1 decreased 
in T2D muscle and the expression of interferons decreased in T2D liver. 

However, p-STAT1 levels must be quantified to conclusively reveal the 
correlation between STAT1 expression in COVID-19 associated comor-
bidities. The higher levels of interferons may be one of the reasons for 
the previously observed reports describing relatively milder symptom-
atic COVID-19 in CLL patients [44]. However, SARS-CoV-2 may use 
several escape or immune-suppression strategies including the forma-
tion of a replication organelle and 2′-O-methylated capping of viral RNA 
to proliferate despite of increased basal interferon levels in leukemia and 
NAFLD patients [45]. Thereafter, the specific adaptive immune response 
comes into effect for curbing the viral invasion. An optimal secretion of 
cytokines and chemokines (such as IL6 and CXCL10) from immune cells 
is essential to adjust the host’s immune response against foreign in-
vaders. However, the excess release of cytokines, also known as cytokine 
storm, is associated with an increased severity of disease and poorer 
outcomes in SARS-CoV [46,47] and SARS-CoV-2 [48] infected patients. 
Earlier, the inhibition of NF-κB mediated production of IL6 was found to 
increase the survival in SARS-CoV infected mice [49] and IL6 blockade 
has been thought of as a mechanism to manage cytokine storm and save 
COVID-19 patients [50]. We observed a higher basal expression of 
CXCL10 in leukemia, NAFLD, and PDAC patients that may subsequently 
lead to cytokine storm upon SARS-CoV-2 infection. Recently Malard 
et al. (2020) have also reported that patients with hematologic malig-
nancies are at higher risk of developing a severe form of COVID-19 [51]. 
Thus, we propose that the inhibitors of IL6 and CXCL10 could be 
examined for clinical interventions in leukemia and NAFLD patients 
who have been tested positive for SARS-CoV-2. 

Furthermore, calcium signaling was found to be perturbed in COVID- 
19 and at least 6 other studied disease types including leukemia, NAFLD, 
and psoriasis that manifested in the form of altered expression of 

Fig. 6. Venn diagram depicting the number of differentially regulated genes in common to various viral infections, namely SARS-CoV, SARS-CoV-2, MERS-CoV, 
H1N1, and other influenza viruses (H7N1, H5N1, H3N2, and H5N2). (A) and to post-infection by pathogenic human infecting coronaviruses, namely SARS-CoV, 
SARS-CoV-2, and MERS-CoV (B). Quantification of expression of Carbonic anhydrase 11 (CA11) (C) and Clusterin (Clu) (D) in patients and their respective con-
trols from 14 selected diseases including COVID-19 wherein these genes were found to be differentially regulated. Each point represents fold changes from individual 
patients or controls. Bars depict standard error of mean. 
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RAMP3, S100A2, and CLCA2 genes. RAMP3 is a co-activator that targets 
the calcium-sensing receptor to cell surface [52,53]. CLCA2 regulates 
the calcium-activated chloride channel currents and enhances the 
store-operated cellular entry of calcium [54]. S100A2 encodes a cyto-
plasmic calcium-binding protein and is known to be dysregulated in 
human cancers [55]. Together, these three genes modulate the cellular 
calcium levels in response to various stimuli and were distinctly upre-
gulated in leukemia, NAFLD, and psoriasis (Supplementary Fig. 1). 
Recently, Sun et al. (2020) showed that calcium channel blockers inhibit 
the replication of SARS-CoV-2 in the cellular milieu and reduce the 
COVID-19 associated case-fatality rate [56]. Thus, cellular calcium 
levels may play a significant role in inducing susceptibility to 
SARS-CoV-2 infection. Furthermore, we found that the expression of 
CA11 and CLU genes were commonly altered in SARS-CoV, SARS-CoV-2, 
and MERS-CoV infected cases. These data indicate the uniqueness of the 
host gene expression patterns, thereby supporting the distinctive nature 
of these infections. Although CA11 was upregulated in leukemia, no 
trend was observed in the expression of CLU in the studied disease types. 
As of now, no direct correlation has been identified between the 
expression of either CA11 or CLU with the pathogenesis of SARS-CoV-2. 
However, several authors have recently identified that COVID-19 may 
lead to ketosis, ketoacidosis [57], and altered glucose metabolism [58]. 
Because CA11 plays an important role in hepatic gluconeogenesis [59], 
it could be interesting to investigate the potential relationship between 
SARS-CoV-2 infection, differential CA11 expression, and the onset of 
diabetes in COVID-19 patients. 

Our study has few associated caveats. At first, we have selected the 
gene expression datasets from 30 diseases with strict criteria, namely, 
human samples with disease-specific tissues. The datasets were gener-
ated through expression profiling by array and the cases were devoid of 
any other treatments or afflictions. Given the reasonable number of 
samples used in these studies, we believe that our observations could be 
generally applicable. However, the limited sample size could impose 
limitations on confirming these observations in other samples including 
patients from other populations. This study concludes that the patients 
of leukemia are relatively more susceptible to SARS-CoV-2 infection 
followed by NAFLD, psoriasis, T2D, and PAH. It has been reported that 
STAT1 signaling promotes the proliferation of leukemia [60] and 
non-alcoholic steatohepatitis [61], and the inhibition of JAK/STAT 
signaling has shown protective activity in leukemia [60] and type II 
diabetes [62]. Complementarily, recent reports have observed down-
regulation of STAT1 [63] and upregulation of CXCL10 [64] post 
SARS-CoV-2 infection. These reports suggest a potential target avenue 
[65]. Furthermore, it has been reported that the expression of IL-6 is 
upregulated in NAFLD [66], type II diabetes [67], and COVID-19 [68] 
patients. Previously, the IL-6 overexpression following SARS-CoV-2 
infection was reported to occur via NF-κB [46] and inhibition of 
NF-κB signaling was reported to increase the survival in SARS-CoV 
infected mice [49]. Therefore, the strategy of inhibition of inflamma-
tory cascade appears important for curbing SARS-CoV-2 infection with a 
concomitant increase in survival rates and for the added benefit of 
management of associated comorbidities. Therefore, our study indicates 
that disease-specific inhibition of IL6, CXCL10, JAK1, and STAT1 either 
alone or in various combinations could benefit in curbing COVID-19 
associated comorbidities. Our report could support the healthcare sys-
tems across the globe in devising better management practices for pre-
venting the complications of COVID-19 associated comorbidities. 
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