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Emerging and endemic animal viral diseases continue to impose substantial impacts

on animal and human health. Most current and past molecular surveillance studies of

animal diseases investigated spatio-temporal and evolutionary dynamics of the viruses in

a disjointed analytical framework, ignoringmany uncertainties andmade joint conclusions

from both analytical approaches. Phylodynamic methods offer a uniquely integrated

platform capable of inferring complex epidemiological and evolutionary processes from

the phylogeny of viruses in populations using a single Bayesian statistical framework.

In this study, we reviewed and outlined basic concepts and aspects of phylodynamic

methods and attempted to summarize essential components of the methodology in one

analytical pipeline to facilitate the proper use of themethods by animal health researchers.

Also, we challenged the robustness of the posterior evolutionary parameters, inferred by

the commonly used phylodynamic models, using hemagglutinin (HA) and polymerase

basic 2 (PB2) segments of the currently circulating human-like H3 swine influenza (SI)

viruses isolated in the United States and multiple priors. Subsequently, we compared

similarities and differences between the posterior parameters inferred from sequence

data using multiple phylodynamic models. Our suggested phylodynamic approach

attempts to reduce the impact of its inherent limitations to offer less biased and

biologically plausible inferences about the pathogen evolutionary characteristics to

properly guide intervention activities. We also pinpointed requirements and challenges

for integrating phylodynamic methods in routine animal disease surveillance activities.

Keywords: human-like H3, swine influenza, evolutionary epidemiology, phylodynamics, phylogeography, disease

surveillance

INTRODUCTION

In the past few decades, genetic analysis of rapidly evolving pathogens has become an integral
part of animal disease surveillance systems worldwide (1–4). Most current and past molecular
surveillance studies of animal disease pathogens of both public health and economical importance
such as influenza (5–7), foot-and-mouth disease (FMD) (8–10), and porcine reproductive
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and respiratory syndrome (PRRS) (11–13) viruses are dependent
on classical epidemiological and phylogenetic methods. These
studies or surveillance systems used classical phylogenetic
methods, including parsimony, neighbor-joining, or maximum
likelihood (ML) approaches to either genotype novel emerging
strains, classify viral lineages, or assess tree topologies to
distinguish between novel and emerging strains (6, 7, 13).
In addition, classical phylogenetic approaches were used
to assess correlations between the similarities of nucleotide
sequences and related epidemiological characteristics, while
ignoring uncertainties associated with estimates of phylogenetic
relationships, host, temporal, and spatial factors (7, 10, 11, 14).
Furthermore, they investigated spatio-temporal and evolutionary
dynamics of the virus isolates in a disjointed analytical framework
and made joint conclusions from both analytical approaches
(7, 10, 11, 14). Therefore, many of the past and current
molecular surveillance studies of animal diseases have ignored
that epidemiological and evolutionary dynamics of rapidly
evolving viruses occur on approximately the same time-scale
(15). Thus, studying them in a unified analytical framework
will refine their interpretations and limit biased conclusions
to subsequently improving the related molecular surveillance
activities. Classical phylogenetic approaches are not capable of
accounting for the uncertainties in evolutionary processes of
rapidly evolving pathogens or integrating related epidemiological
features into their phylogeny, which is an important advantage of
Bayesian phylodynamic methods.

The Bayesian phylodynamic methods were borrowed from
the field of evolutionary biology and have become a powerful
tool for exploring the evolutionary epidemiology of infectious
pathogens (14–17). During the last two decades, the rapid
growth of pathogens’ genetic data and computational resources
increased the applications of phylodynamic methods in animal
and human disease surveillance (17). These methods are capable
of accounting for uncertainties, and uniquely integrate complex
epidemiological and evolutionary processes in populations using
a single Bayesian statistical framework (18, 19). This framework
handles the parameters of the phylodynamic model as random
variables, in which each parameter is set by a specified
prior probability distribution (and a parallel inferred posterior
probability distribution). Therefore, this innovative quantitative
integration improved disease investigation by answering novel
epidemiological questions about the evolutionary history,
spatiotemporal origins, within and between-host transmission,
and environmental risk factors for rapidly evolving pathogens
(17). In fact, during the last decade, phylodynamic models
have become well-established tools for studying the evolution
of animal viral diseases specially influenza (20), FMD (17), and
PRRS (21). Besides, several studies advocated for the integration
of phylodynamicmethods in the routinely molecular surveillance
pipelines of animal diseases with the objectives of reclassifying
viral genotypes, distinguishing between emerging and endemic
viral strains, and selecting proper vaccine strains (17, 21–23).
These approaches will provide a robust platform for guiding the
allocation of resources within a surveillance system, for example,
targeting emerging strains with higher evolutionary rates or hosts
at high risk of generating new strains, which subsequently will
reduce the economic costs of sampling, control, and prevention

activities. Phylodynamic methods are implemented in many
open-source statistical software packages, while the most popular
user-friendly software package is formally known as Bayesian
evolutionary analysis by sampling tree (BEAST) (24).

While past studies illustrated the great potential of
phylodynamic tools, the methods are sensitive to the density
and coverage of sequence sampling, selection of genetic regions,
quality and quantity of the associated surveillance data, and
prior selection for the evolutionary parameters (15, 25, 26).
These limitations may result in biased posterior inferences,
which subsequently lead to inaccurate or biological implausible
conclusions about the evolutionary epidemiology of the
pathogen under study (e.g., false divergence time or geographical
origins). That said, most phylogenetic studies suffer from these
inherent limitations. However, setting a thorough phylodynamic
analytical pipeline, while acknowledging these limitations,
can reduce their impact on the resulting posterior inferences
and their related conclusions. Unfortunately, many published
phylodynamic studies ignored such limitations, particularly
in their analytical approach, in which they used simple naïve
priors for their evolutionary parameters while ignoring the
underlying assumptions for these priors (27–31). For example,
prior selection should adhere to the assumption that different
pathogens have unique evolutionary characteristics (14), and
therefore, using the same simple prior on different pathogens
will likely lead to the conclusion that such pathogens behaved
similarly during their evolutionary history. Also, these studies
ignored the impact of selecting different prior models on their
posterior evolutionary inferences of the pathogen under study
(26, 32). For example, the use of different prior models often
leads to different conclusions about the geographical origins of
the pathogen under study, and hence, Bayesian model selection
is a critical step in phylodynamic analysis pipelines (25, 33).

There are many studies in the published literature comparing
the results of phylodynamic models inferred from different gene
segments or evolutionary parameters’ priors (34–36). However,
few studies raised concerns about the sensitivity of the results
to the choice of different evolutionary models (20, 26) as well
as suggested a focused phylodynamic analytical pipeline for
animal diseasemolecular surveillance (37). Here, we demonstrate
the basic principles for building a phylodynamic analytical
pipeline, illustrate examples on the impact of gene segment and
prior selection on the posterior evolutionary inferences, and
highlight the prospects of the methods in improving animal
disease surveillance. We selected a publicly available dataset
compromising of 352 full genome sequences for human-like
H3 swine SI collected as part of the United States Department
of Agriculture influenza surveillance system between 2015
and 2018 as a working example. We provided a detailed
description of a classical phylodynamic analytical pipeline
encompassing both demographic and discrete phylogeographic
reconstruction of the human-like H3 virus using BEAST.
Our phylodynamic analyses included comparisons between
commonly inferred evolutionary posterior parameters (e.g.,
substitution rate/site/year, divergence times, phylogeographic
root state posterior probabilities, significant dispersal route
between states) under different combinations of node–age
and branch rate prior models. Furthermore, we extended this
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analytical pipeline into comparing posterior parameters inferred
from HA and PB2 gene segments. Interpretation of the resulting
posterior inferences under different scenarios, described above,
has been discussed in detail, and we highlighted examples of
their misuse in past phylodynamic studies. Our results identified
the prospects and limitations of the presented phylodynamic
pipeline in the context of animal disease surveillance on regional
and global scales. Furthermore, our results provide researchers
and stakeholders of the swine industry in the United States
valuable insights on decisions related to the sampling and
sequencing of the influenza virus genome when conducting
future phylodynamic studies and improving the design of
currently implemented surveillance systems.

BAYESIAN PHYLODYNAMIC STATISTICAL
FRAMEWORK

The summary flow chart of our phylodynamic analytical pipeline
is presented in Figure 1. This Bayesian statistical framework
is popular and well-established for studying rapidly evolving

pathogens as described elsewhere (37–39). The pipeline is divided
into five steps (Figure 1), in which two steps are dedicated to
sequence preparation and curation of relevant viral lineages,
while the following three steps are dedicated for phylodynamic
analyses of the subsequently selected lineages.

Sequence Preparation
Sequence Collection and Retrieval
A critical step for a sound phylodynamic analysis is sequence
preparation. This step can take two directions, depending on the
study design and the objectives of the analysis. The first direction
involves primary data analyses of novel sequences, in which they
are either part of a designed study to identify the evolutionary
characteristics of newly emerging viral strains (27, 37, 39) or part
of an ongoing active surveillance program (40). This direction
usually includes the collection and sequencing of novel viral
isolates from ongoing outbreaks. The second direction involves
secondary data analyses of sequence collections published in
publicly available genomic databases such as the Genbank, to
mainly explore the evolutionary history of specific pathogens
either on regional or global scales (38, 41, 42). Secondary

FIGURE 1 | Flow chart showing the steps for our Bayesian phylodynamic statistical framework. Blue boxes summarize the methodological steps for the statistical

framework described in the BAYESIAN PHYLODYNAMIC STATISTICAL FRAMEWORK section of the main text (Sequence Preparation section to Summary and

Visualization of Evolutionary Inferences section). The orange table indicates the generated models for swine influenza example data described in Section Worked

Example: Evolutionary Dynamics of Swine Influenza in the United States Between 2015 and 2018. ML, maximum likelihood; RDP, Recombination Detection Program;

ESS, effect sample size; BF, Bayes factor; PS, path sampling; SS, stepping stone; HA, hemagglutinin; PB2, polymerase basic 2; GTR, general time-reversable; HKY,

Hasegawa, Kishino, and Yano; BSSVS, Bayesian Stochastic Search Variable Selection; TMRCAs, Time to the Most Recent Common Ancestor; MCC, Maximum

Clade Credibility.
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sequence analysis can either target all available viral isolates
or specific well-defined lineages (i.e., monophyletic clades)
(38, 41, 42). To reduce the impact of sampling bias on the
results of a phylodynamic analyses, it is essential to ensure the
representativeness of the viral isolates under study to the available
sequences data on both temporal and spatial scales. This step
is most important for primary sequence analyses, in which the
dataset under study needs to cover all close relatives of novel viral
isolates published elsewhere. Retrieving and combining relatives
of novel viral isolates in a single dataset will warrant a proper
inference of representative phylogenetic relationships of a tree
topology based on all available related sequences. As on many
occasions, novel sequencesmight belong to different distinct viral
lineages published elsewhere (39, 43). The basic local alignment
search tool (BLAST; https://blast.ncbi.nlm.nih.gov/Blast.cgi) is
the most popular tool for retrieving relatives of novel sequences
(Figure 1). Finally, the retrieval process should include complete
and near-complete sequences to avoid distorting the phylogenetic
relationships between the novel and the related isolates.

Sequence Metadata Preparation
The integration of a pathogen’s epidemiological characteristics
into its inferred phylogeny is the ultimate justification for the
preference of the phylodynamic approach over the classical
phylogenetic methods. Therefore, the thorough preparation of
sequence metadata, which includes retrieval of information
related to the isolate under study, is another critical step for
a sound subsequent phylodynamic analysis. Sequence metadata
can be retrieved either from public genomic databases such as
the Genbank or from the related published literature. Because
phylodynamic methods largely depend on time-stamped data,
this step starts with retrieving the data of collection for the viral
isolates under study. Thus, viral isolates with no temporal data
are typically excluded from the analyses pipeline. Next, the date
of collection is converted into BEAST readable format known
as fractional years to estimate divergence times. For example, a
virus collected on April 14, 2017, is converted into “2017.282”
as a fractional year, where “2017” is the year of collection, and
“0.282” is the number of days from the beginning of that year till
the day for sequence collection divided by the total number of
days within a typical year. Additionally, dates can be imported
to BEAUTi by a separate text file that include the complete
date of sequence collection with explicit separators (e.g., – or
/). However, in many instances, the complete date of collection
is not available, in which it misses either the exact date or
month of collection. Therefore, we can either specify the age
of the isolate as the mid-point of the corresponding month
or year, respectively. Other epidemiological characteristics such
spatial or host information can be prepared in a separate text
delaminated format with unique identifiers that link them to the
isolates in the sequence dataset. Isolates missing a none-temporal
information should be kept in the analyses and are usually labeled
with a question mark “?” to represent a missing information.
In the context of the phylodynamic field, epidemiological
characteristics such as country or host of origin are defined
as a discrete trait and are described in more detail in the
Running and Selecting Phylodynamic Models section. However,

careful selection of these characteristics is recommended to
be considered at the beginning of the analyses pipeline as a
critical part of the data preparation for the subsequent analyses.
Geographical discrete traits can be defined as the country of
origin where the pathogen was isolated or can be redefined on
smaller or larger spatial scales such as administrative regions
within a country (44) or continental scale (32), respectively,
depending on the study’s hypothesis. Besides the host of origin,
other non-spatial discrete traits such as host and environmental
attributes can also be defined as discrete traits (45).

Multisequence Alignment
Multisequence alignment (MSA) is another primary key step
in the data preparation stage of the pathogen’s genetic data
(Figure 1). It is worth noting that alignment uncertainty, for
example, in terms of the choice of alignment algorithm can affect
the subsequent phylogenetic inferences, such as tree topology
(46). However, the impacts of alignment uncertainties have not
been reported with simple pathogens like viruses, mainly when
dealing with small gene segments. Therefore, this issue might
be considered when dealing with whole genomes or with more
complex pathogens like bacteria and fungi, which can be resolved
by multiple sequence alignment averaging using different
alignment algorithms (47). Common alignment algorithms
include CLUSTAL (48), T-coffee (49), and MUSCLE (50), while
AliView is a user-friendly graphical interface that can deal
with large sequence datasets and integrate multiple alignment
algorithms (51). Performing the multisequence alignment using
an algorithm, and manually deleting the gaps within the
translated alignment, are the most common steps for most
phylogenetic studies (51). Also, confirming the reading frame

of each gene segment (excluding the 5
′

UTR) by examining the
amino acid translation is another step within theMSA procedure.
This step is commonly done, for example, for influenza virus HA
and PB2 gene segments, and potentially for segments 7 and 8,
to account for the frameshifted M2 and NS2 genes. However, it
is worth noting that this step is only important for partitioned
nucleotide models, described below.

Preliminary Phylogenetic Analyses
Inferring Preliminary Phylogenetic Trees
Phylodynamic analyses require both time and computational
resources, and therefore, conducting exploratory phylogenetic
analyses using classical methods is an essential step that will
ensure the proper setup of the subsequent phylodynamic models’
priors. Classical methods for inferring basic phylogenetic trees
(i.e., non-time-stamped trees) include the maximum likelihood
(ML) (52), maximum parsimony (MP) (53), and neighbor-
joining (54) algorithms. Inferring the basic phylogenetic tree
of a sequence dataset will help in the preliminary assessment
of the tree’s topology in terms of the magnitude of structure
across branches, degree of topological (in)congruence between
different gene segments, and selection of lineages (in large
datasets) for the subsequent phylodynamic analyses. Classical
phylogenetic algorithms are implemented in many open-source
software packages such as MEGA (55) and RaXML (56).
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Dealing With Identical and Recombinant Sequences
The rapid spread and transmission of viral diseases during
epidemics provide plenty of time for the pathogen to
accumulate informative mutations in their genomes (57).
Therefore, 100% identical sequences within a dataset dilute
such information. Also, retrieved sequence datasets suffer
from inherent redundancy due to sampling bias and issues
related to the sequencing procedure (58). Hence, removing
100% identical sequences from the dataset under study,
will reduce the impact of such redundancies, strengthen
the tree structure, and shorten the computational time.
Furthermore, if the proportion of 100% identical sequences
was substantially large, it will typically lead to weaker
evolutionary signals and subsequently poorer phylodynamic
model convergence.

Recombination is a natural biological phenomenon of
rapidly evolving viruses like influenza and occurs when viral
genomes co-infect the same host cell and exchange fragments
of their gene segments resulting in new viral strains (59).
Ignoring recombination events in a sequence dataset may
advisedly bias the inferred posterior phylogenetic relationships
and, therefore, must be excluded (60). Recombination events
can be detected using the Recombination Detection Program
(61). However, recombination events are more often detected
in whole genomes than in single-gene segments. Therefore,
conducting phylodynamic analyses on whole-genome sequences
only will lead to the exclusion of many isolates resulting
in a substantially smaller dataset and subsequently biased
inferences. Nevertheless, the occurrence of recombination
events at the beginning of a novel viral outbreak might
be limited.

Assessing Phylogenetic Temporal Structure
Assessing the magnitude of temporal structure in the phylogeny
of the sequences data collected at different points of time is
the final recommended step within the preliminary phylogenetic
analyses stage (62). Here, the term “temporal structure” is defined
as the measurable difference in terms of nucleotide or amino
acid substitution between two genetic sequences sampled at
two distinct points of time (63). Therefore, if the sequence
data lacks sufficient temporal structure, then proceeding to the
phylodynamic analysis may lead to biased posterior estimates
andmisleading conclusions (62). An interactive regression-based
approach is implemented in the TempEst software package (62)
to assess the strength of the association between sequences’
sampling dates and genetic divergence through time. R2 values
closer to 1 than 0 estimated from a time-stamped ML tree
using the root-to-tip genetic distance linear regression indicate
a strong temporal structure (62). Finally, TempEst can identify
incongruent sequences that are defined as outlier isolates that
caused substantially more or less genetic divergence from the
tip to the root than one would expect given their sampling
date (62). Incongruent sequences usually result from low
sequencing quality, alignment errors, laboratory adopted and
vaccine strains, as well as natural biological processes such
as recombination.

Running and Selecting Phylodynamic
Models
Once the sequence dataset and their metadata are curated (by
the past two steps, described above), we provide a variety
of choices for selecting and running phylodynamic models
depending on the objectives of the study. Steps involving prior
specification, simulations, and summarizing posterior inferences
are all implemented in the BEAST software package (24).

Substitution Models
Large evolutionary distances (i.e., substitution per site) between
pairs of sequences caused bymultiple substitution events through
time can be underestimated when using simple distancemeasures
(e.g., Hamming distance) (64). Hence, the distance correction
technique provided by the substitution models can compensate
for the underestimation of such large evolutionary distances
(64). Phylogenetic tree algorithms such as the ML approach
incorporates substitution models that employs continuous-
time Markov chain (CTMC) models (52). CTMC models are
stochastic methods that take values from a discrete state
evolutionary space at random times, which is analogous to
a nucleotide or amino acid substitution process, allowing for
glimpsing the complete state history over the entire phylogeny
where statistical inferences are drawn (52, 64, 65). Out of many
available substitution models, the Hasegawa, Kishino, and Yano
(HKY) (66) and the general time-reversable (GTR) (52, 67) are
the most common models used to infer the phylogeny of rapidly
evolving pathogens. Briefly, both substitution models assume
a constant rate of evolution and have two major parameters,
including a rate matrix (Q) and an equilibrium vector of
base frequencies. However, the HKY model rate matrix has
two exchangeability parameters, including one transition rate
and one transversion rate parameters (66), while the GTR
model has a symmetrical substitution rate matrix where all the
exchangeability parameters are free (67).

Accommodating the rate variation across sites can be achieved
by combining substitution models with site models such as
the discrete gamma (Ŵ) model (68). However, when assuming
that the evolution rate is equal to zero, the invariant site
(I) model is combined with the corresponding substitution
model (69). Selection pressure in protein-coding genes of
rapidly evolving pathogens, in terms of synonymous to non-
synonymous substitutions, usually occurs at high rates (70). This
evolutionary phenomenon can affect estimates of divergence
time and, therefore, need to be accounted for when selecting
a substitution model (71). Partitioning the gene segment into
unique codon positions and assigning different substitution and
site model combinations can accommodate the differences in the
evolutionary dynamics within gene segments of the pathogen
under study (70, 72). Different substitution, sites, and codon
partitioning models are implemented in many ML software
packages as well as in BEAST. However, selecting the most
realistic substitution/site model and partitioning scheme for
the sequence data can be statistically achieved using either
Bayesian Information Criterion (BIC) (73), Akaike Information
Criterion (AIC), or the corrected Akaike Information Criterion
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(AICc) (74, 75). These ML-based statistical methods are well-
implemented in both PartitionFinder (76) and jModelTest (77).
Yet, a more robust Bayesianmethod for selecting a site model and
an associated substitution model is implemented as an add-on
package in BEAST 2.X (78).

Branch-Rate Models
Time-calibrated trees are modeled with the genetic differences
between sequences through the molecular clock models, which
is defined as the clock that occurs after a stochastic waiting time
in the context of substitution rate (79). When assuming that the
substitution rate across the branches is uniform over the entire
tree, then the molecular clockmodel is defined as strict. However,
changes in the rate of evolution of rapidly evolving pathogens
usually differ between the subtrees of its inferred phylogeny, and
therefore, relaxed branch-rate models account for the variation
in the rate of molecular evolution from clade to clade across
the branches of the tree (79). Substitution rates across branches
are assumed to be either autocorrelated (80) (i.e., substitution
rates are dependent) or uncorrelated (81) (i.e., substitution rates
are independent). The uncorrelated branch-rate prior commonly
used for rapidly evolving viruses, in which the branch rates are
drawn either from exponential or log-normal parent distribution
(81). Another alternative to the strict clock model is local
molecular clocks, which can estimate different rates for different
predefined branch groups within a tree (82). However, for large
datasets, the manual task of assigning branches to different
groups is impractical (81), and therefore, Bayesian random local
clocks can nest a series of local clocks with each extending over a
group of branches within the full phylogeny (83).

Node-Age Models
Phylogenetic trees are inferred from individually sampled
sequences to estimate the statistical properties of the population
where the sequences were collected (84). Kingman’s n-coalescent
theory (i.e., node-age model) is the first stochastic model
framework aimed at estimating the size of the sequences’
population (85). The theory describes the distribution of
coalescent times in the phylogeny as a function of the size
of the population from which the sequences were drawn (85).
Hence, in the past few decades, the coalescent theory is the
core of phylodynamic methods and has shown to be the most
useful for inferring essential parameters that shapes the evolution
and population dynamics of evolving populations including
their effective size (86), rate of growth (87), structure (88),
recombination, and reticulate ancestry (89). Expanding the
temporal frame of sampling times is the ultimate approach
for increasing the statistical power and precision of the
coalescent model in estimating substitution rates and population
demographics of rapidly evolving viruses (90). An essential
evolutionary parameter estimated from the coalescent model is
effective population size (Ne) at a specific time (t) and interpreted
as the natural population that represents sample genealogies
that have statistical features of an idealized population size
through time Ne(t) (84). However, such interpretation is only
suitable for a non-recombinant single population, whereas
complex populations with more frequent recombination events

require the use of structured tree models (84) described in the
following section.

Estimating the posterior phylogeny of a well-mixed
population with changing population size can be attained
using either parametric or non-parametric node-age models
(84). Parametric node-age models accommodate standard
continuous population functions, the simplest and most naïve,
namely, the constant population growth (CP), which assumes
that the population growth rate is zero (91). The other three
parametric models include the logistic (LG) growth (assumes
the population growth rate is decreasing over time), exponential
(EX) growth (assumes the population growth rate is fixed
over time), and the expansion (EGx) growth (assumes the
population growth rate is increasing over time) (91). One would
expect, in the event of an epidemic caused by a rapidly evolving
virus like influenza and in the absence of new vaccination, the
population growth rate of the virus would realistically fit either
an exponential or an expansion growth rate model (44, 92).

Unlike parametric node-age models, non-parametric models
can be used to visually infer the history of population size
through time (i.e., genetic diversity) from the sequence data in
terms of inclines and declines (93). These models treat each
coalescent interval as a separate segment to represent a parameter
for population size in a given time, in which the number of
segments can be specified by the investigator to generate a
sky plot (93). The piece-wise constant Bayesian skyline (BS)
is the simplest non-parametric model, which assumes that the
effective population size is experiencing an episodic stepwise
changes through time (93). However, the BS model is shown
to be very sensitive to the total number of change points (i.e.,
coalescent intervals) when specified as a prior as well as to the
number of sequences sampled at each point of time (94). Hence,
a Gaussian Markov random fields Bayesian Skyride (GMRF)
was proposed as an alternative model to BS (95). The GMRF
model is less sensitive to the prior number of change points
because it implements a temporal smoothing approach to recover
accurate population size trajectories (95). However, an improved
version of the GMRF is the Skygrid (SG), which takes into
account mutation parameters of multi-locus sequences (33). The
SG provides a more realistic estimate of demographic history
in terms of population size and divergence times, as well as
flexibility in terms of the ability to specify cut-points to the time
trajectories (33). Furthermore, the SG model is the least sensitive
to the temporal distribution of sequences (33). A notable example
of sky plots utility in PRRS virus molecular surveillance in the
United States was demonstrated by Alkhamis et al. (21) and
Alkhamis et al. (37). Their sky plot inferred a distinctly high
genetic diversity through time for the emerging 1-7-4 RFLP-type
PRRV virus (37), while inferred consistent seasonal increases
and decreases in the relative genetic diversity through time for
endemic strains isolated between 2014 and 2015 (21).

Phylogeographic and Other Epidemiological

Phylodynamic Models
Mugration models are substitution models used to infer the
migration processes of evolving organisms (96). The most
notable implementation of a migration model was developed by
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Lemey et al. (97) using a CTMP to infer H5N1 avian influenza
virus’s global origins and movements between countries. They
used countries from which the sequences have been sampled
as discrete traits to estimate migration rates between pairs
of predefined sets of geographical locations, and therefore,
the method is named discrete phylogeography (97). Also, the
method is known as discrete trait analysis (DTA) because it
has the flexibility to use any other discrete trait such as host
or farm characteristics from which the sequences have been
isolated to model migration rates between infected hosts and
farms (37, 98). Besides, the method can infer ancestral origins
(i.e., from the assigned discrete traits) for the internal nodes
of the phylogeny through their estimated root state posterior
probabilities (RSPP) (97). However, the most notable feature of
discrete phylogeographic models is the integration of a Bayesian
stochastic search variable selection (BSSVS) procedure to identify
significant viral dispersal routes between geographical regions
or host species (97). BSSVS can also infer the significance of
the directionality in the migration process between pairs of
discrete traits through integrated symmetric and asymmetric
substitution models. The symmetric (Sym) model assumes that
the transition rate from state “A” to “B” is the same as the
transition rate from state “B” to “A” (i.e., directional spread
between traits is insignificant), while the asymmetric (Asym)
model assumes that the transition rate from state “A” to
“B” is different from the transition rate from state “B” to
“A” (i.e., directional spread between traits is significant) (97).
However, the lack of a sufficient number of sequences closer
to the root of the phylogeny can impact accurate estimation
of ancestral traits (i.e., ancestral geographical location or host)
by the DTA method (97). Therefore, DTA robustness can be
improved by increasing the geographical density and temporal
depth of sampling (96). DTA is also limited by the type and
number of variables that can be used to estimate ancestral
states. Therefore, the BSSVS framework has been extended to
accommodate a transitional rate matrix between discrete traits as
a generalized linear model (GLM) (22, 32). Themethod improves
biological plausibility of the inferred RSPP for the ancestral
traitsby simultaneously estimating the inclusion probabilities of
geographic, demographic, and environmental predictors (22).
However, the method is shown to be more sensitive to sampling
bias than the standard BSSVS approach (32). Hence, comparative
sensitivity analyses to sampling bias between the approaches are
recommended to avoid severely biased inferred RSPPs.

In some settings, geographical boundaries cannot be defined
by discrete spatial traits such as the distribution of wildlife hosts
or disease vectors and, therefore, viral evolution and spread better
modeled by continuous spatial diffusion models (96). When
precise geographical information is available (i.e., longitude
and latitude), continuous phylogeographic can reconstruct the
viral spatio-temporal evolutionary history using relaxed random
walk models (19). These models can additionally estimate viral
dispersal rate in km2/year and can distinguish whether the spatial
diffusion process was homogenous (e.g., dispersal by air) or
heterogeneous (dispersal by movements) (19, 21).

In many instances, sequence samples tend to cluster within a
geographical region leading to incomplete mixing and formation

of structure in the population. This might bias the posterior
inferences that estimated the coalescent phylogeographic models
mentioned above. Hence, the recently developed structured
coalescent tree models for inferring phylogeography can
simultaneously model the migration process between regions
while allowing for those regions to have their unique coalescent
rates (96, 99). Unlike BEAST 1.X, BEAST 2.X has recently
implemented several structured coalescent models for inferring
geographic and between-host transmission histories, including
Bayesian structured coalescent approximation (BASTA) (26),
structured coalescent transmission tree inference (SCOTTI)
(100), and marginal approximation of the structured coalescent
(MASCOT) (101).

The complexity of infectious disease transmission dynamics
pushed the capacity of phylodynamic models beyond
demographic and phylogeographic reconstructions into
investigating traditional and new epidemiological problems. One
notable example was demonstrated by Volz et al. by developing
a structured coalescent susceptible-infected-recovered (SIR)
model to infer reproductive numbers from viral sequences
data (102). Similar, but more complex, implementations of
mathematical epidemiology in the phylodynamic models were
described elsewhere (103, 104).

Setting and Running Phylodynamic Models
Prior phylodynamic models described above can be readily
selected and set using a graphical user interface (GUI)
implemented within the BEAST software package, namely, the
Bayesian Evolutionary Analysis Utility (BEAUti) (24, 105). After
selecting and setting the models, the software generates a
standard XML format structured text file allowing for flexible
modifications for more sophisticated evolutionary models.
However, the generated XML files are very complex in their
structure, and therefore, manual modifications should be made
by relevant experts to avoid the introduction of significant
error into the model (105). Additional tutorials on selecting
and setting evolutionary models using BEAST 1.X are available
elsewhere (106–108).

Phylodynamic model selection is a critical component of
the analysis pipeline described in Figure 1, simply because
different pathogens or gene segments have different evolutionary
processes. Therefore, using a single phylodynamic model with
similar priors to infer the evolution of multiple pathogens
may be biologically implausible, leading to biased inferences.
Exploring the fit of the sequence data to different phylodynamic
model combinations, in terms of substitution, branch rate, and
node age to infer divergence times, Time to the Most Recent
Common Ancestor (TMRCAs), evolutionary rates is the best
strategy for ensuring accurate estimation of posterior inferences.
For inferring viral demographic history, our suggested pipeline
(Figure 1) leads to the generation of eight phylodynamic model
combinations for a single gene segment, including the selected
substitution model (by PartitionFinder), two branch rate priors
(UCED and UCLN), and four node-age priors (Cp, Ex, Exg,
and SG). However, when inferring phylogeographic history using
DTA, we suggest exploring both Sym and Asym BSSVS models
(Figure 1), which will lead to the generation of 16 models. Our
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rigorous analytical pipeline is indeed timely and computationally
demanding, but on the other hand, it will lead to the selection
of the most realistic model that fits the sequence data with
confidence. However, this suggested pipeline is not a strict set of
procedures that will ensure appropriate inferences, and therefore,
researchers may explore other model or analytical pipelines
relevant to their evolutionary hypotheses. It is worth noting that
the computational efficiency has been substantially improved in
BEAST version 1.10 and the accompanied software library Broad-
platform Evolutionary Analysis General Likelihood Evaluator
(BEAGLE; permits flexible parallel computing) when compared
to earlier versions. The fit of the sequence data to the
most realistic phylodynamic model can be assessed through
simultaneous estimating the marginal likelihood (MLL) using
the path sampling (PS) (25) and stepping-stone sampling (SS)
(109) implemented in BEAUti using the standard settings (i.e.,
simulating across 100 samples for 1 million cycle from the
posterior to the prior with a prior reflection point of Beta [0.3,
1.0]). The joint posterior probability density of the models’
parameters is estimated by the MCMC algorithms. Setting the
appropriate length of the MCMC chains (i.e., number of cycles)
to ensure model convergence is dependent on the number of
sequences in the dataset. One recommended approach is to
quadratically increase the chain length relative to the number
of sequences (e.g., 4 million states per sequence) (110). Finally,
creating duplicate runs from each generated model can aid in
assessing the performance stability of the MCMC simulations
and their MLL estimates.

Evaluating Phylodynamic Models
MCMC log-files generated by BEAST can be thoroughly
evaluated using a friendly GUI software known as Tracer
(111). The software provides a simultaneous platform for
summarizing and visualizing posterior estimates. Appropriate
model convergence can be evaluated by examining the MCMC
mixing (based on acceptance ratios) using trace plots, after
discarding the 10% of the sample (the “burn-in”). Besides,
assessing the estimates of the effective sample sizes (ESS) for
each parameter, in which ESS values >200, indicates good model
convergence (111). On some occasions, good model convergence
does not ensure consistent parameter estimation due to the use
of non-informative priors implemented in BEAUti. Therefore,
it is critical to compare posterior parameter estimates (e.g.,
evolutionary rates, population growth rates, PS, and SS MLL
estimates) between independent runs for each model to warrant
that each parameter is closely identical to its duplicate run. In
case of improper model convergence and inconsistent parameter
estimation, it is recommended to either increase the length of
the MCMC chain or the use of informative priors from previous
MCMC runs for the same gene segment or pathogen.

Model selection is achieved by comparing the Bayes factor
(BF) of the resulting MLL estimates (from the PS and SS
methods) of their corresponding candidate models (25). Briefly,
the BF value of the candidate models is summarized using a
matrix and computed using the following equation:

BF = 2(lnp (Y|Mi) − lnp
(

Y
∣

∣Mj

)

)

where Y is the sequence data, Mi is the candidate model “i,”
Mj is the competing candidate model “j,” and lnp (Y|M) is the
MLL estimate by either SS or PS simulators. BF values estimated
by the SS method are summarized on the upper off-diagonal
of the matrix, while BF values estimated by the PS method are
summarized on the lower off-diagonal of the matrix. A model
with horizontal (i.e., row side of the maxtrix) BF values greater
than other candidate models is selected. Additional applied
examples on model selection using BEAST 1.X are available
elsewhere (106–108). The ultimate goal of the model selection
procedure is to find the best fitting model that generated the
data, while combining simplicity with biological realism, to
appropriately represent the evolutionary characteristics of the
pathogen under study (25, 112).

Summary and Visualization of Evolutionary
Inferences
Inferred relative genetic diversity through time (or other
reconstructed demographic trajectories) and its highest posterior
density (HPD) interval can be summarized using sky plots
(e.g., Skygrid plot) generated by Tracer. Similarly, estimates of
divergence time, TMRCAs, and substitution rate/site/year with
their HPD intervals can be summarized in Tracer using either
box or violin plots (111). Also, Tracer provides a flexible platform
for simultaneous comparison of evolutionary estimates inferred
by multiple phylodynamic models.

Next, the resulting marginal posterior probability density of
the selected model is summarized as a maximum clade credible
(MCC) tree using TreeAnotator (24) to generate a tree file. MCC
tree (from the tree file) can be then visualized and annotated
with either posterior support values or RSSPs of the discrete traits
at the internal nodes using FigTree (113). In addition, FigTree
provides many customizable tree visualization options as well as
it allows the users to upload additional information using a text
file to annotate flexibly descriptions on the nodes and branches
of the trees.

SpreaD3 is an interactive Java-based parsing and rendering
tool that can summarize and visualize phylodynamic
reconstructions to infer spatio-temporal and trait evolutionary
history (114). Also, SpreaD3 integrates JavaScript D3 libraries to
provide a web-based visualization platform for phylogeographic
trees and their related inferences by combining information from
the MCC tree and GeoJSON-based geographic map files (114).
SpreaD3 can generate a time-lapse that superimposes the MCC
tree annotated with either discrete or continuous spatial traits
on a map, which can be visualized using either GIS-KLM virtual
globe software (e.g., Google Earth) ormodern web-browsers (e.g.,
Safari or Chrome). This time-lapse demonstrates the epidemic
reconstruction of pathogen evolutionary history through space
and time, which can quantify the diffusion processes within
and between geographical regions. Furthermore, SpreaD3 can
identify and plot well-supported rates between pairs of discrete
traits using BFs estimated from the symmetric or the asymmetric
BSSVS models. Statistically significant rates with large BF values
can be used to demonstrate critical viral dispersal routes between
geographical regions or transmission cycles between host species.
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WORKED EXAMPLE: EVOLUTIONARY
DYNAMICS OF SWINE INFLUENZA IN THE
UNITED STATES BETWEEN 2015 AND 2018

Sequence Data
The spillover of H3 SI virus from humans to swine in the
early 2010s in the United States resulted in a novel emerging
virulent strain, which was antigenically distinct from endemic
swine strains, and therefore was named “human-like” H3
virus (115). Swine-related anthropological activities such as
pig movement and vaccination are the most likely factors for
the continuous emergence of SI novel strains (6). Therefore,
integrating phylodynamic methods with influenza surveillance
systems may reduce the continuous evolutionary implications of
SI viruses on both public and animal health in the United States
and worldwide. Here, we chose DTAmodels for our comparative
phylodynamic analyses example, due to their popularity, ease of
use, interpretation, and computational efficiency when compared
to more complex similar models.

Hence, we retrieved HA and PB2 nucleotide sequences
of human-like H3 SI from the Influenza Research Database
(116) to explore their evolutionary history using our suggested
phylodynamic pipeline, described above (Figure 1). The data
comprised 352 sequences with complete date and geographical
information for each gene segment and was collected from
17U.S. states (Arkansas, Illinois, Indiana, Iowa, Kentucky,
Maryland, Michigan, Minnesota, Missouri, North Carolina,
Ohio, Oklahoma, Oregon, Pennsylvania, South Dakota, West
Virginia, Wisconsin) between January 8, 2015 and June 1,
2018. The sequence data were collected from the swine
production systems and exhibition swine agricultural state
fairs as part of the United States Department of Agriculture
(USDA) swine influenza surveillance program (40) and was
partially analyzed by Walia et al. using classical phylogenetic
methods (6). We aligned the sequences for both gene
segments and assessed the topological (in)congruence of their
phylogeny by performing an ML analysis for the individual
segments using the GTR + Ŵ substitution model, which
entailed 10 through bootstrap searches with 100ML replicates
in each run (Supplementary Figure 1). For the subsequent
phylodynamic analyses, we removed recombinant and 100%
identical sequences, which reduced the dataset to 142 sequences
for each gene segment (Supplementary Table 1). We then
evaluated the fit of the sequences to themost realistic substitution
model and partitioning scheme using the BIC approach. Finally,
we evaluated the temporal signal in the sequence data and found
that both segments were suitable for the subsequent molecular
clock analyses (R2 = 0.65 and 0.40 for HA and PB2, respectively)
(Supplementary Figure 2).

Comparative Phylodynamic Analyses
We assessed the sensitivity of the inferred posterior evolutionary
of human-like H3 SI sequence data to the choice of different
gene segments (i.e., HA vs. PB2) and phylodynamic priors,
including substitution, discrete spatial trait, branch rate, and
node-age models on the (Figure 1). For each gene segment,
we generated 16 phylodynamic models (a total of 32 runs

for both segments) using the default none-informative priors’
combinations implemented in BEAUTi (Figure 1). These prior
models included: (1) the GTR + Ŵ vs. the HKY + Ŵ for
the site models; (2) the symmetric vs. asymmetric for discrete
spatial models; (3) the UCLN vs. UCED for the clock models;
and (4) the CP vs. The EG vs. The EGx vs. the SG for the
coalescent tree models (Figure 1). We excluded spatial traits (i.e.,
U.S. states) with only one sequence (Supplementary Table 2)
leading to the inclusion of 10 states in the subsequent DTA.
Also, we evaluated the fit of the 16 phylodynamic models to
the HA and PB2 sequences using the BF comparisons of their
MLL estimated by the PS and SS simulator in order to select
the most realistic model and correctly interpret its posterior
inferences. We then used two replicate MCMC simulations for
150 million cycles and sampled every 1,500th state for each
candidate model.

After assessing for proper model convergence, we compared
the inferred evolutionary demographics of each candidate model
by summarizing their inferred divergence times, substitution
rates, and TMRCAs. Besides, we then generated the SG
plots to compare relative genetic diversity for HA and
PB2 gene segments inferred from the two different sites
and discrete spatial models. Similarly, we compared the
phylogeographic inferences of each model by generating MCC
trees, summarizing the RSPPs of the states, and plotting them
at the internal nodes of their corresponding trees. Finally, we
selected and plotted the statistically significant dispersal routes
between states under each candidate model using a cutoff
BSSVS-BF ≥ 10.

Results
Demographic Posterior Inferences of HA and PB2

Gene Segments
The BIC values, described above, indicated that the HKY +

Ŵ is the best fitting substitution model for the HA gene
segment (BIC = 13,399), while the GTR + Ŵ is the best
fitting substitution model for the PB2 gene segment (BIC =

20,029). In addition, results of the BF values (≥5) indicates
that the best fitting branch-rate and node-age models to the
sequence data were the SG + UCLN for HA and SG +

UCED for PB2 segments (Supplementary Tables 3–6). However,
there were no significant changes in the posterior demographic
inferences when choosing the opposite substitution model
for both gene segments. Similarly, our results indicate that
the choice of discrete spatial and node-age models does
not substantially change the estimated divergence times and
substitution rates/site/year (Figure 2) for each gene segment
alone. Additionally, these estimates were also not sensitive to
the choice of branch-rate models (i.e., UCED and UCLN).
However, when comparing divergence times between segments,
our results indicate substantial differences in a magnitude of
∼8 years, in which the divergence time for the HA segment
was around 2013 (Figure 2A), while for the PB2 segment, it
was around 2005 (Figure 2C). No differences were observed in
the substitution rates/site/year between the two gene segments,
which were ranging between 3.3 × 10−3 (95% HPD; from 2.8
× 10−3 to 3.9 × 10−3) and 2.9 × 10−3 (95% HPD; from 2.2 ×
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FIGURE 2 | Box plots of divergence times and evolutionary rates (substitution rate/site/year) of hemagglutinin (HA) and polymerase basic 2 (PB2) gene segments of

human-like H3 swine influenza virus collected between January 2015 and June 2018 in the United States. The boxplots summarize the posterior estimates of eight

phylodynamic model combinations (node-age and BSSVS priors) for each gene segment. Boxes represent 95% high posterior density (HPD), and midlines indicate

the posterior median for each estimate. Blue and red boxes indicate symmetric and asymmetric models, respectively. (A) Divergence times of HA gene. (B)

Substitution rates/site/year of HA gene. (C) Divergence times of PB2 gene. (D) Substitution rates/site/year of PB2 gene.

10−3 to 3.8 × 10−3) for HA and PB2 segments, respectively
(Figures 2B,D).

Similarly, posterior estimates of TMRCAs were not sensitive
to the choice of phylodynamic priors but were different
between the two gene segments (Figure 3). Hence, based on
the HA segment, our results hint that the oldest human-
like H3 strains emerged from the state of Minnesota in mid-
2013 (Figures 3A,B), but with a notable overlap in the 95%
HPD of the TMRCAs inferred for other states (excluding
Maryland). However, results distinctly suggest that the youngest
strains emerged from the state of Maryland in early 2017.
Results of the PB2 segment were inconclusive in terms of
determining the oldest strains, but identical to the HA gene in
identifying Maryland as the state of the youngest viral strains
(Figures 3C,D). Also, the choice of spatial trait model did not
affect our estimates of genetic diversity for both HA and PB2
segments (Figure 4). Our SG plots inferred seasonal variations
in terms of increases and decreases, in the genetic diversity
through time for HA segments (Figures 4A,B), while the genetic
diversity of the PB2 segment gene slightly declined after 2015
(Figures 4C,D).

Phylogeographic Posterior Inferences of HA and PB2

Gene Segments
Our inferred phylogeographic posteriors did not show
sensitivity to the selection of substitution or molecular
clock priors. However, substantial differences were inferred
when selecting different node-age and discrete spatial trait
priors. Inferences from both the CP and the EX node age
with the asymmetric models implicated Missouri as the most
likely ancestral state for the human-like H3 virus currently
circulating in the United States when using the HA gene
segment (Figures 5A,B). However, the EGx and the SG
with the asymmetric models Illinois and Minnesota as the
most likely ancestral states, respectively (Figures 5C,D).
Yet, when using the HA segment, the symmetric model
with the CP, EG, and EGx priors consistently implicated
Minnesota with approximately similar estimates of RSPPs
(Figures 5E–G). In contrast, the use of the symmetric model
with the SG prior implicated Iowa as the ancestral location
for the currently circulating human-like H3 strains (RSPP
= 0.36) (Figure 5H). Interestingly, the HA sequence data
uniquely favored this prior combination when using the
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FIGURE 3 | Violin plots of state level time to the most recent common ancestors (TMRCA) of hemagglutinin (HA) and polymerase basic 2 (PB2) gene segments of

human-like H3 swine influenza virus collected between January 2015 and June 2018 in the United States. The plots were generated from the Skygrid coalescent tree

model. Red and blue colors indicate the asymmetric and symmetric BSSVS priors, respectively. (A) TMRCAs of HA gene estimated from the asymmetric BSSVS

model; (B) TMRCAs of HA gene estimated from the symmetric BSSVS model; (C) TMRCAs of PB2 gene estimated from the asymmetric BSSVS model; (D) TMRCAs

of PB2 gene estimated from the symmetric BSSVS model.

BF comparisons for the best fitting phylodynamic model
(Supplementary Tables 3, 4).

Our BF values suggested that the PB2 sequence data favored
the asymmetric model with the SG prior, but with a very
slight edge over the symmetric model with the same coalescent
prior (Supplementary Tables 5, 6). RSPPs inferred from the
PB2 segment were almost equal for all states and, hence, were
inconclusive, when using the asymmetric model with the four
coalescent priors (Figures 6A–D). Similarly, using the symmetric
model with the four coalescent priors was inconclusive in terms
of identifying the ancestral location for the currently circulating
viral strains (Figures 6E–H). More specifically, the magnitude of
differences between Minnesota and Missouri and in the inferred
RSPPs, across different coalescent priors, was substantially small
(Figures 6E–H). For example, when using the SG prior, the
inferred RSPPs were 0.18 and 0.22 for Missouri and Minnesota,
respectively (Figure 6H).

Our BF-BSSVS analyses, using the asymmetric model with the
CP and the EX coalescent priors for theHA gene segment, suggest
that the top three most significant unidirectional routes of viral
dispersal (BF > 18) were between Minnesota, Iowa, Illinois, and
Missouri (Figures 7A,B). The inferred routes maintained their
unidirectionality from the origin to the destination geographical

locations, using CP and EX priors (Figures 7A,B). Similarly,
the order of statistical significance suggests that the route from
Iowa to Minnesota is the most important for viral dispersal
between states (Figures 7A,B). In contrast, the EXg with the
asymmetric model suggests that the route from Ohia to Indiana
is substantially the most significant dispersal route (BSSVS-BF
= 1,157) (Figure 7C). Nevertheless, the SG prior agrees with
the results of the CP and EX priors in inferring the route
from Iowa to Minnesota as the most significant (BSSVS-BF =

37) (Figure 7D), while inferences from the symmetric model
and the four coalescent priors consistently agreed that the top
most significant bidirectional route of viral dispersal (BF ≥

990) was between Indiana and Ohio (Figures 7E–H). However,
disagreements were inferred on the second and the third most
significant routes when using the CP and EX on one side and EXg
and SG on the other (Figure 7H).

Dispersal routes inferred for PB2 (including the order of
significance) were also sensitive to the selected discrete spatial
model and slightly to the coalescent priors (Figure 8). Thus,
when using the asymmetric model, the top two unidirectional
routes included (1) Iowa→Minnesota; (2) Indiana→ Kentucky
(Figures 8A–D). While the CP, EX, and EXg inferred the route
from Illinois to Missouri as the third most significant route
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FIGURE 4 | Bayesian Skygrid (SG) plots of the relative genetic diversity through time of hemagglutinin (HA) and polymerase basic 2 (PB2) segments of human-like H3

swine influenza virus collected between January 2015 and June 2018 in the United States. The dark line indicates the posterior median estimate, and the 95% high

posterior density (HPD) is indicated by the light shaded areas (red and blue for the asymmetric and symmetric BSSVS priors, respectively). The vertical gray line

indicates the estimated time at which the relative genetic diversity transitioned from a slow to a fast growth rate. Yellow bars indicate the temporal distribution of the

sequence data. (A) SG plot of HA gene inferred from the asymmetric BSSVS prior. (B) SG plot of HA gene inferred from the symmetric BSSVS prior. (C) SG plot of

PB2 gene inferred from the asymmetric BSSVS prior; (D) SG plot of PB2 gene inferred from the symmetric BSSVS prior.

(Figures 8A–C), the SG prior inferred the route from Ohio to
Indiana as the third most significant route (Figure 8D). Finally,
our inferred top three significant dispersal routes were from the
symmetric model between (1) Indiana and Ohio; (2) Minnesota
and Iowa; (3) Indiana and Kentucky (Figures 8E–H).

DISCUSSION

In the past decade, our phylodynamic pipeline became well-
established and demonstrated powerful potentials to trace the
evolutionary history of both animal and human pathogens
making it an ideal tool for designing new molecular surveillance
systems. In this study, we revisited essential concepts and
definitions within the field of phylodynamic methods. Also,
we challenged the robustness of the posterior evolutionary
parameters, inferred by the commonly used phylodynamic
models, using two gene segments, of the currently circulating
human-like H3 SI viruses isolated in the United States, and
multiple priors. Subsequently, we compared similarities and
differences between the posterior parameters inferred from HA

and PB2 sequence data using multiple phylodynamic models.
Hence, we explored the robust and sensitive aspects of SI
phylodynamic models and highlighted the importance of model
selection within their analytical framework. However, unlike
classical phylogenetic methods currently implemented within the
SI surveillance system in the United States, we were able to reveal
higher resolution insights into the evolutionary epidemiology of
human-like H3 viruses by quantifying their demographic and
phylogeographic history. Therefore, animal health researchers
and stakeholders need to be aware of the method’s features,
strengths, and limitations for generating reliable inference to
guide future disease intervention activities properly.

Updated Insights in the Evolutionary
Epidemiology of Swine Influenza in the U.S.
Based on the results of the best fitting phylodynamic models
for both HA and PB2 segments, evolutionary rates of currently
circulating human-like H3 viruses in the United States
remain high with no apparent signs of substantial declines
(Figures 2B,D) and were similar to what was inferred elsewhere
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FIGURE 5 | Maximum clade credibility (MCC) phylogeny of the HA segment of human-like H3 swine influenza virus collected between January 2015 and June 2018 in

the United States. The trees are inferred from eight phylodynamic model combinations (node-age and BSSVS priors). The color of the branches represents the most

probable location state of their descendant nodes, and their color-coding corresponds to the upper left bar chart, which represents the root location state posterior

probabilities (RSPP) for each state. (A–D) Trees inferred from four node-age + asymmetric BSSVS priors. (E–H) Trees inferred from four node-age + symmetric

BSSVS priors.
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FIGURE 6 | Maximum clade credibility (MCC) phylogeny of the PB2 segment of human-like H3 swine influenza virus collected between January 2015 and June 2018

in the United States. The trees are inferred from eight phylodynamic model combinations (node-age and BSSVS priors). The color of the branches represents the most

probable location state of their descendant nodes, and their color-coding corresponds to the upper left bar chart, which represents the root location state posterior

probabilities (RSPP) for each state. (A–D) Trees inferred from four node-age + asymmetric BSSVS priors. (E–H) Trees inferred from four node-age + symmetric

BSSVS priors.
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FIGURE 7 | Dispersal routes of human-like H3 swine influenza virus between states inferred from the HA gene segment. Dispersal routes with non-zero rates were

inferred using the Bayesian stochastic search variable selection (BSSVS) approach, and statistically significant routes were selected using Bayes factors (BF). The top

three dispersal routes with the strongest statistical support (by the BFs) are plotted. Arrows’ colors correspond to the color legend of their BF values on the upper right

of each map. (A–D) Dispersal routes inferred from four node-age + asymmetric BSSVS priors. (E–H) Dispersal routes inferred from four node-age + symmetric

BSSVS priors.
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FIGURE 8 | Dispersal routes of human-like H3 swine influenza virus between states inferred from the PB2 gene segment. Dispersal routes with non-zero rates were

inferred using the Bayesian stochastic search variable selection (BSSVS) approach, and statistically significant routes were selected using Bayes factors (BF). The top

three dispersal routes with the strongest statistical support (by the BFs) are plotted. Arrows’ colors correspond to the color legend of their BF values on the upper right

of each map. (A–D) Dispersal routes inferred from four node-age + asymmetric BSSVS priors. (E–H) Dispersal routes inferred from four node-age + symmetric

BSSVS priors.
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(117). Furthermore, inferred relative genetic diversity through
time did not decline for the HA segment and showed evidence
of seasonal variation between 2014 and 2018 (Figures 4A,B),
while a slight decline in the genetic diversity was inferred
for the PB2 segment between 2015 and 2018 (Figures 4C,D).
These findings suggest that currently circulating human-like
H3 viruses will continue evolutionary activity leading to the
generation of novel strains, which is attributed to the frequent
and continuous exchange of viruses between commercial and
exhibition swine operations in the United States with the later
as the epicenter of that exchange (117). Our estimates of the
TMRCAs for HA segment slightly agree on the notion that the
oldest H3 viruses diverged from earlier outbreaks in the state
of Minnesota, which is a central region for the swine industry
in the United States (Figure 3). However, the notable overlap
in the inferred 95% HPDs of the TMRCAs between most states
(Figure 3B) suggest that the currently circulating strains are
shifting their evolutionary dynamics in terms of re-emergence
and dispersal when compared to earlier strains. Additionally,
both gene segments agree on the assumption that H3 outbreaks
were recently introduced into the state of Maryland (Figure 3).

The state of Minnesota was inferred to be the ancestral
location of human-like H3 viruses isolated from outbreaks
observed between 2009 and 2012 (118), which agrees with our
TMRCAs inferred fromHA segment (Figure 3). However, results
of the SG + UCLN symmetric model, selected as the best
fitting model for HA sequence data (Supplementary Table 4),
implicates the state of Iowa as the ancestral region (after 2013)
for currently circulating human-like H3 viruses, followed by the
state of Minnesota as a secondary ancestral location (Figure 5H).
This is not surprising since Iowa and Minnesota share the most
prominent swine production system in the United States with
the highest swine density, unrestricted and intense movement of
animals between states. Although Iowa and Minnesota are the
original hotspots of H3 viruses, our BSSVS BF results showed
a markedly significant viral dispersal route between Indiana
and Ohio (BF = 990) (Figure 7H). This suggests that the H3
viral gene flow between Ohio and Indiana, inferred for 2009–
2012 viruses remains a vital migration route since, particularly
within exhibition swine populations (117). Even though Illinois
and Indiana formulate one swine production system, there was
no significant viral dispersal route inferred between the states.
Despite the continuous nature of animal movement within
the production system of Minnesota and Iowa, no significant
dispersal route was inferred between the two states using the
HA segment (Figure 7H). Nevertheless, using the PB2 segment,
a highly significant dispersal route was inferred from Iowa to
Minnesota, suggesting that Iowa might be the new epicenter
for virus dispersal of the currently circulating H3 lineages
(Figure 8D). This result is further supported by the significant
migration route between Iowa on one side and Illinois and Ohio
on the other when using the HA segment (Figure 7H). Also, the
inferred dispersal route between Iowa and Illinois (Figure 7H)
may reflect interstate movements of exhibition pigs (119). Hence,
the movements of exhibition pigs across the United States
possibly led to expanding the spatial spread of H3 viruses to states
with limited swine production systems (117).

Unlike the HA segment, RSPPs inferred from the most
realistic phylodynamicmodel for PB2 sequences (i.e., asymmetric
+ SG + UCED) (Supplementary Table 5) did not yield
conclusive results about the ancestral geographical origin of
human-like H3 in the United States (Figure 6D). Instead, this
result demonstrates a homogenous spatio-temporal diffusion
process of the PB2 gene between states (Figure 6D), suggesting
that the virus has maintained an endemic status across the
United States after 2010. Also, results of the SG plot for
PB2, described above, showed an overall stationarity in its
genetic diversity through time (despite the slight early incline
and later decline) (Figure 4C), when compared to the HA
gene (Figures 4A,B), supporting the notion of endemic status.
However, using the PB2 segment, we inferred a notably
significant dispersal route originating from Iowa to Minnesota
(BSSVS = 193) (Figure 8D), reflecting a well-established swine
transportation route within a production system, as described
above. However, this route was not inferred as significant
when using the best fitting model for the HA segment
(Figure 7H). These results may be attributed to the fact that
PB2 evolutionary dynamics are moderately slower than the
HA segment (Figure 2) in terms of strength of the temporal
signal (Supplementary Figure 2), substitution rate (Figure 2),
and age of the segment (Figure 3). Therefore, the PB2 segment
maintained similar evolutionary dynamics to earlier strains that
emerged in Minnesota and dispersed into Iowa (120). Yet,
both HA and PB2 segment agree on the importance of Iowa
as a geographical region for dispersal of currently circulating
H3 lineages (Figures 7H, 8D). Additionally, we inferred two
significant viral dispersal routes originating from Kentucky to
Indiana and from Ohio to Indiana (Figure 8D), which further
supports the role of exhibition of swine movements between
states in maintaining the spread of H3 viruses. Both dispersal
routes are mainly maintained by the annual agricultural fairs
where exhibition susceptible swine and humans from these states
are frequently exposed to direct and indirect contacts from the
same infected hosts (121). It is worth noting that the route from
Kentucky to Indiana was hypothesized to be important for H3
gene flow between states, but past evolutionary analyses did not
observe it due to the lack of sufficient samples (117).

Robustness and Limitations of
Phylodynamic Methods
The uneven sampling of sequences in terms of temporal depth
and frequency of associated discrete traits is an inherent
limitation of most phylodynamic studies. For example, the
inclusion of many recent sequences from a single geographical
location may lead to a biased bottleneck effect in the shape of
inferred population size through time when using a coalescent
model from the Skyline family (122). This issue can be resolved by
designing studies with uniform probability sampling with respect
to space and time (122). Further, setting DTA is user friendly
and computationally more efficient when compared to more
complex coalescent models, but it underlays a few assumptions,
such as that the sequence sample size is proportional to the
size of the selected discrete state (26). Thus, including sequences
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from severely undersampled discrete traits will tend to produce
unreliable posterior inferences, where for example, inferred
RSPPs will be skewed toward oversampled areas. Nevertheless,
undersampling is a common problem, especially in passive
surveillance data, and therefore, the use of structural coalescent
models (e.g., BASTA) might be more appropriate (26).

Despite this inherited sensitivity of phylodynamic methods to
uneven sampling, our posterior inference from the best fitting
models showed remarkable robustness toward such limitation.
Although the largest number of collected sequences was in
2017 (80) (Supplementary Table 2), estimates of relative genetic
diversity through time did not show any striking jumps in
that year for both HA and PB2 segments (Figures 4B, 2D).
Additionally, for the HA gene, Iowa (with 26 sequences) rather
than Ohio (39 sequences) was inferred as the ancestral location
(Figure 5H, Supplementary Table 2). However, seven out of the
17U.S. states were excluded from the DTA due to the lack of
sufficient sequences, and therefore, their role was unquantified in
shaping the spatio-temporal evolution of SI. Yet, these states had
substantially fewer swine-related activities as well as SI outbreaks
than analyzed states.

Further, we showed how the posterior estimates of
demographic reconstruction were almost insensitive to the
choice of different phylodynamic priors for each gene segment
(Figures 2–4). However, inferred evolutionary estimates from
different gene regions may differ (41) or coincide (118) due
to the natural variation in their mutation rate over time. This
raises the question of whether using longer gene segments or
whole genomes provides deeper resolution into the evolutionary
history of rapidly evolving pathogens. Past influenza A studies
(41, 123, 124), including the present study, showed that HA
and NA segments typically exhibit higher evolutionary rates
than more conserved segments like PB1 and PB2. Subsequently,
segments with higher evolutionary rate will also display stronger
evolutionary signals, as described above. In our analyses,
the width of the 95% HPDs (i.e., length of the time scale)
for the median age and TMRCAs of PB2 were remarkably
wider than the HA segment (Figures 2, 3). This sizeable width
of the posterior intervals reflects the magnitude of uncertainty
surrounding inferences from the PB2 segment, as well as suggests
that inferences from the HA segment were more precise (or
robust) than the PB2 segment. Also, we demonstrated how the
PB2 segment failed to identify the ancestral geographical location
of currently circulating H3 viruses (Figure 6D). While, using the
symmetric model, we inferred four candidate ancestral locations
with inconclusive RSPPs (Figure 6H). Further, Nelson et al.
(117) were not able to infer a significant migration route between
Indiana and Ohio using the PB2 segment. Yet, we were able to
infer this particular route as significant using both the HA and
the PB2 segments (Figures 7H, 8D). Additionally, Scotch et al.
(118) confirmed agreements in the phylogeographic inferences
between HA and NA gene segments. This highlights another
decisive question about the suitability and efficiency of using
single, multiple, or whole genome when using phylodynamic
methods for molecular surveillance of viral diseases. Most
researchers advocate for whole-genome analysis by either
analyzing each segment alone or as concinnated segments.

However, in the presence of a large number of sequences, these
strategies are ill timed and require massive computational
resources, making them inefficient for targeted and near-real-
time surveillance systems. It is worth noting that substitution
rate and divergence time inferred by Alkhamis et al. (43) using
the FMD SAT1 VP1 segment were similar to the evolutionary
estimates inferred by Lasecka-Dykes et al. (125) using whole-
genome sequences, confirming the robustness of phylodynamic
methods. Nevertheless, the presence of recombination events can
severely impact the robustness of phylodynamic methods leading
to inferring biased evolutionary histories (126). Hence, targeting
the most rapidly evolving gene segment at the beginning of
an epidemic may suffice molecular surveillance activities. That
said, the choice between gene segments or the whole genome
should depend on the evolutionary properties of the pathogen,
frequency of recombination events, availability of resources, and
objectives of the molecular surveillance system.

As described above, phylodynamic inferences tend to be
biased toward the available subsets of sequences data. Hence,
when analyzing novel sequence datasets, it is critical to combine
them with genetically related lineages published in the scientific
literature or publicly available databases to reduce the impact
of sampling bias as well as improve the reliability and accuracy
of posterior evolutionary inferences. Unfortunately, several
examples published in the scientific literature used phylodynamic
methods on novel sequence datasets while ignoring their
published relatives (127–129). This led to inferring MCC trees
with unaccounted phylogenetic relationships such as nodes,
branches, and roots.

Our worked example opens considerations for future work
involving the use of more complex phylodynamic models,
described above, to shed deeper insights into the evolutionary
epidemiology of SI. For example, when the exact geographical
locations of the sequences are available, the use of continuous
phylogeographic models will enable us to include all states in
the analyses, including states with few sequences. Besides, we can
estimate the spatiotemporal dispersal speed of the virus as well as
identify dispersal patterns (i.e., homogeneous vs. heterogeneous)
across different geographical regions. Also, the use of GLM
geographical models can directly quantify the importance of
different environmental (e.g., climate) and demographical (e.g.,
pig density) factors in shaping the evolutionary history of SI in
the United States. Finally, exploring the potentials of structured
coalescent models in improving the reliability of inferences
derived from basic DTAs should be considered as well.

Future of Phylodynamic Methods for
Molecular Surveillance of Animal Diseases
The current surveillance programs rely heavily on collecting
and analyzing spatial, temporal, and genomic aspects of an
outbreak using classical statistical methods in a disjointed
analytical framework. This disjointed framework suffers from
many biases and is not capable of answering more profound
epidemiological questions about the outbreak of current
dynamics. Using our suggested phylodynamic analytical pipeline,
we were able to fulfill critical epidemiological questions about
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the emergence and evolution of currently circulating human-
like H3 SI viruses in the United States, with the primary goal
of guiding risk-based surveillance resources. For example, using
inferences from the HA segment, we were able to identify
the dates of epidemic introduction to each state. Also, we
were able to identify the geographic origins of the current
outbreaks and observed their genomic-spatio-temporal diffusion
process through time between states. Also, we identified high-
risk viral dispersal routes between states, rank-ordered their
significance, and defined their directions. All of these are integral
components of an effective risk-based molecular surveillance
program, and the ability to achieve in real time is the future
molecular surveillance of animal diseases. Nevertheless, the
availability of computational resources for designing an ongoing
phylodynamic-based molecular surveillance system will always
remain a challenge, especially for developing countries. That
said, a few open-source software developed recently can perform
basic phylodynamic analysis (e.g., estimate molecular clocks and
infer evolutionary models) using an ML statistical framework,
including TimeTree (130), treedater R package (131), and Least
Square Dating (120). While the algorithms implemented in these
software trades off the advantages of the Bayesian framework,
in the presence of large sequence datasets, they can produce
evolutionary estimates similar to those estimated by BEAST using
substantially less computational resources (120, 130, 131).

Nextstrain (https://nextstrain.org), which implements
TreeTime is a futuristic working example of a web-based
real-time molecular surveillance system for important human
pathogens such as influenza, Ebola, Dengue, and the newly
emerging corona (COVID-19) viruses. This surveillance system
has an on-going phylodynamic analytical engine that traces,
in real-time genetic diversity, divergence times, geographical
origins, and dispersal on global scales. The system updates the
results of the MCC tree once new sequences are deposited in
other web-based publicly available genomic databases. However,
this project is achieved through rigorous and consistent global
collaboration and data sharing. In the United States, resources
for developing a similar system for tracing animal diseases
are readily available. Nevertheless, the chain of collaboration
between researchers, government, and producers in the animal
sector is hard to maintain due to logistic, economic, and
educational (i.e., lack of awareness and skill in phylodynamic
methods) reasons. Nevertheless, recent scientific literature on
the use of phylodynamic methods for animal disease surveillance
is notably growing, which reflects the increased awareness
between veterinarians about the capacities of such methods and

the goodwill of the industry leaders to voluntarily share their

data (37, 132). Therefore, we anticipate a new era of animal
disease prevention and control in the United States. In contrast,
veterinary infrastructure in developing countries is severely
lacking, in terms of reporting and data sharing, when compared
to their human health sectors. Consequently, the question related
to the future of implementing phylodynamic methods in global
animal surveillance remains unanswered.

CONCLUSIONS

Our selected phylodynamic analytical pipeline offers an
integrated approach to not only answering more profound
epidemiological questions about emerging and endemic animal
diseases but also attempts to reduce the impact of its inherent
limitations to offer less biased and biologically plausible
inferences about the pathogen evolutionary characteristics
to properly guide intervention activities. This study has
highlighted the value of phylodynamic methods in improving
current and future molecular surveillance efforts against animal
diseases using human-like H3 SI virus as a working example.
We reviewed and outlined basic concepts and aspects of
phylodynamic methods and attempted to summarize essential
components of the methodology in one analytical pipeline
to facilitate the proper use of the methods by animal health
researchers. We also pinpointed requirements and challenges
for integrating phylodynamic methods in routine animal disease
surveillance activities.
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