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INTRODUCTION 
 

With an aging population, the burden of kidney disease 

gradually occupies more and more medical resources. 

Between 2013 and 2016, chronic kidney disease (CKD) 

was reported in 14.8% of the United States (US) general 

adult population. As of December 31, 2016, there are 

2,160.7 patients with end stage renal disease (ESRD) 

per 1,000,000 US citizens, according to the US Renal 

Data System's latest Annual Data Report [1]. Therefore, 

there is an urgent demand for effective drugs to delay 

kidney impairment. 
 

Beyond its hypoglycemic action, metformin has 

pleiotropic protective effects in various disease models, 

including polycystic ovary syndrome [2], cancer [3], 

neurological disorders [4], and kidney disease [5]. In 

particular, emerging evidence has demonstrated 

potential protective effects of metformin on acute  

 

kidney injury (AKI), CKD, diabetic kidney disease 

(DKD), autosomal dominant (adult) polycystic kidney 

disease (ADPKD), lupus nephritis (LN), renal 

neoplasm, and kidney transplantation [6–12]. 

 

Metformin protects the kidneys mainly via AMP-

activated protein kinase (AMPK) signaling and AMPK-

independent pathways. AMPK is a well-known energy 

and nutrient sensor, which regulates the switch from 

anabolic to catabolic metabolism to control energy 

homeostasis [13]. Many kidney diseases are intertwined 

with abnormal metabolic status, such as hyperglycemia, 

hyperlipidemia, and hyperuricemia. And many studies 

has explored the relationship between depressed AMPK 

activity and kidney disease [14–16], revealing that the 

AMPK agonist metformin exerts protective actions  

in a variety of kidney disease models, including  

those induced by hyperglycemia, advanced glycation 

end products (AGEs), proteinuria, and high fatty  
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ABSTRACT 
 

Metformin is a frontline hypoglycemic agent, which is mainly prescribed to manage type 2 diabetes mellitus 
with obesity. Emerging evidence suggests that metformin also exerts protective effects against various kidney 
diseases. Some postulate that kidney disease is actually a metabolic disease, accompanied by nonresolving 
pathophysiologic pathways controlling oxidative stress, endoplasmic reticulum stress, inflammation, 
lipotoxicity, fibrosis, and senescence, as well as insufficient host defense mechanisms such as AMP-activated 
protein kinase (AMPK) signaling and autophagy. Metformin may interfere with these pathways by 
orchestrating AMPK signaling and AMPK-independent pathways to protect the kidneys from injury. 
Furthermore, the United States Food and Drug Administration declared metformin is safe for patients with mild 
or moderate kidney impairment in 2016, assuaging some conservative attitudes about metformin management 
in patients with renal insufficiency and broadening the scope of research on the renal protective effects of 
metformin. This review focuses on the molecular mechanisms by which metformin imparts renal protection 
and its potential in the treatment of various kidney diseases. 
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acid and folic acid levels, in both AMPK-dependent  

and -independent manners. Furthermore, its renal 

protective efficacy has been partly demonstrated in 

clinical trials. In this review, we will discuss the renal 

protective actions of metformin and its therapeutic 

benefits in different kidney diseases. 
 

Pharmacological hallmarks of metformin 
 

Metformin is an extract from Galega officinalis, which 

is primarily used to treat type 2 diabetes mellitus 

(T2DM), with a superior safety and efficacy profile. 

Metformin exerts a hypoglycemic effect by reducing 

hepatic glycogenesis and intestinal glucose absorption, 

improving glucose uptake and utilization in peripheral 

tissues, and increasing tissue insulin sensitivity [17]. 

Pharmacokinetic experiments in humans using 11C-

metformin demonstrated that metformin mainly 

concentrates in the intestine, liver, and kidneys after 

oral administration [18]. Metformin is transported into 

hepatocytes by organic cation transporter 1 (OCT1) and 

OCT3, and into the renal basolateral membrane by 

OCT2. Metformin is primarily excreted from the 

kidneys via multidrug and toxin extrusion 1 and 2 by 

the means of prototype form [19]. Differences in 

transporter expression and function lead to 

pharmacokinetic heterogeneity between individuals, and 

subsequently, heterogeneous sensitivity to side effects 

[20]. Although its exact mechanism remains con-

troversial, it is generally accepted that metformin 

activates AMPK to exert its pharmacological effects via 

two pathways: one, by promoting the direct 

phosphorylation of threonine residue 172 of AMPKα by 

liver kinase B1 (LKB1) [21]; and two, by inhibiting the 

mitochondrial respiratory chain complex I, resulting in 

an elevated AMP:ATP ratio and an energy crisis that 

results in  AMPK activation [22]. Upon activation, 

AMPK coordinates multiple signaling networks to 

restore the energy balance, with protective effects on 

renal lesions [23]. However, there are many other 

mechanisms by which metformin imparts renal 

protection independently of AMPK, which are 

discussed in detail below. 
 

Molecular mechanisms of the renal protective 

effects of metformin 
 

Autophagy induction 
 

Autophagy is an evolutionarily conserved catabolic 

process in eukaryotic cells, in which cells degrade 

senescent or dysfunctional cytoplasmic components in 

lysosomes and then reutilize their components. Renal 

cells maintain a basal level of autophagy under 

physiological conditions to resist multiple forms of 

stress. Under pathological conditions, renal cells 

upregulate autophagy in response to cell stress, but 

maladaptive autophagy can also induce apoptosis [24]. 

Current evidence suggests that autophagic flux is 

generally insufficient in various kidney disease models 

[25]. Therefore, many researchers are investigating 

whether modulating autophagy could delay the 

development of kidney disease. 

 

Li et al. [26] reported that metformin markedly 

enhanced punctate green fluorescent protein-micro-

tubule associated protein 1 light chain 3 formation in rat 

renal proximal tubular (NRK-52E) cells, implying that 

it can influence autophagic flux in the kidneys. 

Subsequently, Satriano et al. [27] showed that 

metformin markedly relieved insufficient autophagic 

flux in the rat kidney cortex in the context of 

ischemia/reperfusion (IR), and reduced IR damage. In a 

cisplatin-induced AKI model, pretreatment with 

metformin decreased apoptosis and induced autophagy 

in NRK-52E cells. Furthermore, AMPKα small 

interfering RNA and the autophagy inhibitor 3-

methyladenine abrogated the protective effect of 

metformin on cisplatin-mediated apoptosis, respectively 

[28]. Additionally, metformin inhibits pronephros cyst 

formation in polycystin 2-deficient zebrafish by 

enhancing AMPK-tuberous sclerosis complex-

dependent autophagy [29]. These results suggest that 

metformin-mediated autophagy has beneficial effects. 

 

Antioxidant properties 
 

Oxidative stress is caused by an imbalance between the 

production of reactive oxygen species (ROS) and the 

biological ability to counteract or detoxify their damage 

through antioxidative mechanisms. Transient increases 

in ROS protect cells from insult and maintain cellular 

homeostasis. However, excessive oxidative stress is 

involved in the pathogenesis of many renal diseases, 

including DKD [30]. 

 

Under sustained hyperglycemic conditions, massive 

amounts of proteins, lipids, and nucleic acids are 

glycated through the Maillard reaction to form AGEs. 

AGEs can induce the expression of oxidative, 

proinflammatory, and profibrotic mediators in renal cells 

via the advanced glycosylation end-product specific 

receptor (AGER) [31]. Metformin exerts its antioxidant 

effect by blocking the AGEs-AGER-ROS axis. 

Metformin negatively impacts the formation of 

glyceraldehyde-derived AGEs, protecting proximal 

tubular epithelial cells from AGEs-mediated injury [32]. 

In contrast to some scholars’ viewpoints, while 

metformin treatment reduces AGER expression, it is 

possible that the positive feedback effect of AGEs on 

AGER expression is weakened when AGEs generation 

is inhibited by metformin [33]. Metformin may  
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reduce endogenous ROS generation by inhibiting 

nicotinamide adenine dinucleotide phosphate oxidase in 

high glucose-cultured podocytes [34]. In addition, 

metformin induces the endogenous reductants heme 

oxygenase 1 (HMOX1) and thioredoxin to reduce ROS 

generation in high glucose-cultured human kidney 

proximal tubular (HK-2) cells [35]. Metformin can also 

block damage cascades downstream of ROS. In an in 
vitro experiment, metformin partly alleviated oxidative 

stress by inhibiting ROS-induced phosphorylation  

of p38 mitogen-activated protein kinase (MAPK) in 

hyperglycemia-stimulated rat glomerular mesangial 

cells [36]. 

 

Aside from DKD, ROS-mediated renal tubular epithelial 

cell injury is an important risk factor for kidney stone 

formation. Metformin effectively blunts renal tubular 

injury resulting from oxalate and renal crystal 

deposition-mediated lipid peroxidation by attenuating 

cellular oxidative damage; however, this requires further 

clinical study [37]. Furthermore, gentamicin-induced 

nephrotoxicity is partly mediated by mitochondrial 

oxidative stress, and metformin ameliorated this 

nephrotoxicity via restoring mitochondrial function and 

normalizing oxidative stress [38, 39]. 

 

Altogether, metformin protects the kidneys in part by 

blocking ROS generation and signaling pathways 

downstream of oxidative stress, as well as by increasing 

antioxidative responses. 

 

Attenuation of endoplasmic reticulum (ER) stress 
 

ER stress and the course of kidney disease are mutually 

causal. Albumin overload [40], toxicants [41], and 

ischemia [42] can result in the accumulation of misfolded 

and unfolded proteins in the ER, resulting in the 

activation of ER stress responses to maintain cellular 

protein homeostasis. Activation of the unfolded protein 

response (UPR) is a protective response of ER to stress. 

The UPR inhibits the synthesis of new proteins, improves 

protein folding ability, and promotes the degradation of 

misfolded proteins to maintain ER function homeostasis. 

Notably, chronic or excessive ER stress causes a shift 

from prosurvival mode to proapoptotic mode, provoking 

programmed cell death. This occurs through the 

induction of the proapoptotic ER stress marker C-EBP 

homologous protein (CHOP), and the activation of the c-

jun N-terminal kinase (JNK) and nuclear factor (NF)κB 

pathways, promoting inflammation, apoptosis, and 

fibrosis [43, 44]. Therefore, it is worth exploring whether 

reducing the intensity of ER stress appropriately could 

alleviate the deterioration of renal function. 

 

Metformin alleviates ER stress-induced renal damage 

by modulating the UPR [45], partly by inhibiting ROS. 

Lee et al. revealed that metformin could inhibit ROS-

SRC proto-oncogene, non-receptor tyrosine kinase-

peroxisome proliferator activated receptor γ-

mechanistic target of rapamycin kinase (mTOR) 

signaling by increasing the expression of endogenous 

thioredoxin to alleviate albumin-induced ER stress in 

HK-2 cells. Metformin (1 mМ) downregulated glucose-

regulated protein 78 (GRP78) and eukaryotic initiation 

factor 2 α (eIF2α) in HK-2 cells incubated with albumin 

(5 mg/mL) for 3 days and in the renal tissue of a rat 

model of proteinuria [46]. Conversely, Allouch et al. 

showed that cotreatment with metformin (1 mМ) and 

albumin (10 mg/mL) increased GRP78 expression and 

decreased eIF2α and CHOP expression in NRK-52E 

cells compared to albumin alone; however, metformin 

had no effect on GRP78 and CHOP expression in NRK-

52E cells treated with 15 mg/mL albumin [47]. The 

effect of metformin on ER stress may depend on the 

dose, manner of intervention, and injury severity. 

Furthermore, it remains unknown how metformin inhi-

bits key molecules (GRP78, eIF2α, and CHOP) in the 

UPR pathway. Notably, untimely inhibition of the 

adaptive UPR by metformin can trigger cytotoxic 

effects [48]. 

 

Anti-inflammatory effects 
 

Metformin may ameliorate renal lesions by abating 

inflammatory insults. Metformin prevents inflammatory 

responses through systemic immunomodulation. For 

example, metformin pretreatment limits immune cell 

infiltration into renal tissue in unilateral ureteral 

obstruction (UUO)- and cisplatin-induced models of 

AKI, thereby reducing inflammatory damage [28, 49, 

50]. Christensen et al. [50] reported that metformin 

regulates the infiltration of microphage subpopulations 

in renal tissues subjected to three days of UUO. They 

postulated that metformin reduced microphage 

infiltration and elevated the ratio of anti-inflammatory 

M2 macrophages to proinflammatory M1 macrophages 

to attenuate inflammation damage in the UUO model. 

However, this notion should be validated using more 

specific biomarkers to identify microphage subtypes. 

Additionally, metformin reduces immune cell 

infiltration into the pronephric ducts of polycystin 2-

deficient zebrafish, reducing inflammation-mediated 

cystogenesis and interfering with PKD progression [29]. 

In addition to modulating immune cell infiltration  

into renal tissue, metformin also inhibits their pro-

inflammatory functions. For instance, it reduces the 

mRNA levels of proinflammatory cytokines (such as 

interleukin (IL)-1β, IL-6, and tumor necrosis factor α in 

AGEs-treated bone marrow-derived macrophages via 

the AMPK-NFκB pathway [51], as well as in the renal 

tissue of the UUO model [50]. Gu et al. [52] revealed 

that metformin inhibited NFκB activation and the 
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generation of proinflammatory cytokines (such as 

monocyte chemoattractant protein 1, intercellular cell 

adhesion molecule 1, and transforming growth factor β1 

(TGFβ1)) in high glucose-treated rat glomerular 

mesangial cells in vitro. In short, metformin reduces 

inflammation-induced renal injury by modulating 

immune cell infiltration and function. 

 

Attenuation of lipotoxicity 

 

Obese patients are more prone to kidney damage, partly 

because excess lipids ectopically accumulate in the renal 

tissue, resulting in lipotoxicity. This contributes to ROS 

generation, insulin resistance, ER stress, inflammation, 

and fibrosis [53]. Wang et al. [54] reported that 

metformin suppressed fatty acid synthesis and deposition 

to alleviate renal lipotoxicity in Otsuka Long-Evans 

Tokushima Fatty rats. Combination therapy with 

metformin and omega-3 polyunsaturated fatty acids 

improved lipid metabolism in rats with diabetes mellitus 

(DM) [55]. Besides regulating lipid metabolism, 

metformin protected mesangial cells from lipotoxicity-

induced apoptosis in a diabetic nephropathy model, 

partially by upregulating glucagon like peptide 1 

receptor [56]. 

 

Antifibrotic effects 
 

The kidneys initiate defense responses against various 

injuries, and maladaptive repair processes promote the 

phenotypic transformation of renal cells, the proliferation 

of renal fibroblasts, and abnormal extracellular matrix 

deposition. As a result, the functional nephron is 

gradually replaced by connective tissue, driving the 

formation of interstitial fibrosis, microvascular rare-

faction, and even glomerulosclerosis [57]. No effective 

option exists to reverse renal fibrosis; therefore, delaying 

renal fibrosis development is an optimal strategy to 

protect the residual nephron. Metformin has been 

suggested to affect fibrosis through several mecha-

nisms. 

 

TGFβ1/SMAD signaling 
 

Dysregulation of TGFβ1 signaling is implicated in renal 

fibrosis. Angiotensin, glucose, and oxidative stress 

induce TGFβ1 overexpression in tubular epithelial cells, 

macrophages, and renal interstitial fibroblasts. 

TGFβ1/SMAD signaling increases the transcription of 

α-smooth muscle actin (SMA), fibronectin, collagen I, 

and vimentin, and decreases E-cadherin expression to 

promote renal fibrosis [58]. Metformin attenuated 

TGFβ1 expression in renal tissues from a folic acid-

induced rat model of renal fibrosis [59] and a UUO 

mouse model [60]. Han et al. [61] revealed that 

metformin interacts with TGFβ1 via its receptor-binding 

domain, blocking the binding of TGFβ1 to its receptor, 

and thereby inhibiting the TGFβ1/SMAD pathway. 

Notably, metformin inhibited UUO-induced SMAD3 

phosphorylation in AMPK alpha2 subunit knockout 

mice, indicating that its anti-renal fibrosis effect is not 

completely dependent on AMPK signaling [60]. 

 

Epithelial–mesenchymal transition (EMT) 

 

EMT is a prominent process contributing to renal 

interstitial fibrosis. It is a phenotypic conversion process 

in which mature tubular epithelial cells transform into 

myofibroblasts under pathological conditions, and is 

characterized by the loss of epithelial markers (e.g., E-

cadherin, zonula occludens-1) and the acquisition of 

mesenchymal markers (e.g., α-SMA, fibronectin, and 

vimentin) [62]. TGFβ1, angiotensin II and hypoxia are 

vital risks in renal tubular EMT [63]. TGFβ1-induced 

EMT is mediated either by SMAD2/3 or via non-SMAD 

(p38 MAPK, JNK, extracellular signal-regulated kinase 

(ERK), etc.) signaling pathways [64]. Metformin 

interferes with the TGFβ1-AMPK-tuberin-EMT pathway 

by activating AMPK and thereby inhibiting extracellular 

matrix synthesis and other fibrogenic responses [65]. 

TGFβ1 induces the expression of immediate-early 

response genes, such as early growth response 1 (EGR1) 

[66], which is involved in renal tubular EMT [67]. In a 

recent study, metformin attenuated TGFβ1-induced EMT 

by inhibiting EGR1, suggesting that this is one of the 

potential mechanisms behind the renal protective effects 

of metformin [68]. Wu et al. [69] postulated that 

metformin inhibits EGR1 by downregulating microRNA 

(miR)-34a in high glucose-stimulated rat mesangial cells. 

Therefore, metformin could regulate EGR1 via two 

pathways: through an AMPK-miR-34a-sirtuin 1 

(SIRT1)-EGR1 axis, and via direct AMPK-EGR1 

signaling. Furthermore, metformin promotes HMOX1 

and thioredoxin expression to decrease ROS levels, 

thereby alleviating oxidative response-mediated EMT  

in vitro [35]. 

 

Fatty acid metabolism 

 

Extensive research has demonstrated that tubulointerstitial 

fibrosis is associated with the reduced expression of 

genes required for fatty acid oxidation (FAO) in renal 

tubular epithelial cells. Decreased FAO is proposed  

to cause energy deficiency and renal fibrosis [70]. 

Acetyl-CoA carboxylase alpha (ACC) is one of the major 

regulators of FAO, which acts to increase fatty acid 

synthesis and decrease its oxidation. AMPK phospho-

rylates ACC to increase FAO, boosting ATP generation. 

There is evidence that the antifibrotic effect of metformin 

is partly dependent on its ability to increase FAO by 

promoting ACC phosphorylation by AMPK [71]. 



 

www.aging-us.com 8746 AGING 

Hypoxia inducible factor 1 
 

The hypoxia inducible factor (HIF) pathway is an 

adaptive response to renal insult; however, sustained 

HIF activation may promote renal fibrosis in CKD 

[72]. HIF1 inhibition mitigates glomerular hypertrophy, 

mesangial expansion, matrix accumulation, and 

albuminuria excretion in type I diabetic OVE26 mice 

[73]. HIF1 is a heterodimeric transcription factor that 

regulates oxygen homeostasis, which consists of the 

constitutively expressed HIF1β subunit and the 

oxygen-labile HIF1α subunit. Hypoxia prevents the 

proteasomal degradation of the HIF1α subunit, which 

then heterodimerizes with HIF1β to regulate the 

transcription of genes controlling erythropoiesis, 

angiogenesis, and nucleoside and energy metabolism 

[72]. Aside from hypoxia, glucose overload [74], 

angiotensin II [75], and albuminuria [76] also promote 

renal fibrosis by stabilizing HIF1α. HIF1 modulates 

extracellular matrix turnover, activates fibrogenic 

factors such as tissue inhibitor of metalloproteinases 

and plasminogen activator inhibitor, and promotes 

EMT [77]. Moreover, HIF1 can act synergistically with 

TGFβ1 [78]. 
 

Metformin suppresses tubular HIF1α stabilization and 

protects kidneys from renal injury in Zucker diabetic 

fatty rats independently of AMPKα signaling. It 

attenuates mitochondrial respiration and thereby 

reduces cellular oxygen consumption, subsequently 

enhancing the proteasomal degradation of HIF1α [79]. 

Notably, HIF1 promotes renal fibrosis in a cell type- 

and disease phase-specific manner [80]. 
 

Currently, there is no effective way to reverse renal 

fibrosis; however, protection of the residual nephron is a 

worthy goal. The antifibrotic effect of metformin requires 

further clinical validation. The molecular mechanisms 

controlling this effect are depicted in Figure 1. 
 

Antiaging effects 
 

Physiological or stress-induced aging weakens the ability 

of intrinsic renal cells to resist injury and self-repair, 

increasing AKI risk and accelerating CKD progression. 

 

 
 

 

Figure 1. Schematic of the mechanisms by which metformin protects against renal fibrosis. Metformin inhibits hypoxia-mediated 
renal fibrosis by inhibiting HIF1α stabilization via blocking the mitochondrial oxidative respiratory chain, reducing renal oxygen consumption; 
inhibits TGFβ1 generation and receptor binding to prevent TGFβ1-mediated renal fibrosis; promotes AMPK phosphorylation of ACC to 
increase FAO and slow renal fibrosis; inhibits hyperglycemia-induced expression of mi-R34a, which negatively regulates AMPK both directly 
and by downregulating SIRT1, reducing the pro-EMT factor EGR1. (HIF1α, hypoxia inducible factor 1α; TGFβ1, transforming growth factor β1; 
AMPK, AMP-activated kinase protein; ACC, acetyl-CoA carboxylase; FAO, fatty acid oxidation; miR-34a, microRNA-34a; EGR1, early growth 
response 1; EMT, epithelial-mesenchymal transition; OCT2, organic cation transporter 2). 
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The US FDA has been conducting the randomized 

double-blind clinical experiment, ‘‘Targeting Aging 

with Metformin’’ since 2015, extending the uses of 

metformin into the field of antiaging. Metformin 

restored expression of the high glucose-downregulates 

antiaging gene klotho in serum, urine, and renal tissues 

[81]. Furthermore, metformin downregulates senescence-

associated-β-galactosidase and cyclin dependent kinase 

inhibitors 1A and 2A during hyperglycemia-induced 

premature aging of glomerular mesangial cells and 

proximal tubular epithelial cells via the AMPK/mTOR 

pathway [82, 83]. However, the antiaging effects of 

metformin have only been demonstrated in some  

small trails [84], and its precise antiaging effects on the 

kidneys should be investigated in further basic and 

clinical studies. 
 

The pros and cons of metformin: adverse effects 

and renal protective actions 
 

Lactic acidosis 
 

The major adverse side effect of metformin exposure is 

gastrointestinal irritation, including diarrhea, nausea, 

vomiting, flatulence, and cramps [85]. In addition, the 

US FDA has given metformin a black box warning 

regarding lactic acidosis. Because of this, metformin 

use is restricted for patients with severe renal 

impairment. Biguanide exposure is related to increased 

plasma lactic acid levels. Metformin may block the 

Krebs cycle by inhibiting mitochondrial oxidative 

respiratory chain complex I, thereby facilitating the 

Pasteur effect. Lactic acid, a byproduct of glycolysis, 

accumulates in the body as a result of lactate 

overproduction or decreased removal [5]. Moreover, in 

addition to its effects on AMPK-dependent inhibition  

of gluconeogenesis [86], Madiraju et al. [87, 88] 

reported that metformin might reduce the conversion  

of lactate and glycerol to glucose and suppress hepatic 

gluconeogenesis by inhibiting mitochondrial glycerol-

phosphate dehydrogenase (mGPD) at clinically relevant 

plasma concentrations. Hence, metformin may interfere 

with the oxidative pathway and gluconeogenesis 

pathway of pyruvate, the only precursor of lactate. This 

would increase the reduction of pyruvate to lactate and 

decrease the conversion of lactate to pyruvate, resulting 

in increased theoretical buildup of lactate concentrations 

(Figure 2). Furthermore, DeFronzo et al. [89] postulated 

that disease itself exaggerates the risk of metformin-

associated lactic acidosis (MALA). 

 

 

 

Figure 2. Molecular mechanisms of metformin-associated lactic acidosis (MALA). Metformin (1) inhibits mitochondrial respiratory 
chain complex I, reducing Krebs cycle flux and shifting metabolism toward glycolysis, increasing the pyruvate level; (2) partly inhibits 
gluconeogenesis through the AMPK pathway, further contributing to pyruvate accumulation and increasing the conversion of accumulated 
pyruvate to lactate; and (3) inhibits mGPD, blocking the G3P pathway and altering the cytoplasmic redox state, inhibiting the conversion of 
lactate to pyruvate, resulting in MALA. (AMPK, AMP-activated protein kinase; LKB1, liver kinase B1; G3P, glycerol-3-phosphate; DHAP, 
dihydroxyacetone phosphate; mGPD, mitochondrial glycerophosphate dehydrogenase; cGPD, cytosolic glycerophosphate dehydrogenase). 
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Given the risk of lactic acidosis, how do we weigh the 

pros and cons of metformin use? MALA is a low 

probability event. Its incidence varies in different 

backgrounds, but is generally < 10 per 100,000 patient-

years [90]. However, the mortality rate approaches 25% 

in patients with MALA [91]. In 2016, the US FDA 

revised metformin safe in patients with mild to 

moderate renal impairment (estimated glomerular 

filtration rate (eGFR): 30-60 mL·min-1·1.73 m-2), but 

metformin use is contraindicated in patients with eGFR 

values < 30 mL·min-1·1.73 m-2. There is no convincing 

evidence that the label change has increased the MALA 

rate [92]. The FDA suggests that the initiation and 

withdrawal of metformin treatment should be based on 

a comprehensive assessment of the eGFR and risk 

factors such as hepatic insufficiency, alcoholism, heart 

impairment, and intra-arterial iodinated contrast 

exposure. Notably, patient eGFR levels are volatile, and 

should therefore be periodically monitored [93]. 

 

AKI and CKD 
 

AKI is characterized by a rapid and abrupt reduction of 

renal function, within days or even a few hours [94], 

while CKD is defined by a gradual decrease in kidney 

function over 3 months [95]. However, they are 

interrelated and cannot simply be classified into two 

separate diseases. Currently, therapies for AKI and 

CKD are limited to mitigating etiological factors and 

treating symptoms, and treatment breakthroughs for 

these conditions are needed. 

 

Metformin may exert protective effects on AKI and 

CKD. Li et al. [28] reported that metformin protected a 

cisplatin-induced AKI model through AMPKα-

regulated autophagy induction. Furthermore metformin 

corrected renal metabolic disorders, suppressed renal 

fibrosis, and improved renal function in an ablation and 

infarction rat model of subtotal or five-sixths nephrec-

tomy [96]. Neven et al. [7] revealed that metformin 

treatment slowed the progression of severe CKD and 

maintained mineral homeostasis, which reduced the 

risks of vascular calcification and high bone turnover in 

CKD-Mineral and Bone Disorder. 

 

In 2017, an observational cohort study of patients with 

AKI in the Tayside region of Scotland (n= 25,148) 

revealed that metformin did not affect AKI incidence, 

but was associated with a 28-day increase in survival 

[6]. A meta-analysis of 17 observational studies 

revealed that metformin administration was associated 

with reduced all-cause mortality in patients with CKD 

(eGFR= 30-60 mL·min-1·1.73 m-2) [97]. 

 

More recently, Lalau et al. [98] investigated the safety 

and efficacy of metformin in patients with T2DM and 

CKD and provided metformin management strategies. 

The dose-finding study, involving 69 patients, 

suggested daily doses of 1,500, 1,000, and 500 mg for 

stages 3A, 3B, and 4 CKD, respectively (Table 1). They 

suggest that the eGFR and plasma lactate concentration 

be monitored to evaluate to need to withdraw metformin 

treatment. 

 

Taken together, these studies suggest that metformin 

has renal protective effects against AKI and CKD. 

However, this notion will require validation through 

further prospective randomized controlled trials. 

 

DKD 
 

DKD is a chronic microvascular complication of 

diabetes mellitus (DM), which is the major cause of 

ESRD in the US [1]. Reversing high glucose-induced 

inactivation of AMPK alleviated renal hypertrophy, 

glomerular basement thickening, podocyte loss, and 

foot process effacement in OVE26 mice [99], 

suggesting that AMPK agonist metformin can relieve 

kidney damage in patients with DM. Aside from its 

hypoglycemic effect, metformin also delays DKD 

progression by modulating metabolic dysfunctions,  

such as insulin resistance, autophagy, oxidative stress,  

ER stress, inflammation, and renal fibrosis. Insulin 

resistance, caused by defective insulin signaling in 

target cells, is a key factor in diabetic glomerulopathy 

[100]. Podocyte-specific insulin receptor knockout mice 

develop symptoms of DKD [101]. SIRT1 

downregulation in DM is positively associated with 

insulin resistance [102]. Metformin can overcome 

hyperglycemia-induced insulin resistance in podocytes 

by promoting the expression and function of SIRT1 and 

AMPK [103]. Furthermore, metformin attenuates DM-

induced renal medullary tissue hypoxia by inhibiting 

uncoupling protein 2 in insulinopenic type 1 diabetes 

rats [104]. As mentioned above, metformin also 

modulates the interplay between oxidative stress, 

lipotoxicity, fibrosis, and aging in DKD to delay renal 

exacerbation. 

 

Compared with other hypoglycemic agents, metformin 

has obvious renal protective functions. For example, 

compared with sulfonylureas, metformin administration 

is associated with lower risks of kidney function decline 

and death, independent of changes in systolic blood 

pressure, body mass index, and glycated hemoglobin 

levels over time [105]. An open cohort study of patients 

with T2DM in primary care (n= 469,688) revealed that 

metformin decreased the risk of severe T2DM 

complications, including blindness and severe kidney 

failure, compared to a group not administered 

metformin [106]. These results suggest that metformin 

may be a better choice for DM patients with DKD. 
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Table 1. Metformin management in patients with T2DM with stage 3A, 3B, and 4 CKD. 

CKD  stage eGFR (mL·min-1·1.73 m-2) Recommended daily dose 

3A 45-59 0.5 g in the morning + 1 g in the evening 

3B 30-44 0.5 g in the morning + 0.5 g in the evening 

4 15-29 500 mg in the morning 

T2DM: type 2 diabetes mellitus; CKD: chronic kidney disease; eGFR: estimated  
glomerular filtration rate. 

 

Autosomal dominant polycystic kidney disease 
 

ADPKD is a monogenically inherited cystic kidney 

disease characterized by renal cysts and extrarenal 

multisystem manifestations [107]. Cystic cells switch 

their energy metabolism to glycolysis accompanied with 

AMPK downregulation, mTOR overactivation, and 

ERK activation [108, 109]. Therefore, researchers have 

hypothesized that it may be possible to influence the 

proliferation and cell cycle progression of cystic cells 

by regulating their cellular energy metabolism pathways 

in order to delay ADPKD progression. Cystic fibrosis 

transmembrane conductance regulator (CFTR) is 

involved in cyst fluid and electrolyte secretion, and 

mTOR participates in the proliferation of cyst epithelial 

cells. Metformin negatively regulates CFTR and mTOR 

via the AMPK pathway in vitro [110]. Interestingly, 

metformin and 2-deoxyglucose (2DG), a competitive 

inhibitor of the rate-limiting glycolytic enzyme hexo-

kinase, synergistically inhibit mTOR signaling  

to inhibit ADPKD cell proliferation by activating 

AMPK and suppressing ERK [111, 112], as depicted in 

Figure 3. Moreover, a few clinical trials have 

demonstrated the safety and effectiveness of metformin 

in ADPKD, althought these had small sample sizes  

[9, 113, 114]. 

 

 
 

Figure 3. Metformin/2-deoxyglucose cotreatment delays ADPKD progression. Metformin interferes with ADPKD cell proliferation 
by inhibiting CFTR and mTOR signaling via AMPK 2-DG inhibits mTOR via two pathways: by suppressing ERK, an upstream activator of mTOR, 
and by competitively inhibiting glycolysis, leading to energy imbalance and AMPK activation. This further inhibits CFTR and mTOR, thereby 
synergistically inhibiting ADPKD proliferation. (2-DG, 2-deoxyglucose; CFTR, cystic fibrosis transmembrane conductance regulator; AMPK, 
AMP-activated protein kinase; mTOR, mechanistic target of rapamycin kinase; ERK: extracellular signal-regulated kinase; ADPKD, autosomal 
dominant polycystic kidney disease). 
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Metformin combined with 2DG may represent a novel 

intervention strategy for ADPKD, but some researchers 

have questioned whether clinical trials will have the 

same inspiring effect, considering the difference in 

blood drug concentrations between the experimental 

conditions and those required for clinical treatment 

[115]. The outcomes of a recent phase 2 placebo-

controlled trial regarding the effects of metformin on 

ADPKD are greatly anticipated. 

 

LN 
 

Systemic lupus erythematosus (SLE) is a chronic 

inflammatory autoimmune disease. Aberrant activation 

of the immune system results in a large number of 

autoreactive antibodies that attack autoantigens, forming 

circulating and in situ immune complexes that are 

deposited in multiple organs, particularly the kidneys. 

 

Metformin exhibits a potential immune regulatory 

function. Metformin restores immune homeostasis by 

interfering with T cell subtype differentiation, decreasing 

autoreactive marginal zone B cells and antibody-

secreting plasma cells, and reducing germinal center 

formation via the AMPK-mTOR-STAT3 pathway in 

Roquinsan/san mice, along with reduced inflammatory 

mediators and antibodies [116]. A proof-of-concept trial 

reported that metformin downregulates neutrophil 

extracellular trap (NETs) mitochondrial DNA (mt-DNA) 

mediated interferon (IFN)α generation in plasmacytoid 

dendritic cells (PDCs) to inhibit SLE progression [117]. 

The dual upregulation of glycolysis and mitochondrial 

oxidative metabolism is involved in the effector function, 

activation and proliferation of autoreactive CD4+ T cells. 

Metformin combined with 2DG normalized T cell 

metabolism, and reversed the lupus phenotype and renal 

disease in lupus-prone mouse models; however these 

drugs had no effect alone [118]. Taken together, these 

studies indicate that metformin improves SLE by 

inhibiting AMPK/mTOR/STAT3 signaling, NET 

mtDNA-PDCs-IFNα signaling, and oxidative phospho-

rylation. However, the efficacy of metformin on lupus 

nephritis requires further clinical study. 

 

Renal neoplasms 
 

Renal cell carcinoma (RCC) accounts for 90-95% of 

renal neoplasms [119]. A recent popular viewpoint has 

defined cancer as a genetic and metabolic disorder, 

which establishes high anabolic and catabolic activity  

to meet proliferation, growth, and survival demands 

[120]. Consistent with this idea, RCC is accompanied 

by reduced AMPK levels and dysregulation of 

proliferation-related mTOR signaling [121]. Therefore, 

pharmacologically targeting AMPK and mTOR may be 

a potential therapeutic strategy. 

Metformin suppresses RCC progression mainly by 

promoting apoptosis, as well as inhibiting proliferation 

and viability in a dose- and time-dependent manner. It 

has been reported that metformin promotes apoptosis in 

human RCC (A498) cells [122]. Metformin inhibits RCC 

cell proliferation and viability by inducing G0/G1 cell 

cycle arrest [123], and by upregulating cell growth-related 

miRNAs such as miR-34a [124], miR-26a [125], and 

miR-21 [126]. Notably, the effects of metformin on 

apoptosis, G0/G1 phase cell cycle arrest and viability 

differ between RCC cell lines [127]. Furthermore, 

metformin promotes RCC cell proliferation under 

nutrient restriction. Energy stress increases AMPK 

nuclear translocation, which recruits pyruvate kinase M2 

(PKM2) and its downstream effector β-catenin to the 

nucleus, activating the transcription of proliferation-

related genes such as CCND1 and MYC proto-oncogene, 

bHLH transcription factor [128]. This suggests that 

combining metformin with a PKM2 inhibitor may be a 

promising strategy to suppress RCC growth. 

 

In 2017, a meta-analysis (n= 254,329) suggested that 

metformin administration could improve overall and 

cancer-specific survival in patients with kidney cancer 

[129]. A retrospective analysis (n= 1,528 RCC patients) 

reveled that metformin administration improved 

survival in patients with localized RCC, but not in those 

with metastatic RCC [130]. However, a retrospective 

study (n= 158 patients with diabetes undergoing 

nephrectomy for kidney cancer) during the same period 

provided dissenting results [131]. 

 

Recently, increasing evidence has revealed a potential 

therapeutic effect for metformin combined with calorie 

restriction in colon cancer cell lines or with hemin  

in breast cancer cell lines [3, 132]. However, the  

exact action of metformin in renal cancer remains 

unknown. The antitumor actions of metformin have thus 

far been demonstrated at experimental doses far 

exceeding its clinical plasms concentration, sparking 

speculation as to whether metformin will display 

clinical effects. 

 

Renal transplantation 

 

The use of metformin in kidney transplant recipients 

lacks authoritative clinical criteria. Considering its 

potential for adverse side effects, metformin requires 

further assessment regarding the risk of hypoglycemia 

in these patients. Some studies have indicated that 

metformin is safe for kidney transplant recipients, 

improving the survival rate [6, 12, 133–136]. However, 

due to a series of clinical research limitations, such as 

small sample sizes and questionable data integrity, the 

reliability of these studies is unclear. The safety  

and efficacy of metformin in post-transplantation  



 

www.aging-us.com 8751 AGING 

DM requires further clinical retrospective study and 

randomized controlled trials with larger sample sizes. 

 

CONCLUSIONS 
 

Severe kidney damage is irreversible and can develop 

into ESRD, which requires renal replacement therapy 

(dialysis or renal transplantation). Kidney transplant 

surgery is not vigorously promoted because of the rarity 

of locating matching donors, and early protection of 

residual nephrons and prevention of further renal 

deterioration could not only alleviate patient suffering, 

but also reduce the health and economic burdens of 

kidney disease worldwide. 

 

In the past few decades, many preclinical and clinical 

studies have reported the renal protective effects of 

metformin. At the same time, controversial outcomes of 

metformin treatment have sparked debate regarding its 

therapeutic efficacy in some kidney diseases. The renal 

effects of metformin are complex and dependent on the 

disease type, as well as the nature and timing of the 

injury. The clinical efficacy of metformin should be 

validated in well-designed randomized controlled trials 

with larger sample sizes, and the precise renal protective 

mechanisms of metformin should be further explored. 
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