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Abstract

Accurate determination of the axial load capacity of the pile is of utmost importance when

designing the pile foundation. However, the methods of determining the axial load capacity

of the pile in the field are often costly and time-consuming. Therefore, the purpose of this

study is to develop a hybrid machine-learning to predict the axial load capacity of the pile. In

particular, two powerful optimization algorithms named Herd Optimization (PSO) and

Genetic Algorithm (GA) were used to evolve the Random Forest (RF) model architecture.

For the research, the data set including 472 results of pile load tests in Ha Nam province—

Vietnam was used to build and test the machine-learning models. The data set was divided

into training and testing parts with ratio of 80% and 20%, respectively. Various performance

indicators, namely absolute mean error (MAE), mean square root error (RMSE), and coeffi-

cient of determination (R2) are used to evaluate the performance of RF models. The results

showed that, between the two optimization algorithms, GA gave superior performance com-

pared to PSO in finding the best RF model architecture. In addition, the RF-GA model is

also compared with the default RF model, the results show that the RF-GA model gives the

best performance, with the balance on training and testing set, meaning avoiding the phe-

nomenon of overfitting. The results of the study suggest a potential direction in the develop-

ment of machine learning models in engineering in general and geotechnical engineering in

particular.

1. Introduction

In engineering, piles have been used to support the building, in which, the axial load capacity

of the pile is considered the most important parameter in the pile foundation design. Typically,

the axial load capacity of a pile can be determined using static and dynamic load tests on the

construction sites. However, these methods are not only time-consuming and expensive but

also often difficult to apply to small-scale projects [1, 2]. Therefore, several other approaches

have been proposed in predicting the axial load capacity of piles and improving the prediction

accuracy. These methods include the use of empirical approaches based on in-situ test results,

such as SPT (Standard Penetration Test), CPT (Cone Penetration Test), and geometrical
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parameters of the pile [3–8]. The empirical formulas include a few key parameters, so it is not

enough to accurately predict the pile load capacity [8]. In addition, the use of several experi-

mental coefficients, which have a wide range for different types of soil, further deviates from

the actual results [9].

Over the past two decades, artificial intelligence (AI) and machine learning (ML) have

made great progress, being applied to solve many real-world problems in general and engi-

neering in particular. In details, some ML techniques have been used in solving many engi-

neering problems such as geotechnical problems [10–13], mechanism properties of materials

[14–20], rock blasting [21]. In details, Armaghani et al. [13] developed a hybrid ML model

including artificial neural network (ANN) and particle swarm optimization (PSO) in predict-

ing settlement of pile. Using hybrid Ensembling of Surrogate ML models, Asteris et al. [14, 18,

22] improved the accuracy of ML model in predicting compressive strength of concrete. Apos-

tolopoulou et al. [16] develop ANN model in designing natural hydraulic lime mortars. Using

an ANN model, Armaghani et al. [17] can predict the unconfined compressive strength of

granite with only two input variables. Armaghani et Asteris [19] propose ANN and ANFIS

models in predicting the compressive strength of cement based mortar with high performance.

Developing hybrid ML model including meta-heuristic search of sociopolitical algorithm and

Extreme Gradient Boosting to predict compressive strength of recycled aggregate concrete.

The axial load capacity of concrete filled steel tube columns can be estimated by ANN model

in the investigation of Le et al. [15]. In rock blasting, the peak particle velocity can be success-

fully predicted by support vector machine (SVM) [21] which is famous ML technique.

In this clear trend, many studies apply artificial intelligence to solve the problem of estimat-

ing the bearing capacity of piles. For example, Kumar [23] developed a k-nearest neighbor

(KNN) model to predict the soil parameters required for foundation design. Goh [24, 25] pre-

sented an ANN model to predict the bearing capacity of driven piles in clays. Besides, Shahin

[26] developed an ANN model to estimate the bearing capacity of driven piles and drilled

shafts using a series of in-situ load tests. Nawari [27] showed an ANN algorithm to predict the

deflection of drilled shafts based on (SPT) data and the shaft geometry. Momeni [28] devel-

oped ANN models to predict the shaft and tip resistance of concrete piles. Pham et al. [10] pre-

sented two models, including ANN and RF to estimate the ultimate bearing capacity of the

driven pile. Shahin and Jaksa [29] presented an ANN model to predict the bearing capacity of

the drilled shaft using CPT data.

The published literatures show that AI has good potential to accurately predict the load

capacity of piles. However, it must be said that ML models have a very complex architecture,

including many hyperparameters. These hyperparameters are particularly sensitive and greatly

affect the model’s forecast results [11, 30–32]. The above studies did not show that how the

model architecture model is selected to predict the pile load capacity. The choice of model

architecture is usually done manually, which takes a lot of time and resources. As mentioned

above, various studies have been carried out to evaluate the performance of ML algorithms in

predicting pile bearing capacity. However, creating hybrid models using optimization algo-

rithms to choose the best model is a matter of concern. RF model has been proving to be one

of the best ML algorithms, achieving excellent performance in previous studies [10, 33, 34]. As

a matter of course, there are many optimization algorithms used to solve the problem in tech-

niques such as gradient descent [35], quasi-newton [36], hill climb [37], simulated annealing

[38], particle swarm optimization (PSO) [39], and genetic algorithm (GA) [40]. Among those

algorithms, GA and PSO do not use problem gradients to be optimized, it does not require

optimization problems to be as distinct as standard optimization methods such as gradient

descent and quasi-newton [41]. Therefore, these are two of the most powerful and popular

algorithms today in solving general engineering problems.
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From the above analysis, the main objective of this present investigation is to apply the two-

hybrid soft computing model RF-GA and RF-PSO for the better and quick prediction of axial

bearing capacity of piles based on the 10 parameters of piles geometry and soil properties. To

acquire this aim, a database consisting of 472 pile load tests collected from the available litera-

ture [11]. Various performance criteria including the coefficient of determination (R2), root

mean squared error (RMSE), and the mean squared error (MAE) are considered to evaluate

the prediction capability of the two-hybrid RF models and individual model RF. Furthermore,

1000 simulations taking into account the randomness of the model inputs were performed to

fully evaluate the feasibility of these models.

2. Research significance

High performance estimation of axial bearing capacity of pile is meaningful due to foundation

design and contributions to building design. Although some machine learning models were

developed to predict the axial bearing capacity of pile. For instance, ANN model in the investi-

gation of Shahin et al. [26, 29], however low number of data containing 80 samples, that were

used to develop the ANN model, reduces the performance and reliability of ML model in pre-

dicting the axial bearing capacity of pile. The Random Forest model developed by Pham et al.

[10] has performance values of prediction as following R2 = 0.866, RMSE = 0.0982 MN,

MAE = 0.2924 MN. This performance of RF model can be improved. Thus, the following

might emphasize various contributions of the current investigation: 0.9331, 0.0929, 0.0675

1. A database containing 10 input variables and 472 samples is presented;

2. The hybrid models RF-GA and RF-PSO are developed to find the best hyperparameters of

Random Forest model for predicting the axial bearing capacity of pile;

3. Monte Carlo simulations are introduced to evaluate the performance and reliability of sin-

gle RF, RF-GA and RF-PSO;

4. The performance of axial bearing capacity prediction is increased by using hybrid model

RF-GA;

5. A sensitivity analysis is performed with aided Shapley Additive Explanations to reveal the

effects of input variables on both magnitude of axial bearing capacity of pile and perfor-

mance prediction of RF-GA model.

3. Database construction

The data used for this study were obtained from published literature [11]. To correctly predict

the bearing capacity of piles, a thorough understanding of the factors that affect the bearing

capacity of the pile is needed. Most traditional pile bearing capacity determination methods

include the following parameters: pile geometry, pile material properties, and soil properties

[3, 42, 43]. Since SPT is one of the most popular in-situ tests, the soil properties were character-

ized through SPT results. In this study, the average of SPT values along the pile shaft and pile

tip is taken as the main input to determine the bearing capacity of the pile. In addition, infor-

mation on pile geometry and thickness of soil layers are also collected to ensure sufficient fac-

tors are used for determining pile bearing capacity [3]. More specifically, the input parameters

for the model include (i) Pile diameter (X1); (ii) length of pile tip segment (X2); (iii) length of

2nd pile segment (X3); (iv) length of pile top segment (X4); (v) the natural ground elevation

(X5); (vi) pile top elevation (X6); (vii) guide pile segment stop driving elevation (X7); (viii) pile

tip elevation (X8); (ix) the average SPT blow along the embedded length of the pile (X9) and (x)
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the average SPT blow at the tip of the pile (X10). The diagram of pile parameters was shown in

Fig 1. The bearing capacity is the single output variable in this study (Pu).

As observed in Table 1, the pile diameter (X1) ranged from 0.3 to 0.4 m. The length of the

pile tip section (X2) ranged from 3.4 to 5.7 m. The length of the second pile segment (X3) ran-

ged from 1.5 to 8 m. The length of the pile top segment (X4) ranged from 0 to 1.69 m which 0

value means that the segment does not exist. The natural ground elevation (X5) varied from

0.68 to 3.4m. The pile top elevation (X6) varied from 3.04 to 4.12 m. The guide piles’ stop driv-

ing elevation (X7) varied from 1.03 to 4.35m. The pile tip elevation (X8) varied from 8.3 to

Fig 1. Diagram of pile parameters.

https://doi.org/10.1371/journal.pone.0265747.g001
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16.09 m. The average SPT blow along the embedded length of the pile (X9) ranged from 5.6 to

15.41. The average SPT blow at the tip of the pile (X10) ranged from 4.38 to 7.75. The bearing

capacity load (Pu), ranged from 0.407 MN to 1.551 MN with a mean value of 0.984 MN and a

standard deviation of 0.353 MN.

The data distribution between the input variables and axial bearing capacity is plotted in

Fig 2, the linear correlation coefficients are shown in Fig 3. As Fig 1 clearly shows, some input

variables are significantly correlated such as X3 and X8, X9 and X8. However, all input variables

are considered in this investigation to increase the accuracy of the proposed model.

In this investigation, the collected dataset was divided into the training and testing datasets.

The number of samples used for training should not be too small, so it will be difficult for the

model to learn the generality of the data. In addition, because the number of samples is quite

large, the selected sample ratio is 80% for training and 20% for testing in this study, still ensur-

ing that the number of test samples is enough to confirm the model performance. Different

from the original data, the training dataset (including 10 inputs and 1 output) was normalized

in the [0; 1] range to help variables have the same importance. A normalization process of

parameters, such as the minimum and maximum values of the training data were performed

to scale the testing dataset.

4. Methods used

4.1. Random forest (RF)

Randomized Forest (RF) belongs to the family of ML methods, which includes different algo-

rithms for generating a set of decision trees. The random forest method was first proposed by

Ho [44], and quickly became one of the powerful ML algorithms, commonly used to solve var-

ious problems [10, 34, 45]. In essence, RF was a bagging ensemble method that can improve

variable selection [46]. Breiman [47] showed that random forests which are grown using ran-

dom vectors in the tree construction are equivalent to a kernel acting on the true margin. In

this algorithm, two principles of "randomization" are used: Bagging and Random Feature

Selection [48]. That is, each decision tree in a random forest was built based on a random

number of input features. Therefore, the RF model adjusts the decision tree’s over-fitting hab-

its into their training set, or in other words, the RF generally outperforms the decision tree. A

general randomized forest model is shown in Fig 4.

When Breiman introduced the RF model in [47], the author also demonstrated that when

the number of trees exceeds a certain value, adding other trees does not systematically improve

the performance of the RF. This result suggests that the number of trees in RF does not need to

be too large to achieve a high-efficiency performance [45, 49].

Table 1. Inputs and output of the present study.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Pu

Unit m m m m m m m m - - MN

Count 472 472 472 472 472 472 472 472 472 472 472

SD(�) 0.048 0.482 1.638 0.457 0.616 0.080 0.599 1.798 2.264 0.660 0.353

Min 0.3 3.4 1.5 0 0.68 3.04 1.03 8.3 5.6 4.38 0.407

Mean 0.364 3.826 6.579 0.331 2.804 3.495 2.918 13.538 10.743 7.056 0.984

Median 0.4 3.45 7.31 0 2.95 3.48 3.275 14.11 10.8 7.175 1.069

Max 0.4 5.70 8 1.69 3.4 4.12 4.35 16.09 15.41 7.75 1.551

SD(�) = Standard deviation.

https://doi.org/10.1371/journal.pone.0265747.t001
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In this study, the RF model used from the scikit-learn library [50], and five model hyper-

parameters that have the greatest influence on the predicted results of the RF model are con-

sidered. To be more specific, these include H1—the maximum depth of the tree; H2—the max-

imum features used for random bagging in each decision tree; H3—the minimum number of

samples required to be at a leaf node; H4—the minimum number of samples required to split a

node; H5 –the number of the decision tree.

While the number of trees does not need to be too large, parameters such as H1, H2, H3, H4

affect the complexity of the tree. Trees that are too complex can cause the model to over-fitting

and not achieve high generalization.

4.2. Particle swarm optimization (PSO)

Particle Swarm Optimization (PSO) was one of the most widely used optimization techniques.

J. Kennedy and R. Eberhart [39] were the first to present it. It became famous due to the fact

Fig 2. Data distribution of input variables and output Pu.

https://doi.org/10.1371/journal.pone.0265747.g002
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that it was a type of continuous optimization procedure. PSO employs shifting the position of

the particles in the herd at a constant velocity that is updated with each iteration to find the

optimal solution. Each particle’s mobility is influenced by the swarm’s personal best position

and global best (cf. Fig 5). PSO is widely employed for optimization issues in various domains

of engineering, particularly geotechnical [51, 52].

The pseudo-code of the algorithm is presented below:
FOR each particle i in swarm
FOR each dimension j
Initialize position Gij randomly
Initialize velocity Vij randomly

END FOR
END FOR
Iteration k = 1
DO
FOR each particle i in swarm
Calculate fitness value P(i)
IF P(i) > P_best(i) THEN
P_best(i) = P(i)

END IF
IF P(i) > G_best THEN
G_best = P(i)

END IF
END FOR
FOR each particle i in swarm
FOR each dimension j
Calculate new velocity:
Vij(k+1) = wVij(k) + c1rand1(P_best(i)—Gij(i)) + c2rand1 (G_best–
Gij(i))
Update particle positon: Gij(k+1) = Gij(k) + Vij(k+1)

END FOR
END FOR

Fig 3. Relation between input and output via matrix Pearson correlation.

https://doi.org/10.1371/journal.pone.0265747.g003
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w = w.wd
k = k + 1

WHILE k < maximum_Iteration

In which: w is an inertial parameter; c₁, c₂ are the acceleration coefficients; wd is the reduc-

tion coefficient of w.

4.3. Genetic algorithm (GA)

GA is one of the most powerful global optimization algorithms, used to solve various prob-

lems. This Algorithm was first introduced by Holland [40]. The origins of this approach are

based on the Darwinian theory, in which an evolved and adaptable population rests on the

most powerful individuals. In the GA algorithm, the population size is one of the most impor-

tant factors reflecting the total number of solutions and significantly affects the results of the

problem [53], while the number of generations refers to the maximum number of iterations of

the algorithm [54]. Same as PSO, GA does not use gradient descent, so GA allows finding the

minimum of a function even in the absence of a derivative. Moreover, other studies used the

GA method whose effectiveness has been proven [6, 53, 55–57].

In this study, using the GA algorithm, an optimization technique was developed to find the

optimal model architecture for RF.

Fig 4. Random forest model.

https://doi.org/10.1371/journal.pone.0265747.g004
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The pseudo-code of the GA algorithm is presented below:
FOR each chromosome i in Population
FOR each gene j
Initialize Gij randomly

END FOR
END FOR
Generation k = 1
DO
FOR each chromosome i in Population
Calculate the fitness value Pi

End FOR
Mating the best chromosomes
Mutates some children randomly
Remove the weakest chromosomes

k = k + 1
WHILE maximum generation

4.4. Modeling and hyper-parameters tuning

In this investigation, the RF model is proposed in modeling the nonlinear relationship between

the inputs and the output. To get high performance, the hyper-parameters of RF will be tuned

using optimization algorithms including GA and PSO. Five parameters of the RF model are

tuned as suggested in the literature [33]. Table 2 showed the tuned hyper-parameters, the

explanation, and the value of tuning ranges. Thus, the architecture of the population in GA (or

the swarm in PSO) was illustrated in Fig 6. It can be seen that the population (or the swarm)

has many members, and each member has five dimensions corresponding to the 5 hyperpara-

meters of the RF model. The flowchart of hybrid RF models was illustrated in Fig 7. In these

models, RF was used as the fitness function and the member with the best fitness value was

Fig 5. Particle movement by the swarm direction.

https://doi.org/10.1371/journal.pone.0265747.g005
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considered as the best individual. The dimension value of the best individual are selected as

the best hyperparameters of the RF model.

For more objective results, 20 models RF-GA and RF-PSO were developed, taking into

account the random initialization of the population. To make the comparison between the

optimization algorithms, the maximum number of iterations of the two-optimization algo-

rithms is 100 and the number of the population is 30. It is important to note that, to avoid

overfitting of the models to the data, the 10-fold CV technique on the training set was used in

this step. In this technique, the training data set is divided into 10 folds, 9 folds for training,

and 1-fold for verification. The average results of 10 such times were compared for each opti-

mization iteration step to confirm the performance of the hybrid models. All initial parameter

setting in the GA and PSO was determined by trial tests [33]. The best initial parameter set-

tings for GA and PSO were given in Table 3.

Table 2. Hyper-parameters description and tuning range.

No Denote Hyperparameters Explanation Range

1 H1 Max_depth The maximum depth of decision tree 2–20

2 H2 Max_features The maximum features which random chosen for bagging. 1–10

3 H3 Min_samples_leaf The minimum number of samples required to be at a leaf node 2–20

4 H4 Min_samples_split The minimum number of samples required to split an internal node 2–20

5 H5 n_estimators The number of trees in the forest 2–200

https://doi.org/10.1371/journal.pone.0265747.t002

Fig 6. The architecture of the population (the swarm).

https://doi.org/10.1371/journal.pone.0265747.g006
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4.4. Performance evaluation

In this paper, three indicators accounting for the error between the actual and predicted values

were used, namely the mean absolute error (MAE), root mean square error (RMSE), squared

correlation coefficient (R2). The R2 measures the squared correlation between the predicted

and actual values, having values in the range of [0, 1]. Low RMSE and MAE show better accu-

racy of the proposed ML algorithms. On the other hand, RMSE calculates the squared root

average difference, whereas MAE calculates the difference between the predicted and actual

values. These values can be calculated using the following equations [58–60]:

MAE ¼
1

k

Xk

i¼1

jvi � �vij ð1Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

k

Xk

i¼1

vi � �við Þ
2

v
u
u
t ð2Þ

Fig 7. The flowchart of hybrid RF models.

https://doi.org/10.1371/journal.pone.0265747.g007
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R2 ¼ 1 �

Xk

i¼1

vi � �við Þ
2

Xk

i¼1

vi � �vð Þ
2

ð3Þ

where k infers the number of the samples, vi, and �vi are the actual and predicted outputs,

respectively, and �v is the average value of the vi.

5. Results and discussion

5.1. Hyperparameters tuning

Fig 8 showed the performance of the RF-GA and RF-PSO models after 20 runs with the ran-

dom initiation population. It can be seen that the performance of the models after each run is

Table 3. The initial values of optimization algorithms.

RF-GA RF-PSO

Parameter Value Parameter Value

Population 30 Number of particles 30

Number of children 12 C1 1.4

Mutation rate 0.4 C2 2

Generation 100 w 1

Fitness value R2 wd 0.99

Data Training set/10-Fold CV Fitness value R2

Data Training set/10-Fold CV

Iteration 100

https://doi.org/10.1371/journal.pone.0265747.t003

Fig 8. Best value of R2 in 20 optimization runs using RF-GA and RF-PSO.

https://doi.org/10.1371/journal.pone.0265747.g008
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different. Specifically, the best result of the RF-GA R2 model is 0.937 in the 12th round while

the RF-PSO model gives the best result with R2 reaching 0.933 in the 8th round. In addition,

the RF-GA model gives the lowest result was R2 = 0.932 at the 3rd iteration, while the RF-PSO

model achieved the worst result R2 = 0.929 at the 11th iteration. Overall, the RF-GA model

seemed to be more efficient compared with the RF-PSO model.

Fig 9 illustrated the best results of the RF-GA and RF-PSO models after 100 iterations. It

can be seen that the RF-GA model converged quickly and achieved the best results after the

34th iteration with a performance index R2 = 0.937. On the other side, the RF-PSO model

appeared to be slower in convergence and had the best result of only R2 = 0.933 at the 94th

loop. The loop increase may continue to give better performance for both two-hybrid models,

however, in the framework of this study, 100 loops is the limit to compare the performance of

two hybrid models.

The best hyper-parameters combinations found through the RF-GA and RF-PSO models

were given in Table 4. It is worth noting that the min_sample_leaf value of the two optimal

models is equal to 2, the other hyper-parameters were not the same.

5.2. Performance comparison of RF, RF-PSO, RF-GA

From a statistical probability standpoint, the randomness of the division of training and test

datasets should be carefully considered. In this step, 1000 random samplings of the training set

and testing set were performed to verify the stability of the models. Specifically, three models

were compared including RF-GA, RF-PSO, and RF, where the RF model is used with default

parameters.

Fig 10 showed the density graph of the models after 1000 runs for the performance indica-

tors such as R2, RMSE, and MAE for training and testing part of 3 models while the results

were summarized in Tables 5–7 for R2, RMSE, and MAE, respectively. The results showed

that, on the training set, the RF-PSO model gives the best results with the average performance

indicators reaching R2 = 0.982, RMSE = 0.04649 and MAE = 0.033, respectively. However, on

the testing set, the RF-PSO model gave bad results when the performance indicators were R2 =

Fig 9. Hyper-parameters tuning using RF-GA and PSO-GA.

https://doi.org/10.1371/journal.pone.0265747.g009
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0.9242, RMSE = 0.0939, and MAE = 0.0679, respectively. This result is equivalent to the

default-RF model when achieving the corresponding indicators R2 = 0.9240, RMSE = 0.0940,

and MAE = 0.0680.

This implies that the RF-PSO and default-RF models proved too fit for the training set and

not good in the testing set. In other words, these models are a bit overfitting and do not gener-

alize well the data set. In the opposite direction, the RF-GA model showed better generality

when the results were good on the test set with the best average performance indexes and

achieved R2 = 0.93043, RMSE = 0, 08847, MAE = 0.06603, and the corresponding results

achieved on the training set are R2 = 0.96311, RMSE = 0.06545, MAE = 0.04953 respectively.

In addition, the standard deviation of the RF-GA model on the test set is also the smallest in all

3 criteria, proving that the model has the best stability. Generally, in terms of stability and best

generalization, the RF-GA model was selected as the last model in this study.

5.3. Prediction performance of hybrid model RF-GA

The best architecture of the RF model determined by GA algorithms was applied for this sec-

tion. In this section, the predictive capacity of the best-performance RF-GA model was pre-

sented. In especially, the best RF architecture’s prediction results were presented.

A regression model in Fig 11 showed the correlation between the actual and predicted val-

ues for the training and testing datasets, respectively. A linear fit was also applied and plotted

in each case. It is observed that the linear regression lines were very close to the diagonal lines,

which confirms the close correlation between the actual and predicted axial bearing capacity

of piles. The calculated values of R2, RMSE and MAE for the training dataset were 0.9639,

0.0661, 0.0511 and 0.9331, 0.0929, 0.0675 for the testing dataset, respectively. The results of the

performance criteria show that the RF model with the tuned hyperparameters can accurately

predict the axial bearing capacity of piles. Fig 12 showed the error values corresponding to the

training and testing databases are low. Almost all the error values between the actual and pre-

dicted values were about 0 for the training and testing part confirmed that the RF model has

been successful in estimating the axial load capacity of the pile.

It is important to note that due to the limitations of this study, the best RF model developed

only achieves high prediction performance under the condition that the input parameter val-

ues are between the minimum and maximum values. Input values that are outside the recom-

mended range will cause the model to be confused and incorrectly predict the bearing capacity

of the piles.

Moreover, the range of input and output values is crucial in improving performance of ML

model [22]. In this investigation, the value of axial bearing capacity of pile varies about from

0.5 to 1.5 MN. However, the missing value of range (0.7;1.0) for the axial bearing capacity of

pile (cf. Fig 11) seems to reduce the performance of RF-GA model. The prediction of axial

bearing capacity of pile in this missing range needs to be careful and is not recommended.

With the database containing 472 samples and 10 input variables, the prediction of axial bear-

ing capacity by RF-GA model is recommended in range (0.40;0.70) and (1.00;1.55) MN of

axial bearing capacity of pile. Therefore, the performance and reliability of prediction can be

improved if the missing of range is completed in future research.

Table 4. Best parameters proposed by GA and PSO algorithms.

Max_depth Max_features Min_samples_leaf Min_samples_split n_estimators

RF-GA 12 1 2 12 144

RF-PSO 8 2 2 6 16

https://doi.org/10.1371/journal.pone.0265747.t004
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Fig 10. Density chart of models after 1000 runs for data set: (a) (c) (e)–training set; (b) (d) (f)–testing set.

https://doi.org/10.1371/journal.pone.0265747.g010
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In practical engineering application, the RF model can be illustrated via a large number of

decision trees which is built in the form of if-else structures in EXCEL, so the user only needs to

enter 10 input variables and get the output variable, which is the pile load capacity. The EXCEL

file of load capacity estimation which contains the final RF model is attached in S1 Data.

5.4. Sensitivity analysis

The RF algorithm is capable of evaluating the importance of the input parameters. The

importance of each input variable is measured by the change in the accuracy of the pre-

diction when the input variable is not selected during the division for each decision tree

[61]. The importance of the variables is represented by the Shapley Additive Explanations

[62]. This type of plot aggregates SHAP values for all the features is shown in Fig 13.

According to the SHAP value, the X8 input corresponding to pile tip elevation is the

most important feature. The pile tip elevation has a positive impact on the axial bearing

capacity of the pile, in fact, with higher pile tip elevation, the bearing capacity is

increased. However, the X5 input corresponding to natural ground elevation has a nega-

tive impact on the bearing capacity of the pile. With the lower natural ground elevation,

the bearing capacity is higher. These behavior are concluded by Coyle et Sulaiman [63]

and Liu et al. [64]. The lowest impact on the pile bearing capacity is pile top elevation

which has a positive effect. With a higher elevation of pile top, the pile bearing capacity is

slightly increased.

6. Conclusion

In this study, RF hybrid models were developed to predict the axial load capacity of the

pile. Two global optimization algorithms, GA and PSO, were selected for the hyperpara-

meters optimization of the RF model. For research purposes, the data set including 472 pile

load test results were used to train and test the model. The results show that out of the 2

optimized algorithms selected, GA seems to provide better performance than PSO in opti-

mizing the RF model. Specifically, the RF-GA model gives good results in the training set,

Table 5. Summary of the 1000 simulations using R2 criteria.

Model Dataset Average Min Max SD

RF-GA Training 0.96311 0.9539 0.96947 0.00223

Testing 0.93043 0.8587 0.96487 0.01574

RF-PSO Training 0.98201 0.97776 0.98739 0.0015

Testing 0.92417 0.79826 0.96367 0.02054

RF Training 0.963 0.95474 0.97103 0.00239

Testing 0.92404 0.79143 0.96765 0.01996

https://doi.org/10.1371/journal.pone.0265747.t005

Table 6. Summary of the 1000 simulations using RMSE criteria.

Model Dataset Average Min Max SD

RF-GA Training 0.06545 0.05966 0.07226 0.0018

Testing 0.08847 0.06472 0.12442 0.00889

RF-PSO Training 0.04649 0.03982 0.05132 0.00188

Testing 0.09391 0.06768 0.15244 0.01117

RF Training 0.0656 0.05878 0.07148 0.00188

Testing 0.09403 0.06329 0.15929 0.01097

https://doi.org/10.1371/journal.pone.0265747.t006
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Table 7. Summary of the 1000 simulations using MAE criteria.

Model Dataset Average Min Max SD

RF-GA Training 0.04953 0.04472 0.05476 0.00133

Testing 0.06603 0.05014 0.08567 0.00582

RF-PSO Training 0.033 0.02913 0.03595 0.00105

Testing 0.06788 0.05007 0.09725 0.00621

RF Training 0.04957 0.04454 0.05417 0.0014

Testing 0.06801 0.04923 0.09708 0.00622

https://doi.org/10.1371/journal.pone.0265747.t007

Fig 11. Regression graphs for the case of the best parameters of RF-GA model (a) training dataset; and (b) testing

dataset.

https://doi.org/10.1371/journal.pone.0265747.g011
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while also providing expert performance on the test set. Meanwhile, the RF-PSO model

appears to be overfitting when it comes to excellent performance on the training set, but

poorly on the testing set. In addition, when compared to the default RF model, both the

RF-GA model and the RF-PSO model yield better results demonstrating the efficiency

when using the optimal algorithms. In addition, a sensitivity analysis using the RF-GA

model showed that amongst 10 input variables used to predict the axial bearing capacity of

the pile, the pile tip elevation was the most important feature, this feature has a positive

effect on the axial bearing capacity of piles.

Overall, the RF model optimized by GA provides expert performance in predicting the

axial load capacity of the pile. This model could be used as a quick and accurate tool to predict

the axial load capacity of the pile. In addition, the model also has great potential in solving

other technical problems. In order to increase the performance and reliability of ML model in

predicting axial bearing capacity of pile, the range of axial bearing capacity of pile in

[0.70;1.00] and the associated input variable values need to be completed.

Fig 12. Error between target and output values plots for the case of the best model RF-GA (a) training dataset; and (b)

testing dataset.

https://doi.org/10.1371/journal.pone.0265747.g012

Fig 13. Feature importance of 10 variables used in this investigation.

https://doi.org/10.1371/journal.pone.0265747.g013
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