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Abstract

The mammalian visual system has been the focus of countless experimental and theoretical

studies designed to elucidate principles of neural computation and sensory coding. Most

theoretical work has focused on networks intended to reflect developing or mature neural

circuitry, in both health and disease. Few computational studies have attempted to model

changes that occur in neural circuitry as an organism ages non-pathologically. In this work

we contribute to closing this gap, studying how physiological changes correlated with

advanced age impact the computational performance of a spiking network model of primary

visual cortex (V1). Our results demonstrate that deterioration of homeostatic regulation of

excitatory firing, coupled with long-term synaptic plasticity, is a sufficient mechanism to

reproduce features of observed physiological and functional changes in neural activity data,

specifically declines in inhibition and in selectivity to oriented stimuli. This suggests a poten-

tial causality between dysregulation of neuron firing and age-induced changes in brain phys-

iology and functional performance. While this does not rule out deeper underlying causes or

other mechanisms that could give rise to these changes, our approach opens new avenues

for exploring these underlying mechanisms in greater depth and making predictions for

future experiments.

Author Summary

Understanding how the brain’s neural circuitry changes during healthy aging is important

for uncovering mechanisms of normal decline in neural performance and distinguishing

these from changes due to age-related diseases such as Alzheimer’s or Parkinson’s disease.

In this work we propose a computational model of an aging-like process in primary visual

cortex that reproduces several experimentally-observed changes in senescent cats. In par-

ticular, our model predicts that an age-induced increase in excitatory neural activity amid

ongoing synaptic plasticity and homeostatic regulation leads to decreased strengths of

synaptic connections and deterioration of neural receptive fields, which in turn lead to

decreased network sensitivity to oriented features in visual stimuli. These results suggest a
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potential causality between dysregulation of neuron firing and age-induced changes in

brain physiology and functional performance, pointing the way toward new directions for

investigating the dynamics of aging in depth and making predictions for future

experiments.

Introduction

While healthy aging, and in particular its impact on neurological performance, has been the

focus of numerous experimental studies [1–8], there are comparatively few theoretical and

computational studies that focus on normal aging. Most computational studies to date model

the effects of diseases that often manifest in advanced age in humans [9, 10], such as Alzhei-

mer’s [11–22] or Parkinson’s disease [23–30]. Only recently has theoretical and computational

work on aging in non-pathological networks begun to emerge [31, 32]. Because advanced age

is one of the most important risk factors for developing such neurological disorders [9, 10, 33],

to fully understand the progression of these diseases we ought to have a baseline understanding

of how the brain’s circuitry changes during healthy aging, both in terms of physiological prop-

erties and functional performance. This would help dissociate disease-related changes from

those caused during normal aging, and thereby allow researchers to focus their attention on

treating potential causes of the disease progression not directly related to normal aging. On the

other hand, understanding how the healthy brain ages may enable us to treat declines in per-

formance caused solely by aging, in both healthy subjects and those with neurological disor-

ders or diseases.

In this work we seek to advance our understanding of potential mechanisms and conse-

quences of age-induced changes in physiology and functional performance in visual cortex.

We do so by using a V1-like network model to qualitatively replicate experimentally-observed

differences in the physiology and function of neurons in the visual cortex of young and old

cats. In particular, we are motivated by experimental work that finds that senescent brain tis-

sue in cat V1 shows increased spontaneous firing [34], decreased GABAergic inhibition [35,

36], and decreased selectivity to the orientation of grating stimuli [34].

The logic of our approach is to mimic the experimental conditions by creating a V1-like

spiking network model that we “age” in such a way that it develops the physiological changes

observed in the experiments of [34–36]. Then, we can test the sensitivity of neurons to oriented

grating stimuli at each age of our network to observe how neural selectivity changes as the net-

works become increasingly senescent—the strength of the orientation selectivity of the neu-

rons will serve as our assessment of the functional performance of the network in this model.

Importantly, because we model the aging process, rather than constructing two discrete

“young” and “old” networks, we will not only qualitatively replicate the experimental findings

in young and elderly cats, but will also probe the model at intermediate ages to understand

changes in physiology and function throughout aging.

In order to model the experimental results we use E-I Net, a previously-developed spiking

network model of mammalian V1 [37], as the basis for our study. The network structure of E-I

Net is learned by training the model on pixel images of natural scenes, mimicking the early

developmental processes [38] in which neurons develop Gabor-like receptive fields measured

experimentally in the visual cortex of mammals [39]. Similarly, the recurrent connections

develop such that neurons with similar receptive fields effectively inhibit one another through

intermediary inhibitory neurons. The standard E-I Net model thus contains the important

V1-like features we seek in a network model, and we use it to represent the young, mature
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network. In order to “age” the network we modify and extend the training procedure to create

the aging-like process that qualitatively reproduces the experimental results of [34, 35], in

addition to making predictions for other features of the aging process. Importantly, we show

that the only modification we need to make to obtain a process that results in aged network

phenotypes is a change to the training procedure that will promote increased firing activity

within the network with age—the other physiological and functional performance changes

emerge from this single change. We argue that this change can be interpreted as a breakdown

in homeostatic-like mechanisms controlling the network’s target firing rate, leading to the

increases in excitation, decreases in synaptic strength, and declines in orientation selectivity

that mimic the experimentally observed changes. Although there may be other mechanisms

that can replicate these experimental findings, our model makes several predictions for other

yet-to-be-observed changes in physiology and functional performance that can potentially be

used to further test our model and the interpretation of our results.

This paper proceeds as follows: in Results we first give a brief overview of E-I Net and the

modifications we made to the model to implement an aging-like phase of the training dynam-

ics. We then present our findings on the physiological changes that occurred in our network

during this aging phase—i.e., the changes to receptive fields, lateral connections, and firing

thresholds—followed by analyses of the changes in functional performance of the network,

which we quantify by the changes in the selectivity of the neurons to oriented gratings. To gain

a deeper understanding of how each set of our network parameters contributes to functional

performance changes during the aging process, we perform a number of numerical experi-

ments. In particular, i) we study how orientation selectivity evolves when one or more parame-

ters sets are frozen to their young values and ii) we disambiguate whether receptive field

structure or receptive field magnitude contributes more to the declines in orientation selectiv-

ity. Finally, in the Discussion we interpret our results and their relationship to recent work, the

limitations of our approach, how our model’s predictions might be tested experimentally, and

possible implications for understanding normal and pathological declines in neural perfor-

mance with age.

Results

Modified E-I Net as a model of aging in V1-like networks

We begin by briefly reviewing E-I Net [37], the spiking network model of visual cortex we use

in this work, and outlining how we modify this model to implement the aging-like process we

use to replicate the experimental findings of [34, 35]. E-I Net comprises a population of recur-

rently-connected excitatory and inhibitory spiking neurons that receive external inputs driven

by visual stimuli. The subthreshold dynamics of the neurons’ membrane potentials obey

dviðtÞ
dt
¼ �

viðtÞ
ti
þ
X

k

QikXk þ
XN

j¼1

Wij

X

‘

d t � tð‘Þj

� �
; ð1Þ

where vi(t) is the membrane potential of neuron i at time t and the membrane time constant τi
is τE (τI) if neuron i is excitatory (inhibitory). Neuron i fires a spike when vi(t)�θi and then is

reset to vi(t) = 0. As shown schematically in Fig 1, each of the N neurons receives visual input

in the form of pixel images X from natural scenes; in this work, these scenes are taken from

frames of movies in the CatCam database [40, 41]. The input currents generated by these visual

scenes appearing in Eq (1) is ∑k Qik Xk, where Xk is the intensity of the kth pixel of the input

patch X and the Qik are the strengths of the input connections from the kth pixel to neuron i.
Neurons are connected by recurrent synaptic connections Wij, representing the amount of
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Fig 1. Schematic of the network model. We use E-I Net [37] as our model of visual cortex. A. E-I Net comprises a network of leaky integrate-and-fire

neurons that receive visual input in the form of randomly-drawn patches from pixel images (X, highlighted region of natural scene), communicated to

the neurons through input weights Q. Each neuron belongs to either the excitatory or inhibitory population. Neurons are synaptically connected by

lateral weights W that obey Dale’s law, such that excitatory-to-inhibitory weights WIE are positive, while inhibitory-to-excitatory (WEI) and inhibitory-to-

inhibitory (WII) weights are negative. Excitatory-to-excitatory connections are assumed to be negligible and are not included in this model. The input

weights Q, lateral weights W, and firing threshold of each neuron θ (not depicted) are learned by training the network on natural pixel images. B. The

input stimulus to the network, X, comprises a grid of pixels (4 × 4 shown here; 8 × 8 used in practice). The kth pixel generates a current in the ith neuron
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charge transferred when pre-synaptic neuron j transmits a spike to post-synaptic neuron i.
While the individual Wij are distinct for all pairs ij, there are three classes of recurrent weights:

inhibitory-to-excitatory weights WEI, excitatory-to-inhibitory weights WIE, and inhibitory-to-

inhibitory weights WII; as in the original E-I Net model we assume excitatory-to-excitatory

weights WEE are rare and may be neglected. The time at which the ‘th spike is emitted by neu-

ron j is represented by tð‘Þj in Eq (1). In this paper we take Wij to be positive (negative) if the

post-synaptic neuron j is excitatory (inhibitory), in contrast to the original E-I Net paper

which makes the sign explicit, such that Wij is non-negative for any cell type.

These parameters develop according to synaptic and homeostatic learning rules inspired by

sparse coding theory and previously established rules such as Oja’s Hebbian plasticity rule [42]

and Foldiak’s rule [43]. These learning rules are not specific to any particular species, and

therefore the network is taken to be a general model of mammalian visual cortex. The learning

rules are designed to enforce linear decoding of the image patches from the spike rates (Eq

(2)), minimal correlation in spiking (Eq (3)), and sparseness in firing (Eq (4)):

DQik ¼ aðyiXk � y2
i QikÞ ð2Þ

DWij ¼ bijðyiyj � hyiihyjið1þ jWijjÞÞ ð3Þ

Dyi ¼ gðyi � piðtloopÞÞ; ð4Þ

where yi is the spiking rate of neuron i in response to the presented image patch over a duration

T, while hyii is the long-time mean of the spike rate. The parameters α, βij, and γ are the learning

rates, which set how quickly the network parameter updates converge to a steady state. The syn-

aptic learning rates βij 2 {βEI, βIE, βII} depend on whether the neurons connected by the synapse

are excitatory or inhibitory. The quantity pi(tloop) is the expected number of spikes emitted per

time-unit at each “age” of the network tloop, quantified by the number of training loops that

have taken place; one loop is 50 different image presentations, each for 50 time-steps. Sparsity

in firing is enforced by choosing pi(tloop)� 1. In the original E-I Net model pi(tloop) is a con-

stant value pE (pI) if neuron i is excitatory (inhibitory), independent of the network age.

In the original E-I Net model the learned network parameters Qik, Wij, and θi achieve a

steady-state network structure in which the pixel-space arrangements of input weights Q
resemble Gabor-like receptive fields typical of networks trained on natural scenes [39], as

shown schematically in Fig 1C. The learned lateral weights are organized such that excitatory

neurons with similar receptive fields effectively inhibit one another (see [39] and S1 Text). To

study the effect of aging, and in particular how the network structure changes with age, we

modify the target firing rate pE(tloop) in Eq (4), choosing it to be

pEðtloopÞ ¼

( pEð0Þ; tloop � 30 loops

pEð0Þ þ
0:002 spikes=time� unit

loop � ðtloop � 30 loopsÞ; tloop > 30 loops
; ð5Þ

where pE(0) is the expected number of spikes per time-unit for tloop� 30 loops. That is, after

the network has achieved its steady state (which occurs by 30 training loops) the target spike

rate begins to increase with each loop. This change is designed to increase the spiking activity

of the excitatory neurons in order to mimic the increased activity of neurons in aged cat brain

equal to the intensity of the pixel multiplied by a weight Qik, for a total current into neuron i of ∑k Qik Xk. C. The input weights Q can be arranged spatially

by ordering them the same way as the pixel-input patches. This representation can be interpreted as neuron i’s receptive field.

https://doi.org/10.1371/journal.pcbi.1008620.g001
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tissue observed in [34]. Physiologically, this change may be interpreted as arising from a break-

down in homeostatic mechanisms that regulate the target spike rate, which we do not model

explicitly (see Discussion).

As pE(tloop) increases, the network parameters will begin to depart from the previously sta-

bilized values, and we can track their evolution with training time, or “age.” Moreover, at each

of these ages we can assess both the physiological changes in Qik, Wij, and θi, as well as the

functional performance of the network in response to different tasks. As outlined in the intro-

duction, we seek to mimic the experimental conditions of [34], which measured the selectivity

of young and elderly cat neurons to oriented grating stimuli and observed decreased selectivity

in elderly cats. We therefore present patches of visual input from oriented grating images to

our “aged” network models and quantify the selectivity of neurons to these edges.

We train our networks for an additional 50 loops, giving a total network age of 80 loops.

The target spike rate pE(tloop) increases on every loop, and we record the aged set of parameters

{Q, W, θ} and test the sensitivity to gratings every 5 loops. We report on the physiological

changes during the aging process next (Physiological parameter changes), followed by the

functional performance changes during the oriented grating tasks (Functional performance

changes), and finally an additional set of numerical experiments that we run to further probe

how the different network parameters contributed to the observed changes in physiology and

functional performance (Numerical experiments to test contribution of different physiological

parameters to declines in functional performance).

Physiological parameter changes

Fig 2 displays the distributions of the learned physiological parameters in “(mature) youth” (30

training loops) compared to “old age” (80 training loops); see also S1 Fig for the histograms at

intermediate ages and S2 Fig for results obtained in networks trained on different movies. We

find the range of magnitudes of the synaptic and input weights decreases with age, while the

range of the firing thresholds expands by an order of magnitude, from 0.46 to 9.2. Note that

the network model is formulated in dimensionless units, so the parameter ranges do not corre-

spond directly to dimensionful quantities measured in experiments.

In addition to changes in magnitude, the input weights also undergo a change in their spa-

tial organization in pixel space—i.e., the receptive field of the neuron is not preserved with

aging. Fig 3A shows the receptive field of a particular neuron with a Gabor-like receptive field

Fig 2. Distributions of physiological network parameters in youth vs. old age. We plot histograms of the magnitudes of network parameters learned during training

on natural images: the input weights Q, lateral weights W, and firing thresholds θ. Yellow histograms correspond to the distributions of these parameters in the mature

young network, the steady state of network development (reached by 30 training loops). After this age, the excitatory target firing rate begins to increase, causing a

rearrangement of the network that we interpret as an aging-like process. The blue histograms are the distributions of network parameters after 80 training loops. Aging

tends to decrease the magnitude of input and lateral weights, while it widens the distribution of firing thresholds (in young age, all the thresholds belong to a narrow

range, relative to the old-age thresholds, and the bins are accordingly very narrow). A decrease in inhibitory weights is consistent with experimental work of [35, 36]

and decreases in excitatory weights are consistent with experimental studies across several brain areas and species [5, 6, 8]. All quantities are expressed in

dimensionless units.

https://doi.org/10.1371/journal.pcbi.1008620.g002
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(RF) at age 30 (top) and a random-looking RF at age 80 (bottom). If we “vectorize” the recep-

tive fields by rearranging the 8 × 8 pixel grids into 1 × 64 vectors, then we can quantify the “dis-

tance” between young and old receptive fields in pixel-space by computing the angular

separation φi between the vectorized young and older receptive fields Qyoung and Qold for each

neuron i:

φi ¼ cos� 1

P
kQ

young
ik Qold

ikffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

kðQ
young
ik Þ

2P
kðQold

ik Þ
2

q

0

B
@

1

C
A: ð6Þ

This angle is 0 if the old RF is identical to the young and π/2 if the young and old RFs are

orthogonal. We find that the mean angle between vectorized RFs steadily increases with age, to

the point that in the oldest age of our network the mean angle between a neuron’s young and

old receptive fields tends to π/2, i.e., on average the old-age RFs of a population of neurons

become orthogonal to the RFs in youth, as shown in Fig 3B (see also S3 Fig for angle distribu-

tions obtained in networks trained on different movies). Orthogonality in high-dimensions

can be difficult to interpret, as random vectors in high-dimensional spaces are nearly orthogo-

nal with high probability [44]. To gain some intuition into this result, we also compute the

angles between the young (age 30) vectorized RFs and a shuffling of this same set of RFs, and

compute the angles of separation between random pairs of these RFs. This shuffling produces

a distribution of angles that is statistically indistinguishable from the distribution of angles

between the young receptive fields and their age 80 counterparts (final violin in Fig 3B), as

evaluated by a two-sample Kolmogorov–Smirnov test (p-value of 0.36, failure to reject the

Fig 3. Angle between receptive fields in the input weight parameter space. A. A particular neuron’s receptive field (RF) in youth versus old age, demonstrating that

features of a neuron’s RF may not be preserved in our model’s aging process. B. Violin plot of the distribution of angles between each individual excitatory neuron’s

young and older vectorized receptive fields (RFs) (Eq 6). As our network ages a neuron’s RF becomes increasingly orthogonal to its mature young RF, on average,

indicated by the median of the RF distributions tending to approximately π/2. The colors of the violins represent the age indicated on the horizontal axis.

https://doi.org/10.1371/journal.pcbi.1008620.g003
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null hypothesis that the empirical cumulative distribution functions come from the same

distribution).

This result suggests that the aging process could simply be shuffling the RFs over time: no

individual neuron’s receptive field is preserved, but across the network the distribution does

not change significantly. To show that this is not the case, we classify the receptive fields of

excitatory neurons as either “Gabor-like,” showing characteristics of Gabor edge detectors, or

“not-Gabor,” and show that the numbers of neurons in these categories change with age. The

results are given in Table 1. As some RFs categorized as not-Gabor in youth become Gabor-

like with age, we also record transitions between types (bottom subtable in Table 1). We assess

Gabor-ness by fitting a spatial Gabor profile to each neuron’s receptive field and classify it as

Gabor-like if the goodness-of-fit relative to the RF magnitude is sufficiently small; see Methods

and [39]. We use a conservative goodness-of-fit criterion; nonetheless, under this criterion

close to a third of the excitatory RFs are classified as Gabor-like in youth, while this fraction

drops to nearly 1-in-20 in our oldest network, demonstrating that the aged networks undergo

a net loss of neurons with Gabor-like RFs. Given the edge-detecting properties of Gabor-like

receptive fields, we thus anticipate this loss plays a prominent role in the degradation of the

sensitivity of the network to oriented grating stimuli, discussed in the next section.

Functional performance changes

As a first basic check of network performance, we analyze the distribution of spike counts over

image presentations. The single change we made to the network—increasing the excitatory tar-

get firing rate pE with training—is intended to produce increased neuron activity with age, as

observed in experiments [34]. Indeed, as shown in Fig 4A, we find that not only do the mean

excitatory spike counts increase with age, but the spread of the distribution does as well, con-

firming that our network exhibits growing excitation during the aging process. We do not

increase the target firing rate pI of the inhibitory neurons, and as a result neither the mean

spike counts nor variance of the spike count distribution of these neurons increase with age

(Fig 4B). See also S4 Fig for results obtained in networks trained on different movies.

To evaluate functional performance at each age, quantified by the neurons’ orientation

selectivity, every 5 training loops we pause training and simulate the network’s responses to

patches drawn from pixel images of oriented gratings of spatial frequency 0.1 cycles per pixel,

such that one 8 × 8 patch contains approximately 1 cycle. We quantify a neuron’s selectivity to

each orientation using the same orientation selectivity index employed by Hua et al. [34] and

others [45, 46]. As seen in Fig 5, the cumulative distribution plots of the orientation indices

(the fraction of cells with indices less than a particular value) qualitatively agree with the

Table 1. Quantification of Gabor-like receptive fields. We quantify whether each excitatory neuron in our network model has a Gabor-like receptive field or not, in both

our mature young network (30 loops) and the oldest network (80 loops). We assess Gabor-ness by fitting a spatial Gabor profile to each neuron’s receptive field and classify

it as Gabor-like if the goodness-of-fit relative to the RF magnitude is sufficiently small; see Methods and [39]. In the bottom subtable, the numerator in each fraction corre-

sponds to classification in old age and the denominator corresponds to classification in youth. For example, of the 123 excitatory neurons with Gabor-like RFs in youth,

only 6 retain Gabor-like RFs in old age, while of the 400 − 123 = 277 neurons that are not Gabor-like (“not-Gabor”) in youth we find that 257 of those neurons are not-

Gabor in old age.

Gabor-like in youth (30 loops) Gabor-like in old age (80 loops)

123/400 26/400

Gabor-like in old age not-Gabor in old age

Gabor-like in youth 6/123 117/123

not-Gabor in youth 20/277 257/277

https://doi.org/10.1371/journal.pcbi.1008620.t001
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experimental observations of [34] in young and old cats: selectivity decreases with age, demon-

strated by the shift of the cumulative plots toward lower orientation indices. However, our

model results also suggest this process may not be a straightforward monotonic degradation of

selectivity distribution with age. In the first several epochs of aging our network we find that

the mean selectivity of the network changes slowly, with changes in weakly- and strongly-

selective neurons roughly balancing out (ages 30–50, model results in Fig 5B), and only later in

Fig 4. Activity of the network with age. A. Violin plot of the excitatory spike count distributions with age. Markers indicate the median. Both median and variance of the

distributions increase with age, indicating increased excitation in the network, as expected. B. Violin plot of the inhibitory spike count distributions. The inhibitory target

spike rate does not increase with age, and thus the distributions do not change systematically during aging. The colors of the violins represent the age indicated on the

horizontal axis.

https://doi.org/10.1371/journal.pcbi.1008620.g004

Fig 5. Selectivity of cells to oriented gratings. A. Schematic of oriented gratings presented to the network to evaluate selectivity to oriented features in visual input. B.

Cumulative distribution plots of orientation selectivity indices of real neurons from Hua et al. [34] in young (yellow) and elderly (blue) cats, compared to our model

results for a series of different “ages” of our network model. In both cases orientation selectivity decreases with age.

https://doi.org/10.1371/journal.pcbi.1008620.g005
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age does the network begin to more quickly lose strongly-selective neurons, a prediction that

could be tested experimentally in future studies. See also S5 Fig for results obtained in net-

works trained on different movies.

Numerical experiments to test contributions of different physiological

parameters to declines in functional performance

Given the variety of changes our model network undergoes during aging, can we identify

which physiological changes contribute most to the observed changes in functional perfor-

mance? We certainly expect the degradation of the Gabor-like structure of the receptive fields

to play a strong role, at least later in the aging process when the RFs are no longer Gabor-like,

as in the absence of these edge-detector filters in the network we naturally expect selectivity to

drop. However, before the RF structure has completely degraded, we may also expect lateral

weights to play a role, as several theoretical and experimental studies suggest that neurons with

similar response properties will effectively mutually inhibit one another and thereby sharpen

the selectivity of their responses [47–53]. Thus, a loss of inhibition could also contribute signif-

icantly to decreased orientation selectivity at intermediate older ages. To probe which parame-

ter set dominates the contribution to the loss of orientation selectivity as a function of age, we

performed several numerical experiments on our networks.

In our first set of simulation experiments, we age our network while shutting off the learn-

ing rule for one or more of the physiological parameters—freezing these parameters to their

young values. In this way we can assess which parameters, or combination thereof, has the

strongest influence on preserving orientation selectivity. We perform three such tests: i) we

freeze the input weight matrices Q, ii) we freeze the lateral weight matrices W (for both excit-

atory and inhibitory neurons), and iii) we freeze both Q and W. Note that we do not freeze the

thresholds to their young values because our network aging process is driven by the increasing

excitatory target spike rate pE(tloop), which only appears in the threshold learning rule. Freez-

ing this learning rule would therefore preclude aging in our network.

We present the results of these tests in Fig 6, in which we plot the average selectivity as a

function of age for each case. We see that both cases in which the input weights Q are frozen

retain a relatively high mean orientation selectivity across ages, comparable to the baseline net-

work in the early stages of aging and exceeding it in old age. When only the lateral weights are

frozen and the input weights are allowed to adapt to the increasing pE(tloop), the mean selectiv-

ity stays close to its youthful value for most of the aging process before beginning to drop at

the oldest ages we simulated. These results suggest that preserving either input weights or lat-

eral weights may be sufficient to maintain the functional performance of the network, though

the steepening slope of the frozen-W curves compared to the flat slope of the frozen-Q and fro-

zen-Q-and-W curves in advanced age suggests that in the long run preserving input weights

may be more important than preserving lateral weights for maintaining the functional perfor-

mance of the network. The relative importance of input weights over lateral weights is further

supported by a supplementary analysis in S1 Text; see also S6 Fig for results obtained in net-

works trained on different movies.

These tests so far demonstrate that input weight changes may be the dominant contributor

to the decline in selectivity, but do not disambiguate the contribution of changes in input

weight magnitude from the contribution of changes in the spatial organization (the receptive

field structure). As observed in Figs 2 and 3, we know that both the receptive field structure

and the distribution of input weight magnitudes are altered during our aging process. With

our network model we can separate the effects of input weight magnitude versus structure to

test whether one of these features contributes more to the changes in neural selectivity. We
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expect, for instance, that the loss of Gabor-like receptive field structure will result in dimin-

ished orientation selectivity. We test sensitivity to input weight structure and strength in two

ways: i) we preserve each individual neuron’s young receptive field structure while remapping

the input weight magnitudes such that the distribution matches that of the old-age input

weights; ii) we preserve each individual neuron’s aged receptive field structure while remap-

ping the input weight magnitudes to match the young input weight distribution. We find, as

seen in Fig 7, that restoring the young RF structure gives a boost to the mean orientation selec-

tivity at later ages. However, we also find that restoring the young magnitudes yields a greater

improvement in selectivity across all ages, but is particularly effective in the later stages of

aging. See also S7 Fig for results obtained in networks trained on different movies.

Fig 6. Selectivity of cells when connection weights are frozen during training. We test how network parameters contribute to orientation selectivity by shutting

off learning of the input weights or lateral weights during the aging process. When only input weights Q are frozen to their young values, or both Q and W are

frozen to their young values, the selectivity is only modestly impacted. However, when lateral weights are frozen to their young values, the selectivity remains

relatively high for most ages until it begins to drop off near the oldest ages in our simulations.

https://doi.org/10.1371/journal.pcbi.1008620.g006
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Discussion

We have demonstrated that if the target spike rate pE(tloop) in the learning rule for neural

thresholds begins to increase after the network has reached maturity the resulting training pro-

cess produces networks that qualitatively replicate features observed in senescent brain tissue.

The training period of E-I Net’s predecessor, SAILnet [39], has previously been used to model

the experiential development of visual cortex in growing ferrets [38], and our work continues

this line of thinking by extending the interpretation of the modified training dynamics to

aging processes. Though we do not model the underlying mechanism that causes pE(tloop) to

drift, we interpret this change as arising from a disruption in the homeostatic regulation of this

target excitatory spiking rate. Coupled with ongoing synaptic plasticity, this drift of pE(tloop)

Fig 7. Selectivity of cells with remapped receptive fields. To disambiguate the relative impact that aging receptive field (RF) magnitude versus spatial structure has

on orientation selectivity, we remap the magnitudes (input weight values) of each neuron’s RF to create two types of RFs: RFs with the original spatial structure they

have in the young network but a magnitude distribution matching the aged distribution, and RFs with the aged spatial structure but young magnitude distribution.

(See Methods for details). We create these hybrid RFs for each age and simulate the network model to measure the orientation selectivity of the neuron population.

We find that restoring the young RF spatial structure improves selectivity in the late stages of aging, outperforming the baseline network (no remapping) as aging

progresses, while the old RF spatial structure combined with young RF magnitudes maintains an overall higher level of selectivity over the entire age range.

https://doi.org/10.1371/journal.pcbi.1008620.g007
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reorganizes the physiological properties of a network in a multitude of ways. The first is an

increase in excitation (Fig 4); this is the intended consequence of altering pE(tloop) to increase

with continued training. All remaining changes in network physiology, including the weaken-

ing of synaptic weights, broadening of firing threshold distribution (Fig 2), and deformation of

the neural receptive fields (Fig 3) follow from this single modification of the network learning

rules. These physiological changes result in declines in functional performance of the network,

such as reduced sensitivity to oriented features in visual input (Fig 5). Moreover, with access to

all our model parameters, we can show that declines in selectivity are primarily due to the

changes in input weight structure and strength (the receptive fields), rather than changes in

lateral inhibition (Figs 6, 7, and S6; see also S1 Text). These changes are consistent with experi-

mental studies probing aging visual cortex, suggesting that such firing rate dysregulation is a

potential mechanism underlying senescence in neural circuitry.

To support this assessment of our results, below we compare our results to current experi-

mental observations in detail and make predictions for future experiments that could lend

more evidence toward or against this hypothesized mechanism (Comparison to experimental

results and implications for future experiments), and then we discuss the limitations of the

model; i.e., which features we expect to be reasonably realistic, albeit simplified, and which fea-

tures of experimental observations we were not able to replicate with the current model (Limi-

tations of the model), before giving a final summary and conclusion (Summary of results and

implications for disease).

Comparison to experimental results and implications for future

experiments

Our investigation was originally motivated by several experimental results in visual cortex: i)

spontaneous and stimulus-evoked neural activity increases with age [34], ii) the proportion of

GABAergic neurons in senescent brain tissue decreases with age (but total neuron density

does not) [35, 36], and iii) aged neurons exhibit decreased orientation and direction selectivity

[34].

It is not clear a priori what the causal relationships are between these observations; most

likely, there is an underlying common cause, rather than several (approximately) independent

causes leading to these changes. Intuitively, we might expect that decreases in GABAergic inhi-

bition could lead to increased firing in the network. We explored this hypothesis in an early

version of this work by training the network model to maturity and then turning off learning

and decreasing the magnitude of inhibitory connection weights in the network by a global

fraction. We were able to reproduce loss in functional performance only when we added a

tonic current to drive the neurons, and only for particular ranges of this tonic current and

global reduction in the inhibitory weights. However, as the changes to the inhibitory weights

in this early version of the model were implemented by hand, and not by changing the learning

rules, they provided no plausible mechanisms for explaining how the network aged. Moreover,

because learning was turned off in this approach, it did not allow for the possibility that other

network parameters might adjust to compensate.

We ultimately developed the hypothesis pursued in this work, that the causal relationship

could be that a breakdown in homeostatic regulation of target excitatory firing, coupled with

long-term synaptic plasticity, would lead to changes in synaptic strength and other physiologi-

cal features, as well as changes in functional performance. Therefore, the fundamental change

we made to the healthy mature network was intended to produce increased activity by steadily

bringing up the excitatory target spike rate as training progressed past the phase at which the

network parameters had reached a steady state. All other results follow from the coupling
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between this change and the learning dynamics of the model parameters. As expected, the

mean firing rate of excitatory neurons increased with network age, as did variance of firing, as

shown in Fig 4.

The consistency of the observed decreases in synaptic weight magnitudes in our model (Fig

2) with experimental observations in visual areas is more subtle and open to interpretation.

The direct experimental observation in [35, 36] is that the density of GABAergic neurons mea-

sured by GABA-immunoreactive staining decreased in older subjects compared to younger

subjects; however, the total density of neurons (measured by Nissl staining) did not decrease.

This interpretation is supported by other work [54], which finds minimal neuron loss with age

and notes that during aging genes involved with GABA-mediated neurotransmission are

strongly down-regulated in human and macaque pre-frontal cortex. Thus, observed age-

related changes are not caused by a loss of GABAergic neurons through cell death, but more

likely a drop in GABA expression itself. In a conductance-based leaky-integrate-and-fire

model this could be interpreted as a decrease in the maximum fraction of GABAergic recep-

tors being activated by a pre-synaptic spike; as E-I Net is a current-based leaky-integrate-and-

fire model, the closest equivalent effect is a change in synaptic weight. Because the reversal

potential of GABAergic synapses is typically much larger in magnitude than the membrane

potential, it is often valid to approximate the inhibitory conductance-based synapses as cur-

rent-based synapses [55]. Therefore, we interpret the observed decrease in the range of inhibi-

tory input and lateral synaptic weights in our model to be consistent with the experimental

observations.

In addition to the observed decreases in GABAergic neurons [35], experimental work

studying post-mortem tissue from human visual cortex [8] has also found evidence that the

density of several types of glutamatergic receptors tends to decrease in old age, a trend which

also appears to hold across several species and brain areas, with some exceptions [5, 6]. We

interpret these decreases in glutamate concentration and/or receptor density as being consis-

tent with the observed decrease in excitatory synaptic weights in our model (Fig 2). We were

not aware of these results during the original formulation of our model, so the qualitative

agreement between these studies and our model’s decrease in excitatory weights in addition to

inhibitory weights may be viewed as a post-diction of our model.

As with the inhibitory synapses, there does not exist a perfect translation of experimental

observations on excitatory neurotransmission into expected changes in our current-based

leaky-integrate-and-fire model, but it is reasonable to interpret a decrease in receptor count or

neurotransmitter concentration as resulting in an effective decrease in synaptic conductances,

which approximately map onto the synaptic weights Wij of our model when neglecting the

voltage-dependence of the conductance. Some additional caveats apply to this approximate

mapping for excitatory neurons compared to inhibitory neurons, as there are several principal

excitatory neurotransmitters to consider, each of which could change in different ways with

age. The most consistent finding in [5] was a decrease in the density of NMDA receptors with

age across several brain regions. Another possible caveat in our conductance-to-current map-

ping is the fact that the true conductance-based nature of excitatory synapses could become

relevant because excitatory reversal potentials are not significantly larger than membrane

potentials, so a current-based approximation would not fully capture changes in excitatory

synapses with age if they were to cause membrane potentials to cross the excitatory synaptic

reversal potentials. However, to the extent that a current-based integrate-and-fire model can

qualitatively capture these changes, we believe it is reasonable to interpret our results as repli-

cations of these experimental findings.

One potentially interesting feature of the synaptic weight distributions is the apparent gap

in inhibitory-inhibitory synaptic weights observed in Fig 2, suggesting a few connections
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between inhibitory neurons remain relatively strong. The most likely explanation for this

observation is that a few pairs of neurons happened to develop very similar receptive fields,

leading to strong inhibitory connections between them, as neurons with similar receptive

fields tend to have stronger inhibitory connections between them [39]. Indeed, we find the

similarity φij (Eq (6), modified to compare the receptive fields of different neurons in old age,

rather than a single neuron’s young and old RFs) between the receptive fields of two neurons

with residual strong WII connections is about 0.5 radians, much more similar than the recep-

tive fields of randomly chosen pairs of inhibitory neurons, which have φij* π/2 radians.

Moreover, when training the network on different sets of images (see S2 Fig), the weight distri-

bution has smaller or even indiscernible gaps, suggesting the residual strong inhibitory con-

nections are not a robust feature of our model’s aging-like process.

In addition to the weakening of synaptic connection weights, our model also predicts a

change in the firing thresholds of neurons. Because E-I Net uses non-dimensionalized mem-

brane potentials, changes in model thresholds could correspond to changes in the physiologi-

cal thresholds or resting potentials. Data on how firing thresholds and resting potentials

change with age do not appear to show any consistent trends across species or brain areas,

with several studies finding no apparent changes in many cases [7, 56], some finding increases

in firing threshold [7], while others find increased hyperpolarization of resting potentials and

firing thresholds [57]. Taken at face value, the increase in the spread of firing thresholds in our

model (Fig 2) suggests that even within a brain area there may not be a consistent trend,

though further study is needed to test this possibility.

In terms of the loss of functional performance in older brain tissue, our aged network

model qualitatively replicates Ref. [34]’s observed loss of orientation selectivity to grated sti-

muli compared to the mature young network. While there are quantitative differences between

our model predictions and the experimental observations of [34], these quantitative differences

between our simulation results and the data may partially be traced to some of the simplified

features of the network model we use. For example, the selectivities of neurons in our model

network are more polarized, having many neurons with vanishing orientation selectivity index

(as they did not fire to any stimulus when presented with patches from the oriented grating

images) and many with nearly maximal selectivity. These more polarized orientation selectivi-

ties in our simulated network are produced in part because the learning rules of E-I Net pro-

mote sparse firing yet demand decodability of inputs [39], resulting in highly selective neurons

that are active essentially only when the feature they are selective for is presented, and are silent

otherwise. Moreover, because the network is deterministic (there are no noisy current inputs),

the resulting activity levels tend to be highly polarized. Intermediate selectivities are likely gen-

erated by lateral coupling between neurons with similar but distinct receptive fields (see S1

Text), leading to imperfect selectivity. Another factor that promotes these more polarized

selectivities is the fact that every neuron in the network responds to the same visual patch at a

given time. Potentially, a very large network in which different clusters of neurons respond to

many inputs from different locations in the visual field would generate enough recurrent activ-

ity for recorded neurons to appear spontaneously active, which might smooth out the distribu-

tions of orientation selectivity. We leave training and simulating aging in such a network for

future work.

As our model gives us full access to network parameters, we were able to demonstrate that

this decline in orientation selectivity is primarily caused by the deterioration of Gabor-like

receptive fields of the model neurons as the runaway target excitation causes the network to

reorganize, rather than, say, by changes in lateral weights that might also have been predicted

to impact sensitivity [47–53]. In particular, we found both that the net proportion of Gabor-

like receptive fields decreased as the network aged (Table 1) and that the receptive field of a
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given neuron was not preserved with age (Fig 3). The net loss of Gabor-like receptive fields

impacting orientation selectivity makes intuitive sense, as such receptive fields are typically

interpreted to be edge-detectors [58]. This is also a new prediction that could potentially be

tested experimentally in longitudinal experiments on the same individuals, measuring the

receptive fields of populations of neurons in visual cortex in both youth and old age, inferring

the receptive fields using, for example, generalized linear model fits [59–64], and comparing

the distributions of Gabor-like versus not-Gabor receptive fields at these different ages.

Other experimental work has found that contrast sensitivity is diminished with age [2, 65].

We did not perform a detailed investigation of whether our model could qualitatively replicate

this result, for technical reasons: images on which the network model is trained are first “whit-

ened” to remove the mean intensity of the images and normalize the variance across pixels in

an image—operations interpreted within the context of E-I Net to be performed by the retina

and lateral geniculate nucleus (LGN) en route to V1. However, this pre-processing step will

also normalize the contrast of an image. To properly test contrast sensitivity would thus

require a model of the aging retina and LGN, which is beyond the scope of this work, but

could potentially be developed and implemented as a modification of the whitening step of

this model, or perhaps studied with a similar setup, using recent deep network models of reti-

nal circuitry [66, 67]. In addition to retinal changes, we have not attempted to account for the

variety of potential age-related physical changes in the lens or vitreous fluid of the eye, which

can also alter the image information transmitted to visual cortex. However, modeling how

visual input transforms with age-related changes in the eye [68] may allow future work to bet-

ter estimate how these effects might influence the aging process in models like ours.

Limitations of the model

Although our model successfully replicated several experimental observations and makes pre-

dictions for new experiments, there are of course some results the model as currently imple-

mented could not replicate. Moreover, as a simplified model of network development and

dynamics, there are features of the model that could be considered biologically implausible or

oversimplified, and warrant discussion here.

One of Ref. [34]’s results that our model did not successfully reproduce is the loss of direc-

tion selectivity. We trained our network on sequential patches of image frames from the Cat-

Cam database [40, 41] for the purpose of evaluating direction selectivity, but found that our

network was not complex enough to learn direction selectivity from training on these natural

movies alone. Our network was able to learn some direction selectivity when trained on mov-

ing grating stimuli, but this began to overwrite the network structure learned from the natural

scenes. Because we interpret the trained network model as a computational stand-in for mam-

malian V1 that developed in natural environments, we considered it invalid to induce direc-

tion selectivity by training on moving gratings before probing network responses.

The difficulty of learning direction selectivity could be because directed motion is not rep-

resented frequently enough in our training movies, but could also be because our network

neurons exponentially filter inputs, all with the same single timescale. Potentially, a modified

network model that allowed for different spatiotemporal history filters or even multiple mem-

brane timescales might be better suited to learn direction selectivity from natural movies. A

model that could successfully learn direction selectivity may also prove useful for testing how

age impacts neural decoding of stimulus speed, which has also been shown to deteriorate with

age [69].

The biological plausibility of training neural networks has been debated extensively in the

literature [70, 71], casting doubt on whether training such networks can be an appropriate
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model for network development. Many, if not most, of these criticisms focus on training algo-

rithms that employ non-local learning rules (i.e., rules which require global information about

the network in order to update an individual neuron’s synaptic connections), such as backpro-

pagation [72]. However, the learning rules employed by E-I Net and its predecessor SAILnet

[37, 39] are local (Eqs (2)–(4)), meaning that updating a particular neuron’s parameters only

requires information about its own incoming connections and firing threshold. Therefore, the

learning rules used in our model may be considered a reasonable simplification of biologically

plausible learning mechanisms, and thus can capture the essential minimal features of network

development. However, it is worth noting that the learning rules of E-I net do not give rise to

any layered or modular network organization, so the resulting network is best interpreted as a

particular layer of V1, such as layer 4, rather than an entire cortical column.

One subtle and potentially unintuitive feature of our model is the fact that the time-course

of training need not be straightforwardly mapped onto the time-course of development. For

instance, we use the same learning rates for the entire duration of our training procedure,

including both the development phase (loops 1 − 30) and our aging phase (loops 30 − 80).

However, experimental evidence indicates that there is a “critical period” in which long-term

synaptic plasticity is high early in development, after which plasticity drops, allowing the ner-

vous system to approximately lock in learned structure and prevent sudden drastic changes in

sensory experience from overwriting this structure [73]. At first, a critical learning period

seems at odds with our training procedure, which has no such period, but that is true only if

one assumes a linear relationship between training time and true organism age. A nonlinear

relationship would allow for our results to be consistent with a critical period. In particular, we

could assume that training time and organism age are approximately linearly related during

development (loops 1 − 30) but undergo a shift to a different linear relationship after matura-

tion that holds during the aging phase. We have checked that decreasing all learning rates by a

factor of 10 and extending stimulus presentation time by a factor of 10 after 30 training loops

indeed give results qualitatively similar to those of the baseline model; see Critical learning

periods and time rescaling in S1 Text).

Finally, our results do not rule out other possible mechanisms for generating the observed

changes in networks with age, nor do they explain what physiological mechanisms might

cause a drift in target firing rate to begin with. Possible causes could be related, for example, to

changes in calcium dynamics controlling synaptic plasticity [74], but a detailed study of such

possible breakdowns of this firing rate regulation are beyond the scope of the current work.

Nevertheless, starting from the hypothesis that there is some breakdown of homeostatic regu-

lation of target firing rates, causing them to increase with age, in the presence of ongoing long-

term synaptic plasticity has allowed us to replicate several experimental results and make pre-

dictions for effects not yet observed experimentally. Future experiments testing these predic-

tions would enable validation or refutation of this hypothetical mechanism.

Summary of results and implications for disease

We have shown that altering the target firing rate of neurons in a trained V1 network model—

interpreted here as the result of a dysregulation of homeostatic mechanisms regulating net-

work firing rates—amid ongoing long-term synaptic plasticity results in several physiological

and functional changes symptomatic of aging in visual cortex. Our single modification to the

learning rules of the E-I Net model of visual cortex is intended to promote increased firing

with age in the network, and successfully reproduces this feature. The other features replicated

or predicted by our approach follow from this single modification. The replicated features

include
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• reduced synaptic strengths, in the form of weakened input connections to the excitatory and

inhibitory subpopulations as well as diminished lateral connections between and within

these subpopulations, and

• impaired stimulus-feature detection, in the form of decreased selectivity for oriented grating

stimuli,

while predicted features include

• a net loss of Gabor-like receptive field structure of V1 neurons, and

• the primary role of a decline in strength (i.e. input weight magnitude) and Gabor character

of receptive fields in the loss of orientation selectivity; decreases in lateral weight strength

also contribute, but may not be as significant.

Thus, our work suggests that dysregulation of network excitation may be one of the causal

mechanisms that leads to physiological and functional changes in networks and their dynam-

ics as an organism ages. While this insight does not rule out other possible mechanisms, it pro-

vides a basis for forming new hypotheses and devising experiments to test these ideas, either

by looking for experimental evidence of model predictions in naturally aged neural tissue or

perhaps by testing whether it is possible to induce senescent neural phenotypes in visual cortex

by disrupting firing rate homeostasis. Future studies could test this mechanism either by per-

forming new recordings in aged tissue to compare to our model predictions, or by direct

experiments in which firing rate homeostasis in young tissue is actively disrupted by the exper-

imenter to assess whether some features of old-age phenotypes develop. Should further studies

provide evidence that this mechanism contributes to aging processes in vivo, our results also

suggest possible ways some of these functional performance changes could be partly mitigated.

For instance, our numerical experiment varying the structure and strength of input into visual

cortex (Fig 7) suggests that improving orientation selectivity in aging patients could potentially

be accomplished by coarsely increasing the gain of relevant clusters of neurons. In advanced

age this approach could potentially be more effective than targeted treatments that would aim

to precisely restore the inputs to individual neurons, a more complex and potentially invasive

treatment.

Beyond replicating previous experimental observations and making predictions for new

experiments, modeling how neural circuitry changes with age will play an important role in

understanding the progression of neurological disorders whose onset correlates with age, such

as Alzheimer’s disease or Parkinson’s disease, as well as general age-related cognitive decline.

In particular, having a baseline model for predicting changes in healthy neural circuitry is

important for disambiguating which effects are symptomatic of disease from those likely to be

present in a healthy aging individual, and thereby determining which aspects of the disease

progression to focus on and develop treatments for.

Methods

Network model

We use E-I Net, a spiking network model of V1 trained on natural images, as the basis for our

investigations. E-I Net is written in MATLAB, and all modifications and subsequent analysis

code are also in MATLAB. We will give a brief overview of the model here, and then focus on

modifications of the model we implemented for use in this study. Some of these modifications

were non-default options already available in the code, while others are modifications we

developed ourselves. For full details on E-I Net we direct readers to [37].
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E-I Net is a network of leaky integrate-and-fire neurons that spike in response to pixel-

image inputs Xk. In discrete time the membrane dynamics of the network are given by

viðt þ DtÞ ¼ viðtÞe� Dt=ti þ
X

k

QikXkDt þ
XN

j¼1

WijDnjðtÞ; ð7Þ

with spiking conditions

Dniðt þ DtÞ ¼

(
1; when viðt þ DtÞ � yi

0; otherwise

followed by a reset

viðt þ DtÞ ! 0 if Dniðt þ DtÞ ¼ 1:

These equations are a discrete-time formulation of Eq (1) used in practice by [37]. Here, Δt
is the time-step size (equal to 0.1 time-units in E-I Net), τi = τE or τI is the membrane time con-

stant of neuron i, and Δni(t) = ni(t) − ni(t − Δt) is the number of spikes fired by neuron i on

time-step t. Neuron i fires a spike on time-step t if vi(t)�θi, after which its membrane potential

is reset to vi(t+ Δt) = 0. The sum indexed by k is over the pixels of the input patch X, and the

sum i = 1 to N is over the N neurons of the network. The network is partitioned into excitatory

and inhibitory subpopulations; for our simulations reported in this work, we follow [37] in

using NE = 400 excitatory neurons and NI = 49 inhibitory neurons. In this paper we take Wij to

be positive (negative) if the post-synaptic neuron j is excitatory (inhibitory), in contrast to the

original E-I Net paper, which makes the sign explicit, such that Wij is non-negative. We do not

include excitatory-excitatory lateral connections (i.e., WEE = 0), as we expect such connections

to be negligible physiologically; see [37] for additional details and justification of this choice

and other aspects of the training of the model.

The network learns input weights Qik, synaptic weights Wij, and firing thresholds θi accord-

ing to the learning rules given in the main text (Eqs (2)–(4)). For the reader’s convenience, we

repeat these learning rules here:

DQik ¼ aðyiXk � y2
i QikÞ ð8Þ

DWij ¼ bijðyiyj � hyiihyjið1þ jWijjÞÞ ð9Þ

Dyi ¼ gðyi � piðtloopÞÞ: ð10Þ

These learning rules impose linear decoding of the image inputs (Eq 8), minimize redun-

dancy in spiking (Eq 9), and promote sparsity in firing (Eq 10). As in the main text, yi is the

spiking rate of neuron i in response to the presented image patch over a duration T, and hyii is

the long-time average of the spiking rate. The parameters α, βij 2 {βEI, βIE, βII}, and γ are the

learning rates. The target number of spikes per time-unit is pi(t), equal to a constant pI for

inhibitory neurons and an “age”-dependent function pE(tloop) for excitatory neurons, where

pEðtloopÞ ¼

( pEð0Þ; tloop � 30 loops

pEð0Þ þ
0:002 spikes=time� unit

loop � ðtloop � 30 loopsÞ; tloop > 30 loops
ð11Þ

as in the main text. The “time” tloop corresponds to the number of training loops that have

taken place (the network’s “age”).
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The standard values used for the parameters in our network training and simulations are

given in Table 2. For the learning rates we follow the original E-I Net model for our baseline

cases. These rates are modified in the numerical experiments discussed in the section “Numer-

ical experiments to test contribution of different physiological parameters to declines in func-

tional performance” by setting one or more of these rates to 0. In the E-I Net code, these rates

are combinations of several parameters that we do not list here; however, we note that the

numerical values we give include a global learning factor, a multiplier applied to all the learn-

ing rates, which is set to 0.4, the value used for accelerated training shown in examples in the

E-I Net code repository [37]. We summarize all of the parameters used in the model in

Table 2.

The network learning rules are entirely local [37, 39] (i.e., changes to a neuron’s parameters

depend only on inputs that neuron receives), and hence admit a straightforward biological

interpretation as plastic or homeostatic mechanisms that shape network wiring or firing.

When trained on natural image inputs the network has been shown to learn realistic Gabor-

like receptive fields and produce activity that can be used to accurately reconstruct input

[37, 39].

Training the network

Training our network model consists of two phases: the initial development phase, during

which the network forms, and the aging phase during which we implement modifications to

the learning rules to cause changes in network structure that mimic the effects of aging. The

first phase of training is largely the same as the original E-I Net training procedure, while the

aging phase is a novel modification that we implement after the first phase reaches a steady

state.

SAILnet [39] and E-I Net [37] train their networks on static pixel images of natural scenes

from the database of images used by Olshausen and Field in their seminal work on the emer-

gence of Gabor-like receptive fields under sparse-coding principles [75]. Patches of these

scenes are chosen randomly from a given movie in this database and each patch is presented to

the network for 50 time-steps of simulation of the leaky integrate-and-fire network model.

Table 2. Parameters and standard values used in this work. This table summarizes the parameters that appear in the

equations we give in the main text, along with the standard values we use in our baseline simulations. Unless explicit

units are given, quantities are measured in dimensionless units. The time-step Δt sets the standard unit of time during

simulations, but is itself a dimensionless quantity as time has been non-dimensionalized in this model.

Parameter Symbol Value

Number of excitatory neurons NE 400

Number of inhibitory neurons NI 49

Input weight learning rate α 0.008/batch update

E I lateral weight learning rate βEI 0.028/batch update

I E lateral weight learning rate βIE 0.028/batch update

I I lateral weight learning rate βII 0.06/batch update

threshold learning rate γ 0.028/batch update

Initial excitatory target spike count pE(0) 0.01 spikes/time-unit

Inhibitory target spike count pI 0.05 spikes/time-unit

Network simulation duration T 50 time-steps = 5 time-units

Excitatory membrane time constant τE 0.9491 time-units

Inhibitory membrane time constant τI 0.9491 time-units

Time-step Δt 0.1 time-units

https://doi.org/10.1371/journal.pcbi.1008620.t002

PLOS COMPUTATIONAL BIOLOGY Dysregulation of excitatory neural firing replicates changes in aging visual cortex

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008620 January 26, 2021 20 / 29

https://doi.org/10.1371/journal.pcbi.1008620.t002
https://doi.org/10.1371/journal.pcbi.1008620


Following each image presentation, the state of the network’s membrane potentials are reset.

To speed up training, E-I Net creates 100 copies of the network, presenting each copy with a

different set of randomly selected patches from the movie. At the end of the training epoch,

the spiking data from all 100 copies are amalgamated to determine how the network parame-

ters should be updated.

We modify this procedure slightly in training our networks. We train our networks on nat-

ural scenes from movies in the CatCam database, which depict the scenes encountered by a cat

exploring a forest [40, 41]. We choose the CatCam database because our original intent was to

investigate changes in both direction selectivity and orientation selectivity, as noted in the Dis-

cussion. For this purpose, it is necessary to train the network on temporal sequences of patches.

We use 50 contiguous frames of 8 × 8 patches from these natural movies. We present each

patch in this sequence for 50 time-steps of network simulation before presenting the next

patch in the sequence. We do not reset the membrane potentials of the neurons between

patches (an option available in E-I Net). We similarly use movies of grating images to evaluate

the orientation selectivity of the network, taking 40 frames of gratings drifting perpendicularly

to their orientation, covering one direction for each of the four different orientations; we

ceased evaluating functional performance on both grating directions after finding that the net-

works did not develop significant direction selectivity. Although the networks we report on in

this work do not ultimately develop significant direction selectivity when trained on natural

movies, we keep the sequential presentation procedure for training our networks.

In our model we take the fully trained network to represent our mature “young” network,

trained for 30 loops at the baseline excitatory target spike rate of pE = 0.01 expected spikes per

time-unit and pI = 0.05 expected spikes per time-unit for inhibitory neurons, comparable to

the values used in [37], which use pE = pI = 0.05 for the entire duration of training. The goal of

this work is to modify this model to reflect experimentally observed age-related physiological

changes, such as increased neural activity and decreased inhibition, and thereby produce

“aged” networks in which we can test how functional performance and coding have changed.

Rather than implement the physiological changes by several independent by-hand adjust-

ments, a much more parsimonious modification is to alter only the excitatory target spiking

rate pE. If we increase pE with training time past the mature young stage of the network, the

network will reorganize to achieve a higher mean firing rate close to this new target. We

increase pE by 0.002 every subsequent loop, culminating in the “old” network after 80 total

loops. This not only results in increased excitatory neuron activity (both in terms of mean fir-

ing and variance of firing), but also naturally gives rise to a decrease in inhibition (Fig 2). The

changes in selectivity to oriented grating stimuli also emerge from this single by-hand change.

To check how sensitive the aging procedure is to the initial value of pE, we also ran three addi-

tional network simulations starting from higher values, pE(0) = 0.05, 0.07, and 0.09 spikes per

time-unit; see S1 Text. Because our method produces a sequence of aged networks that are

gradual evolutions of earlier “ages,” we loosely interpret the training process as the “aging”

process in our network. (As noted in the Discussion, there is no definite relationship between

training loops and organism age). This is similar in spirit to previous work interpreting the ini-

tial training phase of the network as a model for the developmental period of visual cortex

[38].

Convergence to steady-state

Our aging process does not begin until 30 training loops have occurred, at which point the net-

work has reached a steady state at which continued training only causes the network parame-

ters to fluctuate around a mean value. In practice, we determine whether the network has

PLOS COMPUTATIONAL BIOLOGY Dysregulation of excitatory neural firing replicates changes in aging visual cortex

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008620 January 26, 2021 21 / 29

https://doi.org/10.1371/journal.pcbi.1008620


reached a steady state using the mean orientation selectivity of the network. We find that by

approximately 20 loops the mean orientation selectivity of the network has converged to 0.7

and continues to fluctuate around this value. Thus, the additional 10 loops of training serve as

a buffer to ensure the network has reached its mature steady state.

As explained above, after the network reaches this steady state we begin to increase the

excitatory target spike rate pE(tloop) every loop, pausing training every 5 loops only to evaluate

the current network’s orientation selectivity. One may therefore wonder whether the network

is able to achieve a new steady state during each of these loops (though this is not a major con-

cern, as it is entirely plausible that the aging effects induced by increasing pE(tloop) outpace the

ability of the synaptic plasticity to keep up). To determine whether a single training loop at the

increased value of pE(tloop) is enough for the network to remain close to a new steady state, we

perform an additional test in which we use a modified procedure in which we increase pE(tloop)

every loop as in our regular procedure, but then at every 5th loop we hold pE(tloop) fixed for 5

subsequent loops. We find that these additional loops do not appreciably affect the course of

degradation of the network, and network selectivity does not recover. This suggests that, at

least after the initial maturation period, the network performance is approximately a state

function of the target excitatory spike rate. This hypothesis is supported by a supplementary

analysis in S1 Text.

Evaluating network responses to oriented gratings

Every 5 loops we pause training and evaluate the network’s responses to moving grating sti-

muli (see Fig 5) of 4 possible orientations in order to measure the selectivity of model neurons,

during which we set the global network learning rate to zero so that network parameters do

not adapt to the statistics of the gratings. We generate the gratings at spatial and temporal fre-

quencies of 0.1 cycles/pixel and 0.1 cycles/frame, respectively, using the GratingStim mod-

ule of VisualStimulusToolbox [76]. As in the training phase, we use 8 × 8 pixel patches

of these grating images as visual input to our network. For this patch size there is approxi-

mately one cycle of the grating per patch.

For each sequence of grating presentations we record the spiking activity of all neurons in

response to grating patches of each orientation and use these responses to compute the orien-

tation selectivity of each neuron. For each of the four orientations, we draw 100 patches from

10 frames of the grating movie. Each frame presentation lasts 200 time-steps of the leaky-inte-

grate-and-fire network dynamics (compared to 50 time-steps during training on the natural

movies). We tally up the total number of spikes each neuron emitted to each orientation across

all ten frames, and then compute an orientation selectivity index. While there are various

methods of determining orientation selectivity [77], we follow [34, 45, 46], defining

OSk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð
P

W
nkðWÞcosð2WÞÞ

2
þ ð
P

W
nkðWÞsinð2WÞÞ

2

q

P
W
nkðWÞ

;

where nk(ϑ) is the total number of spikes neuron k emitted in response to orientation ϑ 2 {0,

π/4, π/2, 3π/4}. If the neuron does not fire any spikes in response to any of the gratings, we

take OSk = 0. This measure assigns a complex number nk(ϑ)e2iθ to the neuron’s response to

each orientation and then sums the complex numbers up. Taking the magnitude |∑θ e2iϑ nk(ϑ)|

and normalizing by the total number of spikes gives OSk. A highly selective neuron will have

OSk� 1, while a neuron that fires indiscriminately to orientations will have an OSk� 0 (the

factor of 2 in e2iϑ is necessary for it to be possible that OSk = 0).
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“Gabor-ness” analysis

The receptive fields (RFs) of the neurons in the network are observed to evolve over the aging

process (Fig 3). Here we define a neuron’s RF as the pixel-space arrangement of the weights Q
on its connections from pixel-input patches (Fig 1C). We quantify change in RFs by fitting a

Gabor wavelet profile G to each RF in both youth and old age. RFs with fits for which the nor-

malized goodness-of-fit, ||G − RF||2/||RF||, is less than 0.8 are classified as Gabor-like, while

RFs with fits that exceed this threshold are classified as “not-Gabor.” This is the same proce-

dure as performed in [39], except that we use a less strict classification threshold (0.8 vs. 0.5).

The Gabor profile takes the following form:

Gðx; yjA; f ;c; x0; sx; y0; sy; yÞ ¼ Acosð2pfxp þ cÞexp �
x2

p

ð2
ffiffiffi
2
p

sxÞ
2
�

y2
p

ð2
ffiffiffi
2
p

syÞ
2

 !

;

xp ¼ ðx � x0Þcosyþ ðy � y0Þsiny;

yp ¼ � ðx � x0Þsinyþ ðy � y0Þcosy;

where A is the amplitude of the Gabor wavelet, f is the frequency of amplitude oscillation, ψ is

the phase, and σx and σy are the spreads of the Gabor profile in the x and y directions. The

Gabor wavelet is taken to be a function of independent coordinates xp and yp, related to the

coordinates x and y of the pixel-grid representation of Q shown in Fig 1C by an angle of rota-

tion θ (not related to the firing thresholds) and offsets x0 and y0 corresponding to the shifted

center of the Gabor profile. In addition to classifying fits that fail our goodness-of-fit criterion

as not-Gabor, we also assign this classification to fits that are centered outside the frame of the

receptive field. In principle, we would wholly exclude from the statistics any receptive fields for

which fits cannot be computed, but this was never the case for the neurons in our model (see

Table 1).

Numerical experiments

Learning rate freezing. To examine the contribution of each network property to the

observed decline in neural orientation selectivity as a result of increase in pE, we conduct the

following series of tests. We train several instances of the network to maturity (30 loops) under

normal conditions. Upon the completion of the 30th loop, we set the learning rate to zero for

different sets of connection weights: in one instance, we zero out the learning rates for only the

input connections to the excitatory and inhibitory neurons; in another, we zero out the learn-

ing rates for only the lateral connections between neurons; and in the last instance, we zero out

the learning rates for both input weights and lateral weights. There is no case in which we zero

out the learning rates of the thresholds, as it is through this learning rule that our network

ages. After zeroing out the learning rates, we continue training these variants until old age (80

loops), probing selectivity every five loops; see Fig 6.

Receptive field remapping. To decouple the effects of the changing RF structure and

magnitude on network selectivity, we examine, independent of the training procedure, the

selectivity after remapping the young network’s input weights onto a later distribution of input

weight magnitudes, for the networks after 35, 40, 45. . .80 loops:

Qremapped ¼ F� 1

oldðFyoungðQyoungÞÞ; ð12Þ

where Fyoung(�) and Fold(�) are the cumulative distribution functions (CDFs) for the young

and old input weight distributions. Eq (12) modifies the value of every input weight such that

the distribution of remapped young input weight values matches the distribution of old input
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weight values, but the spatial pixel organization of each RF is not altered. We empirically esti-

mate the CDFs and inverse CDFs from the data and use interpolating splines to obtain smooth

estimates. Thus, we can insert these remapped weights into our old networks to test how RF

structure contributes to selectivity. We find that networks with these remapped input weights

exhibit consistently higher selectivity than their counterparts with the original aged input

weights. We can also test the inverted remapping, F� 1

youngðFoldðQoldÞÞ, in which the aged net-

works’ input weights are remapped onto the young distribution of magnitudes, retaining the

old spatial pixel structure but with young magnitudes. Networks with these remapped weights

are comparable in selectivity to their corresponding original (baseline) networks in the early

stages of the aging process, and increasingly more selective late in aging. See Fig 7.

Figures

Figures created in MATLAB were saved using the export_fig script, available on GitHub

[78].

Supporting information

S1 Text. Supplementary analyses. To support the main findings of our work we performed

several additional analyses, including evaluating the orientation selectivity of hybrid networks

created by mixing-and-matching young and old parameters sets, training the network with a

critical learning period, demonstrating the excitatory neurons with similar receptive fields

effectively inhibit one another (through inhibitory interneurons), and testing the history-

dependence of training on the initial value of the excitatory target spike rate, pE(0).

(PDF)

S1 Fig. Histograms of physiological network parameters during the aging process. The

empirical distributions of the input weights Q, lateral weights W, and firing thresholds θ at dif-

ferent ages during the aging process. A. 40 loops, B. 50 loops, C. 60 loops, D. 70 loops, and E.

80 loops (same data shown in Fig 2). This network was trained on frames from movie01 in

the CatCam database [40, 41].

(TIF)

S2 Fig. Histograms of physiological network parameters in youth vs. old age for different

training movies. The empirical distributions of the input weights Q, lateral weights W, and fir-

ing thresholds θ obtained in networks trained on A. movie01 (same as Fig 2), B. movie07,

and C. movie16 from the CatCam database [40, 41].

(TIF)

S3 Fig. Angles between young and old receptive fields in the input weight parameter space.

The distribution of angles between young and old receptive fields in networks trained on A.

movie01 (same as Fig 3B), movie07 (panel B), and movie16 (panel C) from the CatCam

database [40, 41].

(TIF)

S4 Fig. Activity of the network with age. The spike counts of neurons for networks trained

on movie01 (panels A and B, same as Fig 4), movie07 (panels C and D), and movie16
(panels E and F) from the CatCam database [40, 41]. In movie16 there were some outlier

spike counts (e.g., the largest excitatory spike count was 243 at loop 65), so we have restricted

the vertical axis to match the range observed for the other movies.

(TIF)
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S5 Fig. Orientation selectivity changes. The empirical cumulative distribution functions

(CDFs) for the orientation selectivity measured in networks trained on images from A.

movie01 (same as panel B in Fig 5), B. movie07, and C. movie16 from the CatCam data-

base [40, 41].

(TIF)

S6 Fig. Selectivity of cells when connection weights are frozen during training. The mean

orientation selectivity across neurons for networks trained on images from A. movie01
(same as Fig 6), B. movie07, and C. movie16 from the CatCam database [40, 41].

(TIF)

S7 Fig. Selectivity of cells with remapped receptive fields. The mean orientation selectivity

across neurons for networks trained on images from A. movie01 (same as Fig 7), B.

movie07, and C. movie16 from the CatCam database [40, 41].

(TIF)
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