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Abstract: Plant-derived (phyto) carbazole alkaloids are an important class of compounds, presented
in the family of Rutaceae (Genera Murraya, Clausena, Glycosmis, Micromelum and Zanthoxylum). Due
to several significant biological activities, such as antitumor, antibacterial, antiviral, antidiabetic, anti-
HIV and neuroprotective activities of the parent skeleton (3-methylcarbazole), carbazole alkaloids are
recognized as an important class of potential therapeutic agents. Neurodegenerative diseases (NDs)
may exhibit a vast range of conditions, affecting neurons primarily and leading ultimately to the
progressive losses of normal motor and cognitive functions. The main pathophysiological indicators
of NDs comprise increasing atypical protein folding, oxidative stresses, mitochondrial dysfunctions,
deranged neurotransmissions and neuronal losses. Phyto-carbazole alkaloids can be investigated
for exerting multitarget approaches to ameliorating NDs. This review presents a comprehensive
evaluation of the available scientific literature on the neuroprotective mechanisms of phyto-carbazole
alkaloids from the Rutaceae family in ameliorating NDs.

Keywords: neurodegenerative disease; Rutaceae; phyto carbazole alkaloid; oxidative stress; neuroin-
flammation; Alzheimer’s disease

1. Introduction

Neurodegenerative diseases (NDs) belong to a heterogeneous groups of disorders
(Alzheimer’s, Parkinson’s, multiple sclerosis, amyotrophic lateral sclerosis, Huntington’s
disease, etc.), which could result in progressive loss of structure or function of the neurons.
These neurological changes in the brain could lead to logical and/or functional deterioration
over time. The main physiological indicators of NDs comprise increasing atypical protein
misfolding, oxidative stress, mitochondrial dysfunction, deranged neurotransmission and
neuronal loss [1,2].

Alzheimer’s disease (AD) is the most prevalent form of ND and is described by declin-
ing cognitive and motor functions. Currently, the available drugs for the treatment of AD
are acetyl cholinesterase (AChE) inhibitors (donepezil, galantamine and rivastigmine) or
blockers of glutamate receptors (memantine). Recently, the Food and Drug Administration
(FDA) approved an antibody drug (Aduhelm), which may improve AD symptoms. Yet,
all these allopathy drugs have associated side effects, ranging from minor headache to
swelling and brain haemorrhaging [3]. In this regard, plants could provide an effective
and safer source of bioactive compounds to be used as a drug. Researchers have identified
several plants with neuroprotective properties, like AChE inhibition, retarding atypical
aggregation and scavenging free radicles, which protect against oxidative stress [3–5]. Ad-
ditionally, several bioactive compounds have anti-inflammatory properties and reduce the
activity of pro-inflammatory markers (interleukins (IL-6, IL-1β), nitric oxide (NO), tumor
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necrosis factor-α (TNF-α) and inflammatory proteins inducible nitric oxide synthase (iNOS)
and cyclooxygenase-2 (COX-2)) [3,6].

Carbazole alkaloids are characterized by a tricyclic aromatic basic skeleton consisting
of a central pyrrole ring fused with two benzene rings. Phyto-carbazoles are basically
derived from 3-methyl carbazole as the common precursor. Carbazoles are privileged
scaffolds, often reported in natural products [7], and exhibit a wide spectrum of biological
activities, such as anticancer [8], neuroprotective [9], antituberculosis [10], and anti-HIV
(Human Immunodeficiency Virus) [11]. Two drugs, Midostaurin and Carvediol, with a
carbazole core were approved by the FDA for treating tumors and congestive heart failure,
respectively [12].

Phyto-carbazole alkaloids are abundantly found in species of the Rutaceae family,
including Murraya koenigii (Curry leaves), Glycosmis pentaphylla (Gin berry), Clausena hepta-
phylla (Clausena), Clausena excavate (Pink Lime-Berry), Murraya euchrestifolia, Micromelum sp.
and Zanthoxylum sp. [13]. Among the naturally occurring phyto-carbazole alkaloids, mahan-
imbine, koenimbine, koenigicine and clausazoline-K were reported to possess anti-lipase
activity [14,15], while mahanine, pyrayafoline-D and murrafoline-I displayed anticancer
activities by inducing apoptosis through activating the caspase-9/caspase-3 pathway [16].
Both natural and synthetic derivatives of carbazole alkaloids have revealed numerous
pharmacological activities, such as anticancer [17], antioxidant [18], anti-inflammatory [19],
antibacterial [20], antifungal [21], antidiabetic [22], antiangiogenic [23], larvicidal [24], anti-
plant virus [25], anti-HIV [26], and neuroprotective activities [13]. In particular, carbazole-
containing arylcarboxamides and carbazole thiazoles are inhibitors of β-secretase (BACE-1:
the enzyme responsible for the production of β-amyloid (Aβ)) and Aβ formation, respec-
tively [27,28]. Several dibenzofuran/carbazole derivatives inhibit acetylcholinesterase
(AChE) and Aβ aggregations [29]. Owing to strong antioxidant and neuroprotective effects
towards neurons displayed by N-substituted carbazoles [30], hybrids comprising tacrine
and carbazole were developed, with anti-AChE activities [9].

Biogenetically, the phyto-carbazole alkaloids are postulated to originate from the
shikimate pathway (Figure 1) [31,32]. As shown in Figure 1, the diverse phyto-carbazole
alkaloids identified from nature are classified based on their carbazole or 3-methylcarbazole
core structure. Next, in vivo oxidation of the methyl group of the 3-methylcarbazole
provides the formyl carbazole or methyl carbazole-3-carboxylate congener structures,
which are commonly found in the genera Murraya, Clausena and Glycomis [31]. Moreover,
the majority of the more than 330 identified phyto-carbazole alkaloid derivatives from
nature are based on 3-methylcarbazole as their common precursor [13].

Due to the immense medicinal properties of phyto-carbazole alkaloids, the present
review aims to highlight the pharmacological action mechanisms of important and preva-
lent phyto-carbazoles from the Rutaceae family in treating the pathophysiology of NDs.
Owing to the complex etiology of NDs, a multitarget approach of bioactive compounds
in ameliorating disease symptoms may achieve better clinical results. Hence, this review
could be a basis for potential future complementary treatment of complex NDs.
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Figure 1. Biogenetic pathway in the formation of carbazole and 3-methyl carbazole alkaloids and
core structure of the diverse carbazole alkaloids isolated from nature.

2. Phyto-Carbazole Alkaloids in Neuroprotection
2.1. Phyto-Carbazole Alkaloids from the Genus Murraya

Murraya koenigii is a rich source of phyto-carbazole alkaloids, isolated from the leaves,
stem, bark, and root, with promising pharmacological activities [33,34]. Neuroprotective
pharmacological activities of the M. koenigii leaf (MKL) extract are also associated with
phyto-carbazole alkaloids. When total alkaloidal extract of MKL was administered orally
to different groups of mice, a significant improvement in memory scores was observed
in the elevated plus maze and passive avoidance apparatus models [35]. Interestingly,
reductions in the brain cholinesterase activity (~20% reduction) and BACE-I activity (IC50
1.7 µg/mL) were also observed with MKL alkaloids [35]. The actual phyto-carbazole
alkaloids in the above study are yet to be identified, but euchrestine B, bismurrayafoline E
and (+)-mahanine exhibited potent antioxidant activities in 2,2-diphenyl-1-picrylhydrazyl
(DPPH) assay (21.7 µM, 6.8 µM and 21.9 µM, respectively) in comparison to the standards
tocopherol, butylated hydroxytoluene (BHT) and ascorbic acid (27.8 µM, 83.2 µM and
4.4 µM, respectively) [36].

The anti-amnesic potential of MKL was observed in mice fed MKL powder mixed
feed [37]. Murrayakonine A, O-methylmurrayamine A and mukolidine isolated from
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M. koenigii leaves exhibited strong anti-inflammatory effects against lipopolysaccharide
(LPS) induced human peripheral blood mononuclear cells (PBMCs) by reducing the pro-
duction of TNF-α and IL-6 [38]. Murrayanol also presented anti-inflammatory potential
against human prostaglandin-endoperoxide H synthase (hPGHS-1) (IC50 109 µg/mL) and
hPGHS-2 (IC50 218 µg/mL) [39].

Murrayamine-E (at 10 µM), isolated from M. koenigii, showed substantial effects on
neurite outgrowth. For exploiting the phyto-carbazole skeleton of murrayamine-E as a
potential pharmacophore, similar derivatives were synthesized. One of the compounds,
9-benzyl-9H-carbazol-4-ol, revealed robust influences on neurite outgrowth. In addition,
it improved memory in APdE9 mice. These results suggest that carbazole derivative
9-benzyl-9H-carbazol-4-ol would be an important compound for ND drug discovery [40].

Microphyltrine, microphyldines A-O and microphyldine P were isolated from the stem
and leaves of M. microphylla [41]. Nitric oxide production induced by LPS in BV-2 microglial
cells was inhibited by phyto-carbazole alkaloids from M. tetramera and M. kwangsiensis [19,42],
with IC50 values ranging from 5.1 to 15.1 µM [43].

Mahanimbine, a major phyto-carbazole alkaloid from M. koenigii, was reported as an
in vitro inhibitor of AChE (IC50 0.03 mg/mL) [44]. It also displayed high antioxidant activity
(IC50 33.1 µg/mL) in comparison to the positive controls: tert-butylhydroquinone (TBHQ),
BHT and butylated hydroxyanisole (BHA) (IC50 3.3, 4.4 and 18 µg/mL, respectively) [39].

In vivo and in vitro studies confirmed the beneficial approach of the multi-target prop-
erties of mahanimbine in AD treatment, which presented its neuroprotective potentials
in SK-N-SH neuroblastoma cells against 100 µg/mL LPS. Interestingly, the pre-treatment
of SK-N-SH cells with mahanimbine significantly prevented cell loss and attenuated LPS-
induced reactive oxygen species (ROS) formation. Additionally, mahanimbine also inhib-
ited BACE 1 with IC50 of 4 µg/mL. From an in vivo study, the biochemical analysis of the
whole brain of ICR mice detected increased CAT and GRD levels and significant decreases
of malondialdehyde (MDA) levels in mahanimbine-treated groups in comparison to the
untreated group [45].

In LPS-challenged mice, mahanimbine improved cognition in the Morris water maze
(MWM) experiment. It also improved the central cholinergic transmission by increasing
acetylcholine (ACh) levels in the brain homogenate (27.48 ± 2.44 µM, 24.40 ± 2.87 µM,
23.19 ± 2.62 µM) through AChE inhibition. Additionally, mahanimbine greatly reduced
Aβ1-40, pro-inflammatory cytokines (IL-1 β and TNF-α), the total activity of COX, and
expression of the COX-2 gene in LPS-induced group. These findings support the neuro-
protective activity of mahanimbine against LPS-induced neuroinflammation [46]. It was
observed that mahanimbine reduced oxidative stress through nuclear factor erythroid-2-
related factor 2 (Nrf2)-dependent induction of antioxidant enzymes (SOD and CAT) and
by subduing the expressions of proinflammatory cytokines (Nuclear factor kappa: NF-κB,
TNF-α, IL-1β) and Aβ accumulations [35,47–49].

Murrayanine is the first reported phyto-carbazole alkaloid from the stem bark of
M. koenigii with potential antioxidant properties [50]. When anti-inflammatory effects were
investigated both in vitro and in vivo, a reduction of NO (a prominent pro-inflammatory
molecule released in both acute and chronic inflammatory conditions) was observed [51].
In addition, pro-inflammatory cytokines (IL-6 and TNF-α) were also decreased in both
LPS-stimulated RAW 264.7 cells and murine peritoneal macrophages. Moreover, iNOS
and COX-2 protein expressions, as well as their downstream product, prostaglandin E2
(PGE2), were also decreased effectively in murine macrophage RAW 264.7 cells. Murraya-
nine also suppressed the inhibitor of nuclear factor kappa B (I-κβ) phosphorylation and
NF-κB activity in LPS-activated RAW 264.7 cells. The NF-κβ pathway is important for
preserving synaptic plasticity and balancing between learning and memory. Therefore,
any impairment in the pathways associated with NF-κβ signaling cause altered neuronal
dynamics [52]. Additionally, administration of murrayanine in a systemic inflammation
mouse model inhibited pro-inflammatory cytokines and also increased the survival rate in
LPS-challenged mice.
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From in silico studies using random forest (RF) models, several phytocompounds
were evaluated for their interaction potentials against COX-1 and COX-2 through molec-
ular docking, dynamics simulation and free energy calculations [53]. Girinimbine from
M. koenigii was selective towards COX-2, which was supported by the experimental studies
of inhibiting COX in an anti-inflammation model. Cytotoxicity assessment of girinimbine
against the breast cancer cell line MDA-MB-231 also supported it as a COX-2 inhibitor (IC50
0.006 µg/mL) [53].

Furthermore, girinimbine inhibited inflammation in vitro as well as in vivo. In LPS/
INF-γ induced RAW 264.7 cells, significant dose-dependent girinimbine inhibitions of NO
production and NF-κβ translocation from the cytoplasm to nucleus were observed [54].
Girinimbine revealed its considerable antioxidant activity, equivalent to 82.17 ± 1.88 µM of
Trolox at 20 µg/mL. In a carrageenan-induced peritonitis mouse model, oral pre-treatment
of girinimbine reduced pro-inflammatory cytokine levels (IL-1β, TNF-α) in the peritoneal
fluid [54]. In a mice model of ethanol-induced gastric ulcers, GSH and MDA levels were
restored in the girinimbine treatment group with decreased levels of proinflammatory
cytokines (TNF-α and IL-6) and iNOS. Girinimbine could also selectively inhibit COX-
2 [55]. Still, no study has reported the direct neuroprotective effects of girinimbine. The
anti-inflammatory and antioxidant potential of girinimbine in neurodegenerative diseases
should be investigated.

Structures of the phyto-carbazole alkaloids isolated from M. koenigii with potential
neuroprotective effects against neurodegenerative diseases are presented in Figure 2.
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2.2. Phyto-Carbazole Alkaloids from the Genus Clausena

Structures of the phyto-carbazole alkaloids isolated from various Clausena species
with potential neuroprotective effects against NDs are presented in Figure 3. Phyto-
carbazole alkaloid clausenanisines A–F and clausevestines were isolated from the fruits
of C. anisumolens [56] and from the stem and leaves of C. vestita [57], respectively. Various
prenylated carbazole alkaloids presented a significant inhibition (IC50 0.63–8.3 µM) of NO
production in mouse macrophage RAW 264.7 cells by LPS induction, with hydrocortisone
(IC50 3.8 µM) as the positive control [57,58]. Clauemarazoles A–G and its derivatives were
isolated from the stems of C. emarginata. Among them, clauemarazole E, clausine K and
clausine O exhibited inhibitory abilities on LPS-induced NO production (IC50 10.91, 4.6 and
6.4 µM, respectively) [59]. Still, no direct study has been conducted on the neuroprotective
potential. Similarly, phyto-carbazoles from C. dunniana showed weak inhibitory effects on
NO production stimulated by LPS in BV-2 microglial cells (IC50 > 50 µM) [60].
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Since many extracts from C. lansium possessed strong antioxidant activities in vitro [61],
the neuroprotective and cognitive enhancing effects of various concentrations of peel
crude extract were investigated on a rat model of focal cerebral ischemia. A significant
reduction of brain infarction and oxidation indices, a restoration of memory, a revived
level of antioxidants, and enriched survival and cholinergic neurons were witnessed in the
hippocampal region in vivo [61].

Hydroethanolic extract of the stems and leaves of C. lenis exhibited significant neu-
roprotective activities against the induced apoptosis with 6-hydroxydopamine (6-OHDA)
in human neuroblastoma SH-SY5Y cells (SH-SY5Y, EC50 12.86 µg/mL). Eight phyto-
carbazole alkaloids—clausenalenine A, murrayafoline B, isomurrayafoline B, euchrestine
A, clausine A, clausine J, clausine I and clausine Q—possessed substantial neuroprotec-
tive effects (EC50 0.68 to 18.76 µM) against 6-OHDA-induced apoptosis in SH-SY5Y by
6-hydroxydopamine. Hence, regular consumption of these fruits may protect against
Parkinson’s disease (PD) [62].

Clausine Z from C. excavata showed potent inhibition of recombinant Cyclin-dependent
kinase 5 (CDK5) (IC50 0.51 mM) in a filter plate assay in comparison to the standard in-
hibitor: butyrolactone I (IC50 0.11 mM). In cell-based studies, clausine Z protected cerebellar
granule neurons against free radical-induced apoptosis, with an EC50 of 1.1 mM in com-
parison to the standard butyrolactone I (EC50 3 mM) [63]. Studies have revealed that
neuroprotection is correlated with the inhibition of neuron-specific CDK5 [64]. For neurite
outgrowth and cortical lamination, CDK5 and its neuron-specific activator p35 are essen-
tial [65]. Proteolytic cleavage of CDK 5 activator p35 by calpain led to the formation and
accumulation of p25 in the brain of AD patients [66]. This proteolytic cleavage resulted
in prolonged activation of cdk5 and subsequently hyper-phosphorylation of tau by the
p25/cdk5 kinase, in turn disrupting the cytoskeleton and promoting apoptosis of primary
neurons [67]. The p25 is neurotoxic in nature and results in apoptosis [68]. Moreover, it is
seen as a downstream regulator of Aβ [67]. Thus, small molecule inhibitors of CDK5 could
be important contenders for the therapeutic development of neurodegenerative diseases,
as they protect against p25 neurotoxicity [69]. Hence, clausine Z and derivatives may
present important therapeutic values in neurodegenerative diseases, such as AD, PD and
amyotrophic lateral sclerosis (ALS).

Geranylated phyto-carbazole alkaloids (clauselansiumines A–B) along with other
carbazole alkaloids from the stem and leaves of C. lansium revealed remarkable neuro-
protective effects (EC50 0.48 to 12.36 µM) against 6-OHDA-induced apoptosis in SH-SY5Y
cells [70]. The protective effect of phyto-carbazoles (10 µM) was also reported on primary
neurons against oxygen glucose deprivation (OGD) injury [71].

Ten new phyto-carbazole alkaloids (claulansines A–J) and their analogues were iso-
lated from C. lansium and were assessed for their neuroprotective effect [72]. Claulansine A,
F, H–J, and murrayanine were found to be neuroprotective at 10 µM [72]. All these alkaloids
displayed prominent neuroprotective activity (EC50 0.36 to 10.69 µM) in comparison to
the standard curcumin (EC50 5.8 µM) in 6-OHDA-induced apoptosis in SH-SY5Y cells [73].
Structure activity relationship (SAR) demonstrated the importance of the aldehyde group
or hydroxymethyl group at C-3 position in noteworthy neuroprotective effects. Among
them, claulansine F (Clau F), a pyrano[3,2-a] carbazole alkaloid, revealed protection against
sodium nitroprusside (SNP)-induced apoptosis in pheochromocytoma (PC12) cells [74],
which exerted a significant effect on hydroxyl free radical scavenging and mitochondrial
integrity. Based on the encouraging neuroprotective activity of claulansine F, its analogues
were synthesized, and their neuroprotective effects were studied against hydrogen per-
oxide (H2O2− ) and OGD-induced injury in PC12 cells and primary cortical neurons [75].
The SAR showed a stronger neuroprotective effect when the methyl group was present
at C-3 and at C-6, with no substitution at N-9, in comparison to the N-alkyl substitution.
In contrast, with the presence of aldehyde at C-3 and the same group at C-6, N-alkyl
substitution exhibited much stronger neuroprotective effects than without substitution
at N-9. In addition, lipophilic groups at C-6 displayed stronger activities (CZ-7, with a
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t-Bu at C-6). CZ-7 exhibited the strongest neuroprotective effects in vitro and at lower
doses efficiently protected against ischemic stroke in a rat model of Middle Cerebral Artery
Occlusion (MCAO). Furthermore, CZ-7 showed stronger free radical scavenging capac-
ity than Edaravone (EDA), which was therapeutically used as a strong antioxidant and
neuroprotective agent in ALS. Most importantly, CZ-7 could pass through the blood-brain
barrier (BBB) in rats with 4.3-fold higher concentrations in brain than plasma [75]. These
results suggest the importance of groups at C-3, C-6 and N-9; the lipophilic groups in the
compounds are the crucial factors for neuroprotective activity of carbazoles [75].

In another study, oral treatment of CZ-7 ameliorated cognitive impairment in rats
with permanent occlusion of bilateral common carotid arteries (2VO) [73]. Morris water
maze tests revealed that CZ-7 considerably reduced the escape latency in 2VO rats. Mor-
phological studies using Nissl and terminal deoxynucleotidyl transferase dUTP nick end
labelling (TUNEL) staining showed that the administration of CZ-7 markedly diminished
the pathological changes in the CA1–CA3 area of the hippocampus, including neuronal
cell loss, nuclear shrinkage, and dark staining of neurons, and significantly decreased
chronic cerebral hypoperfusion-induced cell loss. Additionally, CZ-7 significantly im-
proved the white matter lesions as seen in Klüver-Barrera staining. CZ-7 administration
significantly decreased oxidative stress in the CA1–CA3 area of the hippocampus from
8-hydroxydeoxyguanosine (8-OHdG) and ROS immunofluorescent analyses. The dou-
ble immunofluorescent staining of Nrf2 and the elevated expressions of oxidative stress
proteins Heme oxygenase-1 (HO-1) and NAD(P)H: quinone oxidoreductase 1 (NQO1)
suggested that CZ-7 recovered the oxidative stress through the Nrf2 pathway [73].

Clau F-donepezil (a FDA-approved AChE inhibitor) hybrids were synthesized through
additional development to evaluate the neuroprotective potential. The benzylpiperidine
fragment of donepezil interacted with the catalytic domain of AChE. For free-radical
scavenging activity, the indanone moiety was replaced by Clau F (or its analogue CZ-7
fragments). The Clau F–donepezil hybrids exhibited potent AChE inhibition (IC50 1.63–
4.62 µM) [73]. Furthermore, (E)-3-(8-(tert-Butyl)-3,3-dimethyl-3,11-dihydropyrano[3,2-
a] carbazol-5-yl)-N-((1-(2-chlorobenzyl) piperidin-4-yl) methyl) acrylamide (Compound
6bd) demonstrated superior neuroprotective effects in comparison to Clau F against
OGD/reoxygenation (OGD/R). Additionally, the compound 6bd displayed good BBB
penetration (Permeability: Pe × 10−6 cm·s−1) in parallel artificial membrane permeation
assay (PAMPA) [25].

2.3. Phyto-Carbazole Alkaloids from Glycomis pentaphylla

The genus Glycosmis is considered as a rich source of potentially biologically active
secondary metabolites, such as alkaloids, flavonoids, phenolic glycosides, quinones and
terpenoids. Plants in the genus Glycosmis were used in traditional medicine for the treatment
of various diseases, like anxiety, cancer, snake bites and joint pain [76–79]. Structures of the
phyto-carbazole alkaloids isolated from G. pentaphylla are presented in Figure 4.

Phytochemical analyses shows the isolation and elucidation of glycozolidol, glyco-
zolicine, 3-formyl-9H-carbazole and glycosinine from the roots of G. pentaphylla [80–82],
while 4-(7-hydroxy-3-methoxy-6-methyl-9H-carbazol-4-yl)but-3-en-2-one, bisglybomine
B, biscarbalexine A, carbazole–indole-type dimeric alkaloids, and glycosmisines A and B
were isolated from the stem of G. pentaphylla [83,84].

The methanolic extract of G. pentaphylla exhibited significant dual AChE (IC50
325.1 ± 0.91 µg/mL) and butyryl cholinesterase (BChE) effects (IC50 42.1 ± 3.30 µg/mL).
Furthermore, the extract showed radical scavenging ability in 2,2-diphenyl-1-picrylhydrazyl
(DPPH) assay (IC50 95.6 ± 0.68µg/mL) and a lipid peroxidation inhibitory effect (IC50
288.7 ± 0.91 µg/mL) [85]. The total crude alkaloid extract of G. pentaphylla showed antioxi-
dant potential in the DPPH assay (IC50 966.93 µg/mL), ferric reducing antioxidant power
(FRAP) (IC50 510.81 µg/mL), 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS)
assay (IC50 400.47 µg/mL), hydroxyl free radical (OH·) assay (IC50 1805.28 µg/mL) and
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NO assay (IC50 1426.50 µg/mL). Thus, these phyto-carbazole alkaloids were the potential
therapeutic target for NDs such as AD, PD and other oxidative stress-related diseases [86].
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2.4. Phyto-Carbazole Alkaloids from Micromelum

Micromelum is a rich source of bioactive secondary metabolites. Methylene chloride
extract of the stem bark of M. hirsutum is rich in phyto-carbazole alkaloids, including
3-methylcarbazole, 3-formylcarbazole, lansine, micromeline, 3-formyl-6-methoxycarbazole
and methyl carbazole-3-carboxylate, and some of these have displayed anti-tuberculosis
activity [87]. Structures of the phyto-carbazole alkaloids isolated from the species of the
genus Micromelum are presented in Figure 5.

Two phyto-carbazole alkaloids, 2,7-dihydroxy-3-formyl-1-(3-methyl-2-butenyl) car-
bazole and 7-methoxy heptaphylline, have been isolated from the roots of M. glanduliferum,
which are used as chemotaxonomic markers to differentiate this plant from other
Micromelum species [88]. Koenimbine, koenine, koenigine and koenidine were isolated
from the leaves and young stems of M. zeylanicum [89]. Additionally, mahanine from the
leaves of M. minutum presents vast therapeutic effects, such as anticancer, anti-mutagenicity,
antimicrobial and anti-inflammatory [90,91]. Phyto-carbazole alkaloids glycozolinol and
methyl carbazole-3-carboxylate were isolated from the leaves of M. integerrimum [92]. How-
ever, in spite of the immense pharmaceutical importance of phyto-carbazole alkaloids from
Micromelum, no study has been conducted on the neuroprotective action of Micromelum
species [93].
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2.5. Carbazole Alkaloids from Zanthoxylum

Zanthoxylum species (syn. Fagara species) are widely used as food and in traditional
systems of medicine for treating inflammation, pain, hypertension and neurological dis-
eases [94]. Structures of the phyto-carbazole alkaloids isolated from Zanthoxylum species
with potential neuroprotective effects against NDs are presented in Figure 6. The phy-
tochemicals responsible for the biological activities of some of the species have yet to
be identified.

Isolated Zanthoaustrones A–C from the roots of Z. austrosinense [95] significantly
inhibited NO production (IC50 1.59 ± 0.11, 1.29 ± 0.06, 0.89 ± 0.05 µM, respectively) in
comparison to hydrocortisone (IC50 4 µM). Two prenylated alkaloids 2,6,7-trimethoxy-8-
(3-methyl-2-butenyl) carbazole-3-carbaldehyde and methyl-2,6,7-trimethoxy-8-(3-methyl-
2-butenyl) carbazole-3-carboxylate were isolated from ethyl acetate soluble fraction of
Z. armatum, which demonstrated substantial antioxidant potential in DPPH free radical
scavenging assay [96]. From the ethanol-soluble extract of Z. fagara bark, two novel furo-
carbazole alkaloids with antibacterial activity, 4-methoxy-10H-furo[3,2-a] carbazole and
10H-furo[3,2-a] carbazole, were isolated [96,97]. Han et al. [98] evaluated the antioxidant,
antidiabetic, and neuroprotective activity against high glucose–induced cytotoxicity of
Z. piperitum (ZP) and Z. schinifolium (ZS) extracts. The extracts displayed strong antioxi-
dant potential in ABTS/DPPH assays, and MDA contents were significantly reduced. ZP
inhibited carbohydrate hydrolysis (α-glucosidase and α-amylase) more efficiently than
ZS in antidiabetic tests. Interestingly, ZS in comparison to ZP decreased anti-advanced
glycation end-products (AGE) more effectively. AGEs have an important role in the pro-
gression and pathogenesis of AD, as Aβ aggregation is accelerated in the presence of
AGEs [99]. The content of AGEs is more in neurofibrillary tangles (NFTs) and plaques,
as suggested by immunohistochemical studies [100]. Additionally, both ZP and ZS ef-
fectively protect human-derived neuronal cells from high glucose-induced cytotoxicity,
indicating the neuroprotective nature of the plants. In a recent study [101], pericarp
of Z. schinifolium (ZSP) unveiled effective DPPH (IC50 75.6 ± 6.1 µg/mL) and ABTS
(IC50 = 57.4 ± 6.0 µg/mL) radical scavenging activities. ZSP also inhibited the release of
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pro-inflammatory cytokines, IL-1β (IC50 134.4± 7.8 µg/mL), IL-6 (IC50 262.8± 11.2 µg/mL)
and TNF-α (IC50 223.8 ± 5.8 µg/mL).
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The methanolic and ethyl acetate extracts of Z. capense root exhibited neuroprotective
effects in rotenone-elicited neuronal injury in SH-SY5Y. Pre-treatment of SH-SY5Y cells with
the extracts significantly reduced ROS generation and improved intracellular glutathione
levels. Moreover, the extracts inhibited rotenone-induced activation of caspase-3 and
subsequent apoptosis. Comparatively, methanol extract displayed better neuroprotective
activity than ethyl acetate extract [102].

Z. bungeanum is another popular spice in East and Southeast Asia [103], which is used
to treat forgetfulness and other symptoms in Chinese traditional medicine [104]. Differ-
ent Z. bungeanum extracts (water, volatile oil, petroleum ether and methylene chloride)
were prepared to evaluate its role in cognitive improvement in D-galactose-induced aging
mice [105]. The weakened memory was considerably alleviated after water and volatile oil
extract treatment. These extracts also protected against neuron damage in the hippocampus
by D-galactose induction. Additionally, treatment with water and volatile oil extracts of
Z. bungeanum facilitated the recovery of oxidative stress parameters (SOD, CAT, GSH,
MDA) and oxidative stress response genes (Nrf2 and HO-1) in the mouse brain. Further-
more, activation of the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway
increased the expression of B-cell lymphoma 2 (Bcl2)-associated X apoptosis regulator (Bax),
with a concomitant reduction in the expression of (Bcl2) in the mouse brain [105]. The
important role of the PI3K/AKT signalling pathway in neurogenesis, neuronal proliferation
and synaptic plasticity is very well ellucidated [106]; it also regulates the expression of
Bcl-2, Bax and other related proteins [107]. Additionally, the activation of the PI3K/AKT
pathway promotes the growth of dopamine neurons by inhibiting apoptosis [108,109],
thereby playing a neuroprotective role in the treatment of AD and PD.

Activation of Nrf2 is an attractive target for the prevention of AD [110], as its levels
are reported to decrease in AD. Hence, it could be suggested that Z. bungeanum extracts are
promising agents for the prevention of aging-related cognitive dysfunction and neurological
deficits [105]. Additionally, the ethyl acetate fraction of the Z. bungeanum leaf exhibited
the strongest ABTS and DPPH radical scavenging activities in comparison to chloroform,
water fractions and crude extract in vitro. The ethyl acetate fraction protected PC12 cells
against hydrogen peroxide–induced cytotoxicity [111]. Similarly, methanol:chloroform (1:4)
extract of the Z. piperitum leaf was a potent radical scavenger and reducing agent, which
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also displayed protective effects against H2O2-induced neurotoxicity in a concentration-
dependent manner in PC12 cells [112].

Different species of Zanthoxylum (Z. fagara, Z. rhoifolium, Z. monophylla and Z. quinduen-
sis) exhibited considerable antioxidant and AChE inhibitory potential (116.8, 107.4, 10.2 and
123.0 µg/mL, respectively) in comparison to the standard, galantamine (4 µg/mL) [113],
which was due to the presence of alkaloids and other phytochemicals. In addition, methano-
lic and ethyl acetate root extracts of Z. davyi displayed potent anti-AChE activity (IC50
0.01 ± 0.004 mg/mL and 0.011 ± 0.002 mg/mL, respectively) [114].

Another study elaborated the role of hydro ethanolic extract of Z. alatum (HEZA)
in ameliorating scopolamine-induced amnesia in rats by targeting multiple pathways
for cognition enhancement [115]. HEZA displayed AChE inhibition, antioxidant effects
and inhibition of neuroinflammation (TNF-α, IL-1 β and IL-10) in the hippocampus. Pre-
treatment with HEZA considerably down-regulated the expression of NFκB, Tau, Bax
and Caspase-3, with simultaneous up-regulation of Nrf2, HO-1, PP2A (serine/threonine
protein phosphatase 2A), BDNF (brain-derived neurotrophic factor) and TrkB (Tropomyosin
receptor kinase B) genes in the hippocampal region [115]. HEZA exhibited antioxidant
activity through up-regulating Nrf2-mediated HO-1 expressions. The phosphorylation
and dephosphorylation of Tau were regulated by many proteinases, such as PP2A. It was
demonstrated that endogenous PP2A was reversibly inhibited during oxidative stress [116].
Next, since BDNF is an important manager of synaptogenesis and synaptic plasticity, the
increased levels of BDNF by HEZA could help with memory enhancement [117]. Hence,
Z. alatum extract revealed positive effects on cognition, and it is a potential candidate for
drug development for NDs.

Interestingly, the majority of the identified phyto-carbazole alkaloids in Figures 2–6
originated from 3-methylcarbazole as their mutual precursor, and the oxidation product
of 3-methylcarbazole resulted in 3-formyl or 3-carboxyl structures (Figures 2–6) [13,31,32].
The predominant number of the derived phyto-carbazoles from 3-methylcarbazole [13]
include the C-13-type 3-methylcarbazoles, represented by 3-methylcarbazole, glycozolidol
and glycozolicine; the C-13-type 3-formylcarbazoles, such as 3-formylcarbazole, lansine, gly-
cozine and murrayanine; the C-13-type 3-carboxylcarbazole derivatives, including methyl
carbazole-3-carboxylate and zanthoaustrone A and B; the C-18-type 3-methylcarbazole
alkaloids, such as girinimbine, koenine, koenigine, euchrestine A and murrayafoline B; the
C-18-type 3-formylcarbazoles, represented by 7-methoxyheptaphylline, claulansine F, and
claulansine H; the C-18-type 3-carboxylcarbazoles, represented by methyl-2,6,7-trimethoxy-
8-(3-methyl-2-butenyl)carbazole-3-carboxylate; the C-23-type 3-methylcarbazoles, such
as mahanine and mahanimbine; and the C-23-type 3-formyl derivatives. Dimeric phyto-
carbazole alkaloids, including bismurrayafoline E, glycosmisine A and B, biscarbalexine A
and bisglybomine B, were also reported as potential neuroprotective agents from the genus
Rutaceae. With the diversity of the phyto-carbazole structures reported (Figures 2–6), the
identification of a specific pharmacophore responsible for the reported biological activities,
including neuroprotective effects, may be a challenge. However, the presence of the alde-
hyde or hydroxymethyl group at the C-3 position may contribute to the neuroprotective
activity, based on a previous structure activity relationship (SAR) study [74]. An SAR report
on the synthetic derivatives of claulansine F (Figure 3) showed a stronger neuroprotective
effect with methyl groups at C-3 and C-6 positions. N-9-alkylation resulted in decreased
activity. In comparison, substitution of an aldehyde group at C-3 and C-6 positions, includ-
ing a N-9-alkylated moiety, showed stronger neuroprotective effects. Thus, groups at C-3,
C-6 and N-9, along with the lipophilic groups, were crucial for neuroprotective activity of
the carbazole [75] as specified in Section 2.2. However, a deeper understanding of SAR
studies of the isolated phyto-carbazole alkaloids from nature would be worth exploring.

3. Conclusions and Future Perspectives

Researchers all over the world are aiming to benefit from the immense natural chemical
diversity of plants against a diversity of pharmacological targets. A number of accomplish-
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ments have been documented in finding new entities from the nature; several candidates
have been further developed into new drugs, while others have served as a stepping stone
for further drug discovery. Table 1 and Figure 7 summarize the neuroprotective activities
of Rutaceae family plant extracts.

Table 1. Neuroprotective mechanism displayed by Rutaceae family plant extracts and phyto-
carbazole alkaloids.

Plant/Carbazole Alkaloid Mechanism of Neuroprotection Study Refs

Murraya koenigii leaf (MKL)

Increased ACh
Increased GPx, GSH, GRD, SOD, CAT

Decreased LPO, NO
Anti-amnesic

in vivo:
mice, rat [37,39,40]

Total alkaloidal extracts of MKL
AChE inhibition

BACE1 inhibition
Antioxidant activity

in vivo:
mice [36]

Mahanimbine
from Murraya koenigii

AChE inhibition
BACE1 inhibition

Antioxidant activity
Decreased ROS, MDA

Nrf2-dependent induction of antioxidant enzymes
Increased CAT, GRD, SOD, CAT
Decreased NF-κB, TNF-α, IL-1β

Decreased Aβ accumulation

in vitro:
SK-N-SH cells,

in vivo:
mice

[39,44–49]

Girinimbinefrom Murraya koenigii

COX-2 inhibitor
Decreased NF-κB, TNF-α, IL-6, IL-1β, iNOS

Decreased MDA
Increased GSH

in silico,
in vitro:

MDA-MB-231
[53,55]

Murrayanine
from Murraya koenigii

Decreased iNOS and COX-2, PGE2, NO, I-κβ
phosphorylation and NF-κB

in vitro:
RAW 264.7 cells [51,52]

Murrayanol
from Murraya koenigii Anti-inflammatory in vitro: [39]

Murrayamine-E
from Murraya koenigii Increased neurite outgrowth in vivo:

mice [40]

Phyto-carbazole alkaloids from
Murraya tetramera and
Murraya kwangsiensis

Decreased NO in vitro:
BV-2 cells [42,43]

Clausena lansium peel extract
Antioxidant activity

Increased survival of neurons
Decreased oxidative stress

in vivo:
rat [60]

Prenylated carbazole alkaloids Decreased NO in vitro:
RAW 264.7 cells [56,57]

Clauemarazole E clausine K and
clausine from the stems of

Clausena emarginata
Decreased NO in vitro:

BV-2 cells [58]

Phyto-carbazoles from
Clausena dunniana Decreased NO in vitro:

BV-2 cells [59]

Hydroethanolic extract of the stems
and leaves of Clausena lenis

Neuroprotection against
6-OHDA induced apoptosis

in vitro:
SH-SY5Y [62]

Clausenalenine A and its analogues
from Clausena lenis fruits

Neuroprotection against
6-OHDA induced apoptosis

in vitro:
SH-SY5Y [62]
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Table 1. Cont.

Plant/Carbazole Alkaloid Mechanism of Neuroprotection Study Refs

Clausine Z from Clausena excavata CDK5 inhibitor in vitro [63]

O-Demethylmurrayanine, clausine
D, carbazole-3-carboxylate from the

roots of Clausena lansium
Decreased superoxide anion in vitro [57]

Geranylated phyto-carbazole
alkaloids (clauselansiumines A–B)

along with other carbazole
alkaloids from stem and leaves of

Clausena lansium

Neuroprotection against
6-OHDA induced apoptosis

in vitro:
SH-SY5Y [70,71]

Methanolic extract of
Glycosmis pentaphylla

AChE inhibition
BChE inhibition

Antioxidant activity
in vitro [85]

Total alkaloid extract of
Glycosmis pentaphylla Antioxidant activity in vitro [86]

Zanthoaustrones A–C from the
roots of Zanthoxylum austrosinense Decreased NO in vitro [95]

Zanthoxylum piperitum
Zanthoxylum schinifolium

Antioxidant activity
Protect neuronal cells from high glucose–induced

cytotoxicity
in vitro [98,101]

Methanolic and Ethyl acetate
extracts of Zanthoxylum

capense root

Caspase-3 inhibition
Decreased ROS

in vitro:
SH-SY5Y [102]

Zanthoxylum bungeanum extracts
(water, volatile oil)

Increased Nrf2, HO-1
Increased PI3K/Akt, Bax

Reduced Bcl2
Increased CAT, SOD, GSH

Decreased MDA
Antioxidant activity

in vivo:
mice [105]

Zanthoxylum fagara
Zanthoxylum rhoifolium

Zanthoxylum monophylla
Zanthoxylum quinduensis

Zanthoxylum davyi

AChE inhibition in vitro [113,114]

Hydroethanolic extract of
Zanthoxylum alatum

AChE inhibition
TNF-α, IL-1 β and IL-10 inhibition

Down-regulation of NFκB, Tau, Bax, Caspase-3
Up-regulation of Nrf2, HO-1, PP2A, BDNF

in vivo:
rat [115]

The present review discussed the neuroprotective potential of various phyto-carbazole
alkaloids, exclusively present in the Rutaceae family plants, such as Murraya, Clausena,
Glycosmis, Micromelum and Zanthoxylum. The discovery of the first naturally occurring
phyto-carbazole alkaloid, murrayanine, from M. koenigii, is considered as a landmark in
the progress of the chemistry and biology of carbazoles [31]. Phyto-carbazole alkaloids are
important moieties in drug discovery and display a range of therapeutic activities, like
anticancer, anti-tuberculosis, anti-HIV, antibacterial and neuroprotective.
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Figure 7. Multi-target mechanism displayed by Rutaceae family plant extracts and carbazole alkaloids
in neurodegenerative diseases. Phyto extracts and carbazole alkaloids from Rutaceae family exerted
a multi-target approach in ameliorating symptoms of AD. PP2A and BDNF activity/expression
was decreased in AD, which stimulated the hyper-phosphorylation of Tau and APP, leading to
overproduction of Aβ. Phyto-carbazoles prevented Aβ aggregation by inhibiting cleavage of the APP
by BACE-I, as well as by upregulating the expression of PP2A and BDNF. This caused a shift in the
non-amyloidogenic pathway and reduced the levels of produced Aβ. A number of phyto-carbazoles
were shown to reduce the levels of pro-inflammatory cytokines and inflammatory mediators (IL-6,
IL-1β, NF-kβ, TNF-α, iNOS, COX-2). Nrf2/HO-1 was an antioxidant signaling pathway, which was
required for neuronal cell proliferation and survival. Down-regulation of this pathway was associated
with various NDs. Phyto-carbazoles provided the neuroprotection by upregulating the expressions of
the Nrf2/OH-1 pathway. They also reduced the oxidative stress by increasing the levels of antioxidant
enzymes (SOD, CAT, GSH, GRD, GPx) and reducing lipid peroxidation (LPO). Caspase-3 and Bax
were responsible for neuronal death and were up-regulated in AD. Phyto-carbazoles down-regulated
their expressions and prevented apoptosis. ACh, a neurotransmitter essential for processing memory
and learning, was decreased in both concentration and function in AD. Decreased levels of ACh could
be restored by the AChE and BChE inhibitory activity of phyto-carbazole alkaloids. Overproduction
of NO was linked to neuroinflammation, mitochondrial dysfunction and neurotoxicity in NDs. The
increased levels of NO were also controlled by phyto-carbazole and plant extracts from the Rutaceae
family. Abbreviations: Aβ: Amyloid beta; ACh: Acetylcholine; APP: Amyloid Precursor Protein;
AChE: Acetyl Cholinesterase Enzyme; BACE 1: Beta-Secretase 1; Bax: BCL2 Associated X; BChE:
Butyl Cholinesterase Enzyme; BDNF: Brain-Derived Neurotrophic Factor; CAT: Catalase; COX-
2: Cycloxygenase-2; GSH: Reduced Glutathione; GRD: Glutathione Reductase; GPX: Glutathione
Peroxidase; HO-1: Heme Oxygenase-1; iNOS: inducible Nitric Oxide Synthase; IL: Interleukin; NO:
Nitric Oxide; NF-kβ: Nuclear Factor Kappa B; Nrf2: Nuclear factor erythroid 2–Related Factor 2;
PP2A: Protein Phosphatase 2A; SOD: Superoxide Dismutase; TNF-α: Tumor Necrosis factor-α.
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In the past few decades, the therapeutic importance of natural and semi-synthetic
carbazole alkaloids has expanded considerably. The phyto-carbazole alkaloids manifest
the neuroprotection using a multi-target approach, lowering the oxidative stress, atten-
uating proinflammatory cytokines, inhibiting AChE and BACE-1, preventing/reducing
Aβ protein aggregation and improving cognition. These pathophysiological features are
common to almost all NDs. Unfortunately, the currently available FDA-approved drugs
target only a single mechanism for the treatment of the complex pathophysiology of NDs.
Hence, preparing a hybrid with carbazoles and FDA-approved drugs would expand their
neuroprotective spectrum and would be a promising approach in drug discovery. The
molecular mechanisms of action of most of the bioactive compounds are known within
limitations. Henceforth, additional studies are necessary to fill this knowledge gap. Ap-
proaches based on the opportunities lying in untapped phyto-carbazole alkaloids (like
murrayaine, girinimbine and mahanine) in the field of neuroprotection should also be
explored. Other phyto-carbazole alkaloids that have revealed significant neuroprotective
activity should be subjected to clinical trials to further assess their potential as a new drug
or as pharmacophores for the development of a new generation of therapeutic agents.

To conclude, the phyto-carbazole alkaloids from the Rutaceae family were proven to be
promising candidates in both the drug designing by natural sources and the development
of nutraceuticals. We believe that the current review provides a colloquium of information
that will help future investigation on the use of underutilized phyto-carbazole alkaloids to
discover new neuroprotective drugs with the aid of animal models and clinical trials.
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