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Abstract
Dysregulation in component 1q (C1q) levels is associated 
with weak placental development in preeclampsia (PE). Hu-
man immunodeficiency virus infection (HIV-1) triggers the 
C1q complex, resulting in opsonization of healthy host cells, 
contributing to their removal, and augmented progression 
of HIV disease. In coronavirus disease 2019 (COVID-19)-in-
fected patients, the deposition of C1q activates the comple-
ment. Considering the paucity of data, this review highlights 
a significant gap in the potential of C1q in the immunocom-
promised state of preeclamptic HIV-infected women and 
COVID-19 infection. In PE, C1q is downregulated; while in 
antiretroviral treatment-treated HIV/COVID-19 infected pa-
tients, C1q is upregulated. It is plausible that C1q is augment-
ed in the triad and may exacerbate severity of disease. This 
thereby provides a foundation for future intended research 
which involves the investigation of single nucleotide poly-
morphism expression of the C1q gene, specifically in these 
diseases. © 2022 S. Karger AG, Basel

Introduction

In December 2019, a severe threat to human well-be-
ing originated in Wuhan, China, and rapidly spread 
across the globe [1]. This outbreak of acute atypical respi-
ratory disease caused by the novel coronavirus was named 
the severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) [2, 3]. The World Health Organization 
declared the coronavirus disease (COVID-19), a pan-
demic [1]. Similar to other coronaviruses such as SARS-
CoV-1 and MERS-CoV, the human-to-human transmis-
sion was implicated in the outbreak [4]. Up until April 5, 
2022, approximately 490,853,129 cases were confirmed 
worldwide with 6,155,344 deaths [5]. Most patients with 
COVID-19 exhibit mild to moderate symptoms but ap-
proximately 15% progress to severe pneumonia, and 
about 5% develop an acute respiratory distress syndrome 
(ARDS) and/or multiple organ failure [6]. The high mor-
tality and morbidity rate of COVID-19 has caused severe 
disruptions to public health, the economy, and medical 
communities across the world [3]. Moreover, human im-
munodeficiency virus (HIV) infection, diabetes, and hy-
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pertension predispose severe COVID-19 illness and are 
associated with high morbidity and mortality [7, 8].

The COVID-19 challenge to public health was super-
imposed upon an existing HIV pandemic. In fact, in 2021, 
36.3 million (27.2 million–47.8 million) people were al-
ready living with HIV infection [9]. More than two-thirds 
of HIV infections occur in Africa. South Africa has a high 
(18.9%) prevalence of adult HIV infection [10]. Impor-
tantly, antiretroviral therapy (ART) has increased the life 
expectancy of HIV-infected individuals [11]. South Af-
rica has the largest ART rollout in the world [12]. The risk 
of dying from COVID-19 among people with HIV infec-
tion is twice that of the general population [9]. Hence, it 
is a concern that up until July 2021, only 3% of individu-
als residing in Africa had received one dose of a CO-
VID-19 vaccine [9]. Also, since 85% of HIV-infected 
pregnant women receive ARTs to prevent HIV transmis-
sion to the neonate, it is uncertain whether the adminis-
tration of ART may alter their susceptibility to SARS-
CoV-2 infection [13].

In the face of both pandemics, hypertensive disorders 
of pregnancy such as hemolysis, elevated liver enzymes, 
low platelet count syndrome; preeclampsia (PE), and ec-
lampsia are still the commonest direct cause of maternal 
mortality and morbidity [14]. PE is a pregnancy-specific 
disorder associated with a new-onset high blood pressure 
of ≥140/90 mm Hg occurring after 20 weeks of gestation 
[15] and accounts for 4–41% of maternal deaths depend-
ing on the economic status of the country [16–18]. PE 
may be accompanied by proteinuria and/or evidence of 
multi-organ dysfunction (hematological complications, 
acute kidney injury, and neurological complications) 
[15]. Fetal complications include intrauterine growth re-
striction, placental abruption, and perinatal death [19].

Pregnant women are more susceptible to viral infec-
tion due to a change in immune response occurring across 
the later stages of pregnancy [20]. The risk for severe 
SARS-CoV-2 infection in the third trimester is linked to 
the mechanical upward movement of the diaphragm with 
resultant compression of the lungs causing poor gaseous 
exchange. This reduced lung mechanics favors the devel-
opment of pneumonia/pneumonitis and therefore pro-
motes the severity of infection [21, 22]. This increases the 
risk of contracting COVID-19 infection in the duality of 
HIV-associated PE and may amplify adverse maternal 
and fetal outcomes such as preterm birth, miscarriage, 
and small for gestational age neonates, and mothers may 
require intensive care management.

The Complement System

The complement system plays a central role in the 
host’s immune defense by linking innate response to 
adaptive immunity [23]. Complement components are 
activated by three different pathways viz., the classical, 
lectin, and alternative pathways (CP, LP, and AP, respec-
tively). All three pathways share the common step of ac-
tivating the central C3 component, but they differ accord-
ing to the nature of recognition [24]. Component 1q 
(C1q) of the CP together with C1r and C1s form the C1 
complex (shown in Fig.  1). Activation of this complex 
leads to the stimulation of C2–C9 components of the CP 
with resultant formation of the membrane attack com-
plex (MAC) [27]. The consequence of complement acti-
vation is the opsonization of pathogens and their remov-
al by phagocytes, inflammation, mobilization of immune 
cells, and cell lysis. Complement activity is firmly con-
trolled by complement regulators given their potential to 
harm host tissue. Uncontrolled complement activation 
would lead to acute and chronic inflammation (acute 
phase proteins increase), intravascular coagulation and 
cell injury terminating in multiple organ failure, and 
death [28].

Complement C1q
The C1q is a target recognition protein that links in-

nate immunity to adaptive immunity by binding to Im-
munoglobulin G (IgG) and Immunoglobulin M (IgM) 
immune complexes [29]. This interaction triggers con-
formational changes within the C1 complex (shown in 
Fig. 1) which result in the activation of the CP [30].

C1q is responsible for an antibody (Ab)-dependent 
and -independent immune function mediated by cell sig-
naling on effector cell surfaces [31, 32]. It also regulates 
immune cell differentiation, cytokine discharge, phago-
cytosis, and macrophage divergence thereby mediating a 
tolerogenic phenotype [33], thus endorsing a pregnant 
women’s innate immune response [34, 35]. C1q also 
maintains this immune tolerance via virus inactivation 
[36] through induction of proinflammatory cytokines 
[37]. Apart from C1q-facilitated phagocytosis of apop-
totic debris, it mediates uptake of apoptotic lymphocytes 
by macrophages and dendritic cells (DC) [38]. C1q-ex-
posed macrophages and dendritic cells have a depressed 
competence to promote T helper (Th) 1/Th17 response 
with a tendency to sustain regulatory T cells [32].

The normal circulating C1q levels of nonpregnant 
women (199.4 ± 35.4 mg/L) are very similar to that of 
pregnant women 202 ± 42.4 mg/L (95% CI for mean: 
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196.6–208.5 mg/L) and remain stable across pregnancy 
trimesters [39]. In light of the increased susceptibility of 
HIV-infected pregnant women to COVID-19 infection, 
this narrative review explores and outlines the diverse 
role of C1q in both HIV and SARS-CoV-2 infection of 
normotensive pregnant and PE. It serves as a foundation 
to elucidate the role of C1q in this deadly triad of inflam-
matory-related conditions.

The Complement System in COVID-19 Infection
Complement response is a double-edged sword of our 

immune system; it may be protective by favoring viral 
clearance, but its uncontrolled activation predisposes 
acute and chronic inflammation, tissue injury, and co-
agulation [40]. SARS-CoV similar to SARS-CoV-2 acti-

vates C3 and leads to ARDS [41]. SARS-CoV-infected 
C3-deficient mice display decreased respiratory function 
with lung pathology accompanied by a decline of cyto-
kines and chemokines (e.g., interleukin 1 alpha [IL-1⍺], 
interleukin 5 [IL-5], interleukin 6 [IL-6], tumor necrosis 
factor alpha [TNF-⍺], and granulocyte-colony stimulat-
ing factor [G-CSF]) compared to their wild-type litter-
mates [41]. This finding validates that C3 inhibition 
would decrease the severity of ARDS in SARS-CoV-2 in-
fection [42].

More specifically, low levels of mannose-binding lec-
tin (MBL) or its deficiency predispose the acquisition of 
COVID-19. When SARS-CoV interacts with MBL, it ac-
tivates the mannose-binding protein-associated serine 
protease 2 (MASP-2) [43]. This initiates cleavage of C2 
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Fig. 1. Schematic diagram showing the activation and regulation 
of the complement cascade. Complement activation occurs via 
three pathways, CP, AP, and LP. The CP is activated by Ab binding 
to cell surfaces which exposes a C1q-binding site, the LP is acti-
vated when ficolin or (MBL which binds to carbohydrate moieties 
found on pathogen surfaces, and the AP is activated when compo-

nent 3 (C3) is spontaneously hydrolyzed to form C3(H2O). All 
three pathways form a C3 convertase, cleaving component 3a 
(C3a) and component 3b (C3b), resulting in an MAC with resul-
tant cell lysis and opsonization (modified from Kovanen and Meri 
[25]; Orsini et al. [26]).
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and C4 promoting the action of the LP (shown in Fig. 2) 
[28]. Furthermore, an elevated deposition of C4-activa-
tion fragments occurs when MBL adheres to infected 
SARS-CoV cells [43].

Moreover, strong immunohistochemical staining 
for MBL, MASP-2, C4a, C3, and MAC colocalize with 
SARS-CoV-2 nucleocapsid protein in patients with se-
vere COVID-19 [44]. Also, transcriptomic studies on 
bronchoalveolar lavage fluid from severe COVID-19 
patients show higher ficolin 1 levels in monocyte-de-
rived macrophages which support MBL pathway acti-
vation (shown in Fig. 2) [44]. These findings highlight 
that both MBL opsonization and deposition of C3 and 
C4 onto virions are required for SARS-CoV-2 neutral-
ization [45]. Interestingly, the significance of the MBL 
pathway in SARS-CoV infection is controversial. Pa-
tients with low serum MBL expression are at a greater 
risk of becoming infected with SARS-CoV, suggesting 
that MBL activation will promote defense against infec-
tion [43]. In contrast, other studies found no associa-
tion between MBL genotypes/haplotypes and their sus-
ceptibility to SARS-CoV infection and disease develop-
ment [46, 47]. Mechanistic studies on the role of various 
complement components in SARS and MERS infec-
tions suggest broad immune functions that affect mul-
tiple organs during coronavirus infection.

C1q and COVID-19

IgM autoantibodies that recognize angiotensin-convert-
ing enzyme-2 (ACE2) on endothelial cells (ECs) do not 
class-switch to IgG, suggesting a T-independent Ab re-
sponse [48]. This immune response activates the CP and 
stimulates an inflammatory response observed in severe 
COVID-19 patients [49, 50]. Moreover, there is an en-
hanced deposition of IgG and IgM and complement com-
ponents C1q and C4d on lung tissue [51]. The complement 
cascade, which is crucial in pathogen removal also influ-
ences major complications of COVID-19, including coagu-
lopathy and multi-organ failure [52]. This deposition acti-
vates the CP where C3b forms C5 leading to its split into 
terminal complement products, C5a and C5b-C9. This ac-
tivation is accompanied by ischemia, trauma, bacterial and 
viral pneumonia, and ARDS [53–56]. In SARS and MERS 
infection [57, 58], a consequence of this activation is lung 
inflammation and respiratory failure [59].

Complement in HIV Infection

Several pathogens mutate as a strategy to evade com-
plement attack. These stratagems include the integration 
of cell-derived complement regulators into viral particles 
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and/or the parody of negative regulators of complement 
activation. Moreover, some viruses may exploit comple-
ment molecules by utilizing complement receptors as 
sites for entry. HIV has exploited these strategies to 
achieve maximal replication and dissemination during 
infection [60].

The entry of HIV-1 into host cells is dependent on en-
velope proteins glycoprotein 120 (gp120) and glycopro-
tein 41 (gp41) that form a noncovalent complex at the 
viral surface. Sequentially, the outer envelope protein of 
HIV, gp120, attaches to the CD4 receptor and a chemo-
kine coreceptor on the target cell. The transmembrane 
envelope protein of HIV, gp41, mediates fusion between 
the viral and target cell membranes [36].

Complement activation is triggered directly without 
antigen/Ab interaction in the initial stages of HIV-1 in-
fection [61]. HIV-1 gp41 attaches to C1q and activates the 
CP [62, 63]. MBL binds to the gp120/gp41 complex to 
activate complement activity and promote viral clearance 
and neutralization by tissue macrophages and also aug-

ment Ab-mediated neutralization [64]. Notably, suscep-
tibility to HIV-1 infection and disease progression cor-
relates with MBL deficiency [65, 66]. The LP also prohib-
its viral entry into susceptible cells [67]. Additionally, the 
CP is triggered by HIV-1-specific antibodies [62]. How-
ever, C1q- or C3-deficient serum does not activate the 
CP, while C3 deficiency does not activate the terminal 
pathway, hence negating their antiviral effect. Further-
more, the coating of virions by complement components 
contributes to the viral inactivation [68].

C1q in HIV Infection

Clq binds directly to the transmembrane protein gp41 
at amino acid (aa) residues 601-613 [62]. Clq binds to the 
immunodominant site in gp41 [36]. Additional regions 
(aa 625-655 and aa 526-538) also facilitate the binding 
between C1q and gp41 [69]. The adhering site for gp41 is 
located within the globular regions of C1q [36]. Calcium 
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are therefore liable for the significantly low C1q levels. Activation 
of the CP results in the deposition of component 3 (C3) fragments 
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ions are necessary for the binding of rsgp41 and Clq, 
whereas the interaction between rsgp41 and gp120 occurs 
independent of divalent cations [70].

A functional and structural homology between C1q 
and gp120 exists showing mimicry and competition with 
each other for the same sites. Both proteins can success-
fully adhere to the exact or at least overlapping sites on 
gp41 [69, 71]. Purified intact HIV-1 virus and recombi-
nant gp41 adhere to purified C1q, activating the comple-
ment cascade [62, 72].

Furthermore, isolated HIV-1-infected cells stimulate 
the activation of the CP in an Ab-independent manner 
(shown in Fig. 3a) [73], thereby augmenting HIV-1 infec-
tion of complement receptor-positive cells. This comple-
ment-activating capability of HIV-1 resides in gp41, 
which triggers the C1 complex [69]. Following comple-
ment activation, the resultant opsonization of healthy 
host cells may contribute to their removal, consequently, 
increasing the progression of HIV disease (shown in 
Fig. 3a) [36].

The homology between gp120 and C1q further sug-
gests that individual gp120 may associate directly with the 
collectin receptor to facilitate the entry of HIV into mac-
rophages in a CD4-independent manner. Similarly, gp120 
could induce an oxidative burst, as was shown to be the 
case for C1q [74]. Stoiber et al. [69] demonstrated that 
apart from the direct effect of gp120, antibodies against 
this envelope protein also cross-react with C1q (shown in 
Fig. 3b). They are therefore accountable for the signifi-
cantly low C1q expression in HIV1-positive sera. Since 
C1q is liable for the removal of insoluble immune com-
plexes [75], its absence may contribute to significantly 
high levels of insoluble immune complexes in HIV-in-
fected individuals [76].

These results propose that homologous structures of 
gp120 and C1q mediate their competition for the same 
sites on gp41 and expound the cross-reactivity of anti-
bodies against gp120 with C1q (shown in Fig. 3b). This 
homology represents an example of an autoimmune phe-
nomenon resulting from molecular mimicry in acquired 
immunodeficiency syndrome [69].

Complement activity is stimulated by highly active an-
tiretroviral therapy administration; notably in the ab-
sence of highly active ART, complement components are 
consumed by the constant interaction between viral anti-
gens and antiviral antibodies as well as by direct interac-
tion between C1q and gp41. Under therapy, the viral pro-
duction decreases dramatically, resulting in reduced viral 
antigens and antibodies and consequently in an elevation 
of complement components C4 and C3 [77, 78].

Complement Activation in Pregnancy

In pregnancy, there is an enhanced activation of the 
complement system as a result of complement deposition 
on placental tissue [79, 80]. At the fetal-maternal inter-
face, this deposition serves as protection against patho-
gens [81, 82]. Complement components C3, C4, and C1q 
are deposited onto trophoblast cells [83].

Maternal tolerance is established via the deposition of 
complement products on placental tissues [80, 84]. These are 
expressed locally on the surface of the cytotrophoblast, syn-
cytiotrophoblast, and extravillous trophoblast cells [85]. The 
invasion of extravillous trophoblast cells into maternal tis-
sues is challenged by both complement activation and its reg-
ulation [86]. More specifically, endovascular trophoblast 
cells migrate down the luminal walls of the spiral arteries 
enabling vascular remodeling of the spiral arteries, with ulti-
mate migration through the decidua into the myometrium. 
This invasion into maternal tissue produces apoptotic debris 
that promotes complement activation with minor placental 
damage challenging complement regulation [87, 88].

During pregnancy, the fetus is protected from harm by 
complement regulatory proteins that regulate comple-
ment activation [82]. However, excessive complement 
activation is restricted to ensure a successful pregnancy 
[89, 90]. Complement regulators include decay-acceler-
ating factor (DAF), membrane cofactor protein (MCP), 
and CD59. DAF halts C3 convertase formation and in-
creases decay of preformed C3 convertase; MCP cleaves 
C3b and C4b into their active forms, while CD59 func-
tions downstream to inhibit the formation of MAC [91]. 
Thus, the complement system at the feto-maternal inter-
face protects both the mother and the fetus against invad-
ing pathogens while also protecting the fetus from the 
maternal immune system via maintenance of tolerance.

Chow et al. [91] demonstrated that activated C3 played 
a crucial role in early pregnancy in mice. In this in vitro 
study using mouse embryos iC3b, the derivative of C3 
displayed embryotrophic activity, which stimulates blas-
tulation and hatching rates. Furthermore, C3-deficient 
mice displayed extended estrous cycle and elevated re-
sorption rates, thus suggesting that impaired placental 
development induces fetal outcome [91, 92].

C1q in Pregnancy

In pregnancy, C1q mediates immunotolerance by pro-
moting implantation and is functional throughout gesta-
tion [93]. It promotes angiogenesis by acting on ECs at 



C1q in Preeclamptic COVID-19/HIV-
Infected Women

7Int Arch Allergy Immunol
DOI: 10.1159/000524976

the embryo implantation site [94, 95]. C1q plays an im-
portant role in placentation where it influences tropho-
blast invasion and the physiological remodeling of spiral 
arteries (shown in Fig. 4) [96]. The deposition of C1q is 
absent on uterine microvascular ECs from nonpregnant 
uterus, hence binding of C1q to decidual ECs is a preg-
nancy-associated process [84].

Moreover, the presence of C1q at the feto-maternal 
interface may influence the regulation of trophoblast and 
stromal cell lineage differentiation occurring at the begin-
ning of pregnancy such as implantation and placentation. 
Trophoblast cells express C1q in the first trimester de-
cidual cells and in macrophages suggesting multiple pro-
tective functions, including eliminating pathogens, apop-
totic materials, and simultaneously, modulating the im-
mune response during early pregnancy [93, 97].

C1q in PE

Excessive complement activation results in adverse 
pregnancy outcomes such as miscarriage, preterm deliv-
ery, and PE [89, 98, 99]. C1q deficiency is linked to dys-
functional placental formation, trophoblast invasion, im-
paired angiogenic balance, and poor fetal outcome [95, 
96]. C1q knockout mice display defective removal of 
apoptotic cells [95, 100]. These results indicate that apop-
totic cell clearance is affected by C1q deficiency in PE de-

velopment [85]. C1q expression is reduced in PE com-
pared to normotensive pregnant women thereby affect-
ing the outcome [101].

In contrast, an early study reported that C1q placental 
expression is amplified in PE compared to normotensive 
pregnancy [102]. Elevated apoptosis has been reported in 
the placental bed of PE compared to normotensive wom-
en [103, 104]. C1q attaches to apoptotic cells via its glob-
ular head [105].

C1q-deficient mice also display key features of PE such 
as hypertension and albuminuria together with a reduc-
tion in placental growth factor and vascular endothelial 
growth factors (PIGF and VEGF) with concomitant am-
plified levels of soluble VEGF receptor-1 [106]. The onset 
of PE in C1q-deficient mice is prevented by pravastatin 
that acts on endothelial function and the expression of 
VEGF [107], heightened oxidative stress, diminished 
blood flow, increased fetal death, reduced litter size, de-
fective invasion of trophoblasts, and amplified STAT-8 
expression (inhibitor of trophoblast migration) (shown 
in Fig. 5) [85, 96].

Lokki et al. [108] established that women with early-
onset PE displayed higher C1q placental deposits than 
those with late-onset PE. The former study demonstrated 
a reduced mRNA expression of the C1q gene in placental 
tissue from PE compared to healthy matched controls. 
However, in another study, C1q mRNA placental expres-
sion was similar between preeclamptic versus normal 
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Fig. 4. The function of C1q in normal pla-
centation and adverse pregnancy out-
comes. Deficiency of C1q results in an ab-
normal invasion of fetal trophoblast into 
the decidua. C1q deficiency surges oxida-
tive stress and build-up of apoptotic tro-
phoblasts. This has an unfavorable influ-
ence on the placenta preventing the gen-
eration of vascular endothelial growth 
factor (VEGF) and blood flow, conse-
quently, causing implantation malfunction 
and difficulties in pregnancy such as preg-
nancy loss, miscarriage, and preeclampsia.
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control patients [109]. It is plausible that the environ-
mental milieu within the hypoxic oxidatively stressed pla-
centa may account for the lowered C1q expression in PE.

Syncytiotrophoblast microvesicles (STBM) are proin-
flammatory and circulate in amplified quantities in PE 
(shown in Fig. 5b). C1q was noted to be one of the 538 
proteins unique to preeclamptic STBMs [93, 110]. C1q is 
deposited onto STBMs and released into the maternal cir-
culation [111]. No significant difference in C1q levels on 
STBMs between normal and PE was noted [111]. None-
theless, it is established that preeclamptic placentas re-
lease an excessive amount of debris and move STBMs 
with C1q deposits into circulation [112]. Based on this 
finding, one may assume that C1q expression mirrors a 
downstream effect of tissue damage associated with PE 
development [101]. Nonetheless, dysregulation in C1q 
levels results in irregular placental development [103].

C1q in HIV-Associated PE and COVID-19

While it is well-established that C1q plays a role in vi-
ral infection, there is a lack of data on C1q immune re-
sponse in the triad of HIV and SARS-CoV-2 infection of 
pregnant women with PE. From this narrative investiga-
tion of C1q, it is understood that the complement system 
is vital in the protection against HIV infection, however, 
it may also augment infection [113]. Moreover, C1q ex-
pression is intensified in HIV infection. Gp41 adhering to 
C1q triggers the complement CP, C5a increases and pro-
motes the release of TNF-α and IL-6 that stimulate HIV-
1 infection [114]. Of note, HIV-infected individuals re-
ceiving ART have an increased rate of non-acquired im-
munodeficiency related-related comorbidities, which 
may be due to increased systemic immune activation 
[115, 116]. However, it is also plausible that HIV itself, 
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Fig. 5. Significance of C1q in the pathogenesis of preeclampsia. 
C1q deficiency is a contributing factor to complement dysregula-
tion and as a result a role in the clinical presentation of preeclamp-
sia. a Decreased C1q production results in impaired placentation 
by defective trophoblast invasion, vascular remodeling, and neo-
angiogenesis. b Complement system is triggered by placental in-
jury and at a placental level the accumulation of C1q and other 
complement components. C1q adheres to apoptotic cells, which 

results in elevated placental expression. It also binds to circulating 
STBM with resultant reduced serum expression of C1q in pre-
eclampsia. c The decreased expression of C1q observed in C1q may 
be the result of consumption of C1q, therefore triggering the CP. 
The C1q consumption may emanate from circulating immune 
complexes in preeclampsia. This may also rapidly progress to 
multi-organ dysfunction such as acute renal failure (modified 
from Agostinis et al. [107]).
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obesity, or aging are associated with inflammation that 
elevates the risk of noncommunicable diseases as op-
posed to ART.

Despite evidence suggesting that C1q enhances com-
plement activation in COVID-19/HIV-infected patients 
receiving ART [51, 76]. Immunosuppression and low 
CD4 T lymphocytes (CD4) prevent HIV-infected indi-
viduals from developing the cytokine storm observed in 
COVID-19 patients [117, 118]. Therefore, ARTs and re-
sultant immune reconstitution would directly promote a 
cytokine storm in the duality of HIV/COVID-19 infec-
tion.

Nonetheless, there is a dire scarcity of information on 
the immune response to SARS-CoV-2 in pregnant wom-
en, although general evidence from prior coronavirus 
pandemics indicates that pregnancy may increase the risk 
of infection and susceptibility to death compared with 
nonpregnant women [119]. Furthermore, COVID-19 
mimics PE as the SARS-CoV-2 infection exploits ACE2 
entry [120].

Additionally, heightened complement activation oc-
curs in HIV patients receiving ART. This response also 
occurs in COVID-19-infected patients and women diag-
nosed with PE promoting tissue damage as a result of EC 
injury, vascular leakage, and triggering of the clotting cas-
cade leading to thrombosis (shown in Fig. 6) [115, 121–
124].

Conclusion

The complement system is a vital protagonist in the 
rapid host innate immune response against bacterial, vi-
ral, and fungal infections. Despite its efficacy in protect-
ing the host against viral infections, it may also be patho-
genic against both coronavirus and HIV infections. This 
narrative review demonstrates for the first time the ex-
pression and function of C1q in HIV infection, CO-
VID-19 comorbid with PE. In PE, C1q may be reduced as 
it clears out the excessive apoptotic debris. Alternatively, 
it may be reduced due to heightened C1q attachment to 
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STBM in the sera of PE patients. Excessive C1q activation 
in this pathological triad negatively impacts placentation, 
vascular remodeling, and neoangiogenesis. This ulti-
mately leads to tissue damage such as EC injury and ves-
sel leakage that exacerbates adverse pregnancy outcomes 
such as miscarriage, small for gestational age infants, and 
preterm delivery. Moreover, intensified complement ac-
tivation in patients receiving ART promotes EC injury 
and ARDS. Further large-scale laboratory-based studies 
that explicitly examine the expression of individual com-
ponents of the complement cascade are urgently required 
to help unravel this conundrum.

Future Recommendation

Complement inhibition may be a potential target in 
the treatment of COVID-19.
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