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Tracking movements of the body in a natural living environment of a person is a challenging undertaking. Such tracking
information can be used as a part of detecting any onsets of anomalies in movement patterns or as a part of a remote
monitoring environment. The tracking information can be mapped and visualized using a virtual avatar model of the tracked
person. This paper presents an initial novel experimental study of using a commercially available deep-learning body tracking
system based on an RGB-D sensor for virtual human model reconstruction. We carried out our study in an indoor
environment under natural conditions. To study the performance of the tracker, we experimentally study the output of the
tracker which is in the form of a skeleton (stick-figure) data structure under several conditions in order to observe its
robustness and identify its drawbacks. In addition, we show and study how the generic model can be mapped for virtual
human model reconstruction. It was found that the deep-learning tracking approach using an RGB-D sensor is susceptible to
various environmental factors which result in the absence and presence of noise in estimating the resulting locations of
skeleton joints. This as a result introduces challenges for further virtual model reconstruction. We present an initial approach
for compensating for such noise resulting in a better temporal variation of the joint coordinates in the captured skeleton data.
We explored how the extracted joint position information of the skeleton data can be used as a part of the virtual human

model reconstruction.

1. Introduction

Recent advancements in ambient sensing that combines
visual and depth sensing modalities (RGB-D) have enabled
investigation into their various potential applications for
remote people tracking and activity reconstruction. Such
systems can be integrated within the telemedicine frame-
work for rehabilitation and mobility monitoring of the aging
population. Historically, tracking of body limbs has been
accomplished in a laboratory setup equipped with an IR sen-
sor network where the subject can wear a collection of reflec-
tive markers attached. Through triangulation of a sensed
location of markers, it is then possible to obtain the spatial
locations of the markers with respect to a common coordi-
nate frame. Such information is then correlated in order to
reconstruct a stick-figure model of the connected body limbs

(i.e., skeleton model) [1-5]. There are other types of wear-
able sensors which have recently been gaining popularity
for estimating the main kinematic parameters of the move-
ments of the whole body and its various limbs. These basic
sensing modalities can consist of inertia measuring units
[6], collection of RFIDs [7], or position sensing integrated
within the exoskeleton devices [8].

Recently, various commercially available deep-learning
approaches for 2D body tracking have been proposed for
RGB visual sensing alone. The results of these algorithms
are then combined with depth sensing in order to further
supply spatial information about the tracked subjects.
Figure 1 depicts three different ideal tracking results from
three different commercially available algorithms. For exam-
ple, Nuitrack [9] offers a deep-learning body tracker based
on a 19-joint model representation. The system also offers
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FiGure 1: Continued.
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FIGURE 1: Tracking results of three body tracking algorithms: (a) Cubemos [9], (b) Nuitrack [10], and (c) Azure Kinect [11].

Like the Nuitrack algorithm, the main skeleton tracking
scheme is accomplished through the utilization of RGB
images of the subject. Depth data is used to further enhance

some guidelines in creating the animated avatar model in the
Unity environment. Another available deep-learning skele-
ton tracking algorithm is offered through Cubemos [10].



the extracted coordinates of the joint locations of the stick-
figure model which consists of an 18-joint skeleton model.
Recently, Azure Kinect [11] has released another deep-
learning SDK which proposes to track a 32-skeleton joint
model under ideal monitoring conditions. In addition to
the above, other similar research and developments are
being proposed in only using multiple RGB signals [12]
and methods based on using only depth data [13-14].

In this paper, we experimentally study the performance
of one of the available and representative deep-learning body
tracking algorithms, namely, Cubemos [10]. This algorithm
is released through Intel RealSense RGB-D sensors [15].
We focus on the implementation of the sensor for tracking
a person in an indoor environment. We study a typical per-
formance of such a tracking scheme and challenges in asso-
ciating the extracted skeleton coordinates for the
reconstruction of an avatar model created in the Unity envi-
ronment. Such virtual model reconstruction using an esti-
mated sensed joint model can have many practical
applications in remote monitoring and telehealth of older
adults. These can be in tracking various gait of older adults
during rehabilitation phases or in their activity recognition
as related to dementia or development of serious games for
their indoor exercises.

2. Application of Cubemos Body Tracker

In this section, we present a novel investigation into data
obtained through the implementation of the Cubemos [10]
body tracker algorithm. In this implementation and under
ideal conditions, the information from the sensed data is
mapped to a model depicted in Figure 2. The overall objec-
tives are to record the sensed information obtained through
visual and depth sensing in a natural indoor setting under
natural illumination conditions, compute the stick-figure
(skeleton) tracking data in real time, and reconstruct a vir-
tual human model using the captured data.

Here, we first present some typical experimental results
obtained by tracking the movements of a subject. It was
found that in most cases, the tracking information can result
in inconsistent variations of data or missing information. As
a result, this can introduce challenges in any reconstruction
attempt of the virtual human model based on the tracking
data which can result in an unrealistic or distorted virtual
model. Although there can exist many approaches where
one can design and integrate various compensation algo-
rithms, in the follow-up sections, we present some very basic
approaches which can be used to obtain improved tracking
and reconstruction results.

In an ideal tracking setup where the environment is
properly lit and a person’s whole body is visible, stationary
(quasistatic), and facing the sensor, the skeleton tracking
algorithm can perform well in constructing an estimated
joint graph model for stationary locations of joints. For
example, Figure 3 shows an overlaid joint graph model of
a person in a room facing the sensor and looking to the side.
As it can be seen in the captured frame of Figure 3, the
tracker is easily able to locate most of the skeleton data
(Figure 3(a)) except the joint associated with the left side
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FIGURE 2: An 18-joint Cubemos [9] stick-figure model representing
the skeleton model of the tracked subject.

of the head (joints 15 and 16 in Figure 2). By referring to
Figure 2, these joints can further be clearly labelled using
color-coded visualization where, for example, the blue joint
is the nose (head), the green joint is the chest, and the red
joints are the wrists and ankles (Figure 3(b)). The remaining
yellow joints are the right ear and eye, shoulders, elbows,
hips, and knees for a total of 18 mappable joints.

Figure 4 shows a similar tracking frame to that of
Figure 3 where all of the detected and tracked joints are
shown with the corresponding additional segmented point
clouds associated with the vicinity of the tracked skeleton
joints and limbs, e.g., head, body torso, and the limbs. This
segmented point cloud information was created and utilized
as a part of the proposed novel graph-based estimation algo-
rithm of this paper. This positional information associated
with these segmented point clouds is used as a source of
information to further estimate the missing joint data or to
filter any noisy information during the movement tracking
phase.

Next, we analyze the captured data for an animated sce-
nario where the subject is performing a task. Under a natural
illumination condition of a living space of a person, Figure 5
shows a case study where we have asked the subject to reach
for a bottle of water located on a desk, drink from it, and
then put it back on the desk. Figure 5 presents various
instances of this task through various captured frames. The
figure shows both the generated skeleton model on the
actual RGB image and also a skeleton visualization of the
captured images using color-based joint assignment.

As it is shown in Figure 5, the tracking information can
be used to reconstruct the approximate representation of the
skeleton model shown in the second and fourth columns.
For example, the figure shows the right wrist (red joint)
extended out, pulled back, brought near the nose joint,
brought back down, and then extended back out. It was
found that for a given sampled frame, the extracted x,y
-coordinates of each skeleton joint offer smooth variations
within the defined tracking frame. However, depth values
of each joint (i.e, their z-coordinates or distance of each
extracted joint with respect to the sensor) tend to have a
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FIGURE 3: Initial processing of the captured sensor frame: (a) superimposed stick-figure model overlaid on top of the RGB image; (b) color-

coded visualization of the skeleton model.

high variance within their nominal values. Figure 6 presents
a visualization of such z-coordinate variations when viewed
in the y-z plane (where y-axis is in the downward direction,
and z-axis is pointing outward from the sensor) of the cap-
tured frames associated within each of the subfigures shown
in Figure 5. It can be observed that, for example, in frame
164 and for when the person is picking up the bottle, and
in frame 280, for when the person is placing the bottle back
on the table, the sensor has captured reasonable values for z
-coordinate measurements for these joints. However, in the
remaining frames, there are joints that are noticeably further
away from the other joints in the skeleton, and clearly, their
depth values are not accurate with respect to the anticipated
locations on the RGB image.

In the cases when the person turns about its own axis
and in the associated frames, the direct view of the joints
which are being tracked is blocked and the tracking algo-
rithm results in missing some or all the skeleton joints for
in-between frames. Figure 7 shows a close sequence of
frames where a person is turning to sit on a chair. In the first
set of frames, it can be observed that the chest and right wrist
joints are missing even though they are clearly visible to the
sensor in the live stream view. This is due to the properties
of the deep-learning skeleton tracking algorithm which

automatically discards any joints which are computed to
have (0,0,0) coordinates. In the second set, there are no
joints captured even though some are clearly visible in the
live view, and in the third set, it is finally able to capture
all the joints in view of the sensor.

3. Towards Enhanced Skeleton
Tracking Method

In recent years, the development of deep-learning-based
body tracking algorithms has offered a substantial leap for-
ward in deploying a practical ambient sensing body tracker.
However, these algorithms still required further enhance-
ments to fully capture their potential practical applications
in real living spaces. Depending on the algorithm, type of
RGB-D sensor, and the conditions of the monitoring scene,
additional compensation algorithms need to be designed
and developed to estimate any missing tracking information.
This is important when it is also required to reconstruct a
virtual model of the subject based on the estimation of the
joint locations of the skeleton model. Such reconstruction
of the virtual model is an important component for tele-
health and remote monitoring of the person which can pro-
tect the identity of the person and its surrounding
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Frame number: 39

FIGURE 4: Tracked stick-figure information and point cloud segmentation: (a) overlaid tracked skeleton model on live visual image and (b)
segmented point clouds associated with the corresponding definition of the skeleton joints and limbs. Information from such segmented
point clouds is further utilized to develop a novel refinement of the tracked information associated with the locations of the skeleton joints.

Frame 219 Frame 280

FIGURE 5: Various tracking frames showing an animated scenario of a subject reaching for a bottle, drinking from it, and placing it back on
the desk. Each of the associated frames shows the results of overlaid 2D stick-figure tracking model and color-coded visualization of the
captured 2D skeleton representation.
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FIGURE 6: Visualization of the z-position error of the joints associated with the stick-figure model in the y-z plane of the sensor coordinates

of Figure 5.

environment and also allows visualization of the person
while interacting with the environment. In this section and
based on the initial observations of the tracking data pre-
sented previously, we explore a basic approach to compen-
sate for any possible fast variations in the estimated joint
coordinates. Although the development of general methods
for such compensation is beyond the scope of the paper,
the basis of our approach can be extended for any possible
advanced estimation and filtering methods which also have
been proposed in various other single tracking applications
(e.g. [16, 17]).

Like any standard estimation algorithms, a reference
frame is needed at the initialization frame for determining
the initial joint coordinates of a pose. The information from
the initial reference frame and the corresponding segmented
point clouds associated with each joint and associated limb
is used to assist in estimating the missing joint coordinates
in the consecutive tracking frames. In our study, a default
standing pose is used where the subject holds the arms by
the side and legs together and is positioned in the direction
that the sensor is facing, ensuring that all joints are visible
by the sensor. Another important parameter which is used
is the number of frames. In this initial approach and for
defining the joint coordinates in the initial frame, standard
deviations of all the depth coordinates of the body joints
are calculated and the frame with the lowest standard devia-
tion is defined as the initial frame for the follow-up estima-
tion algorithm. Given the initial reference frame, the
algorithm then computes the limb distances and the dis-
tances between the joints and the parent joints. Using the
data structure of Figure 2, the parent joint is the joint that
is connected to the root joint, which is the nose joint, either
directly or via a chain of connections through other joints.
This means that every joint will have a limb distance except
for the nose/root joint.

Joints in a frame are processed in the order of the
skeleton joint IDs, so the nose will be the first joint to
be processed in the current frame. It checks if the joint
has an acceptable displaced distance from the nose joint
defined in the previous frame (within the defined lower
and upper bounds). If the distance is within this bound,
the current frame coordinates of the joint are kept, and
the algorithm would move on to the following skeleton
joint ID. If the displaced distance is not within the bound
(i.e., within the limb distance), then coordinates of the
current joint are to be modified through the estimation
algorithm.

In our proposed method, the algorithm first searches
the segmented point cloud coordinates of the frame asso-
ciated with the missing joint (an example of such segmen-
tation is shown in Figure 4(b)). If the nose/root joint is
missing, then it utilizes the associated segmented point
cloud point closest to the coordinates of the nose joint
in the previous frame used. If one of the remaining joints
is missing, it selects the closest point cloud point to the
joint coordinates of the previous frame that is also limb
distance away from its parent joints. If the distance
between this new point cloud point and the current frame
joint is within the bound, the new coordinate of the joint
is set to mean values between the newfound point cloud
point and the current frame joint. If this distance is not
within the current joint bounds, the new coordinate of
the joint is set at the newfound point cloud point coordi-
nates. The algorithm will also adjust the coordinates to the
mean value point between the newfound point cloud point
and the current frame joint if the distance to the joint in
the previous frame is decreased because of making this
adjustment.

3.1. Sample Results. For our test procedure, while facing the
sensor, the person is only moving up from the side and then
back down. The algorithm is easily able to correct any of the
skeleton joints with large variations in the depth values.
Figures 8 and 9 show sample plots for both unprocessed
and processed joint tracking data. Frames 60 to 65 in
Figure 10 show the visualized examples of the algorithm
handling a case where the right wrist joint is missing in
frames 61, 62, and 64 and the case where the right wrist
joints have an inaccurate depth value.

The visualizer in Figure 10 shows the unprocessed skele-
ton data in green and the processed skeleton data in multiple
colors. Focusing on the right wrist of the skeleton, the red
joint, we can see that it successfully followed the actual
movement of the right wrist moving downward, depicted
by the point cloud points of the right arm.

4. Enhanced Skeleton Data for Virtual Human
Model Reconstruction

Having the 3D coordinates of each extracted joint of the
skeleton model, the challenge is on how to map these coor-
dinates to the virtual human model to reconstruct the joint
movements for a given posture. The data structure associ-
ated with the construction of the virtual model in general
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FiGURrk 7: Examples of missing joint information when the view of the subject is self-occluded or different segments of the body are subjected
to faster relative velocities.

takes advantage of the relative coordinate frame definitions  position of the virtual model is defined by a right-handed
which are commonly used in the core OpenGL (or similar ~ Cartesian frame representation. Using the extracted and
API) implementation. refined skeleton model, the relative position of the origins

In Figure 11, the x-axis is shown in red, the y-axis is of these frames can be defined with respect to the position
shown in yellow, and the z-axis is shown in blue. Each joint  of their parent nodes.
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F1GURE 8: Sample plots of the filtering/estimation results obtained from the deep-learning body tracker for the (a) right shoulder; (b) right

elbow, and (c) right wrist coordinates.

Figure 12 shows examples of the skeleton tracker model
superimposed on the live image of the person which is also
overlaid on the virtual human model. The example frames
are associated with the person standing in front of the sensor
and raising the left arm to the side and over the head.

The kinematic construction of the virtual human is
based on a simplified representation of various links and
joints which can then be used by the graphical model. In
our model, the movements of the head (e.g., flexion, exten-
sion, lateral bending, and rotation), hip (flexion, extension,
and abduction), and shoulder joints (e.g., abduction and
horizontal and vertical flexion) are modeled as spherical
joints. Elbow (e.g., extension, flexion, and supination/prona-
tion) and knee (flexion and extensions) joints are modeled as
turning (revolute) joints. For the humanoid model, a spher-
ical joint is also used to represent the relative movements of
the upper body with respect to the hip.

The main challenges in mapping the tracked skeleton
coordinates obtained from deep-learning-based approaches
to the virtual human model reconstruction are the ambigui-
ties they present in resolving the kinematic joint angles of
the virtual model. For example, referring to Figure 2, the
right and left arms correspond to the coordinates of the skel-
eton joints of (2, 3, and 4) and (5, 6, and 7), respectively.
From this information, one needs to associate their relative
positions to the corresponding kinematic joint angles in
the virtual model reconstruction. Having been able to
resolve some of these mappings for various frames (ie.,
key frames), we can use various trajectory interpolation
algorithms (available through Unity) to animate for in-
between frames. To initialize the Unity model with respect
to the skeleton tracking algorithm, the initial captured data
is used for computing the relative position of each joint
coordinate frame. In the following, we present some
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F1GURE 9: Sample plots of the estimation/filtering results obtained from the deep-learning body tracker for the (a) left wrist, (b) right knee,

and (c) right ankle coordinates.

examples of the proposed kinematic model extraction for
resolving ambiguities for virtual human model reconstruc-
tion. In the following, we present some practical implemen-
tation details of how these angles are computed.

4.1. Shoulder Joints. For resolving a shoulder joint for a given
relative position of the connected elbow joint obtained from
the skeleton tracking data, we utilized the inverse Euler angle
solution approach [18]. These angles are interpreted with
respect to the local coordinate frame which is defined at
the parent location of the elbow joint (see Figures 13-15).
These extracted angles are then directly mapped to the script
of the kinematic model of the virtual human in Unity.

One of the Euler angle parameters is the rotation around
the local x-axis which rotates the arm by twisting it either
behind or towards the front of the body (circumduction).
Figure 13 is a visualization of the vectors used to calculate
this angle. The black arrows show the relative position vec-
tors calculated from the global coordinates of the skeleton
tracking data. We compute the cross product between two
vectors defined by joints like “Left to Right Shoulder” vector
and the “Chest to Pelvis” vector (the pelvis joint being the

created joint placed in the middle of the 2 hip joints)
(Figure 2) to find the “Forward Facing” vector. Then, we
project the “Forward Facing” vector onto the plane with a
normal vector equal to the negative “Shoulder to Elbow” in
order to compute the “Forward Facing x Projection” vector.
The “Shoulder to Elbow” vector is then projected on the
same plane in order to obtain the “xProjected” vector. In
Figure 13, all the vectors shaded in green are located on this
plane, which is also shaded in blue. One more reference vec-
tor is found by taking the cross product of the “Forward Fac-
ing x Projected” vector and the negative “Shoulder to Elbow”
vector to obtain the “Cross Elbow.” The rotation about the
local x-axis is then set to be equal to the angle between the
“xProjected” vector and the “Forward Facing x Projected”
vector. This will result in the computed angle to be always
positive. In order to adjust this value which can also include
the negative sense of rotation, we check if the “xProjected”
vector is in between the “Cross Elbow” vector and the “For-
ward Facing x Projected” vector or if the “xProjected” vector
is in between the “Cross Elbow” vector and the negative
“Forward Facing x Projected” vector; otherwise, the angle
is kept positive.
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Frame 64 Frame 65

Frame 63

FiGure 10: Visualization of the proposed point cloud
compensation algorithm based on the deep-learning body tracker
model for a sample case where the right wrist joint is missing in
frames 61, 62, and 64 and the case where the right wrist joints
have an inaccurate depth value. Unprocessed skeleton data are in
green, and the estimated skeleton data are shown in multiple colors.

Similarly, Figure 14 shows the geometry which is used
for computing the rotation about the y-axis (abduction and
adduction). The black arrows show the relative vectors cal-
culated from the global coordinates of the skeleton tracking
data. We take the cross product of the “Left to Right Shoul-
der” vector and the “Chest to Pelvis” (the pelvis joint being
the created joint placed in between the 2 hip joints) to find
the “Forward Facing” vector. The “Shoulder to Elbow” vec-
tor is then projected on the plane with a normal vector equal
to the “Forward Facing” vector to get the “yProjected” vec-
tor. In Figure 14, all green vectors are on this plane, which
is shaded in blue. The yAngle is then set to equal the angle
between the “yProjected” vector and the “Left to Right
Shoulder” vector; however, this angle will always be a posi-
tive value, but we want to adjust the angle such that the angle
is made negative if the “yProjected” vector is in between the
“Chest to Pelvis” vector and the “Left to Right Shoulder”
vector or if the “yProjected” vector is in between the “Chest
to Pelvis” vector and the negative “Left to Right Shoulder”
vector; otherwise, the angle is kept positive.

Figure 15 shows the geometrical model which is used for
computing the rotation about the z-axis of the shoulder joint
(flexion and extension). The angle rotates the joint in a way
that moves the arm in front of the body or moves behind the
body. The black arrows show the relative vectors calculated
from the global coordinates of the skeleton tracking data.
We take the cross product of the “Left to Right Shoulder”
vector and the “Chest to Pelvis” (the pelvis joint being the
created joint placed in the middle of the 2 hip joints) to find
the “Forward Facing” vector. The “Shoulder to Elbow” vec-

15

tor is then projected on the plane with a normal vector equal
to the “Chest to Pelvis” vector to get the “zProjected” vector.
In the figure, all the green vectors are on this plane, which is
shaded in blue. The zAngle is then set to equal the angle
between the “zProjected” vector and the “Left to Right
Shoulder” vector; however, this angle will always have a pos-
itive value which can be adjusted for its clockwise and coun-
terclockwise sense of rotation.

4.2. Hip Joint. A similar ambiguity resolution was followed
for the reconstruction of the kinematic angles of the hip
joints with respect to the local x-, y-, and z-coordinates. In
the following, we present some implementation details of
how these angles were computed. In Figure 16, black arrows
show the relative positional vectors computed from the
global coordinates of the skeleton tracking data. The vector
product between the two vectors “Right to Left Hip” and
“Global Up” results in finding the “Forward Facing” direc-
tional vector. We project the negative of the “Forward Fac-
ing” vector onto the plane with a normal vector equal to
the negative “Hip to Knee” vector to compute the “Back-
wards Facing x Projection” vector. The “Knee to Ankle” vec-
tor is then projected on the same plane to get the
“xProjected” vector. In the figure, all the green vectors are
on this plane, which is shaded in blue. An additional refer-
ence vector is found by computing the vector product of
the negative “Hip to Knee” vector and the “Backwards Fac-
ing x Projection” vector to obtain the “Cross Knee” vector.
The xAngle is then set to equal the angle between the “xPro-
jected” vector and the “Backwards Facing x Projected” vec-
tor; however, this angle will always be a positive value, but
we want to adjust the angle such that the angle is made neg-
ative if the “xProjected” vector is in between the “Cross
Knee” vector and the “Backwards Facing x Projection” vec-
tor or if the “xProjected” vector is in between the “Cross
Knee” vector and the negative “Backwards Facing x Projec-
tion” vector; otherwise, the angle is kept positive.

Similarly, Figures 17 and 18 show examples of geometri-
cal models for computing the rotation of the hip joint about
the y- and z-axes.

4.3. Elbow Joint. The virtual kinematic model of the elbow
joint is represented as a single revolute joint (i.e., rotation
about local z-axis). Its magnitude is found by determining
the angle between the vectors obtained by “Elbow to Shoul-
der” and “Elbow to Wrist” vectors (flexion and extension).
Figure 19 shows the geometrical model which is used for
the computation of the elbow angle as a function of the skel-
eton data.

4.4. Knee Joint. The computation for the knee joint based on
the skeleton tracking data for kinematic model reconstruc-
tion is like the elbow joint, and it is based on rotation about
a revolute joint and the local z-axis. Its rotation magnitude is
found by computing the angle between the vectors that cor-
respond to the “Knee to Hip” and “Knee to Ankle” vectors.
Figure 20 is a visualization of the calculation based on the
geometrical data of the skeleton model (flexion and
extension).
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@ (b)

() (d)

F1Gure 11: Examples of coordinate frame assignments on a virtual human model: (a) shoulder joint, (b) hip joint, (c) elbow joint, and (d)
vertebral body coordinate. The x-axis is shown in red, the y-axis is shown in green, and the z-axis is shown in blue.

4.5. Vertebral Column Joint. The rotation around the local x
-axis causes the upper body to rotate clockwise or counter-
clockwise. The angle is found by first finding the projection
of the “Right to Left Shoulder” vector onto the plane with
a normal vector equal to the “Global Up” vector. This results
in the “xProjected” and the “Right to Left Hip” vectors pro-
jected onto the same plane to compute the “Right to Left Hip
Projection” vector. In Figure 21, all the green vectors are on  Figure 12: Examples of skeleton tracker model superimposed on
this plane, which is shaded blue. Another reference vector is the live image of the person which is also overlaid on the virtual
defined by taking the cross product of the “Right to Left =~ human model.
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FIGURE 13: Geometrical description of the shoulder joint for computation of rotation angle about the x-axis (circumduction) using skeleton
tracking data.

FI1GURE 15: Geometrical description of the shoulder joint for computation of rotation angle about the z-axis (flexion and extension) using the

skeleton tracking data.

=Y )

FIGURE 16: Geometrical description of the shoulder joint for computation of rotation angle of the hip joint about the local x-axis (external
and internal rotation) using the skeleton tracking data.
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FIGURE 17: Geometrical description of the shoulder joint for computation of rotation angle of the hip joint about the local y-axis (abduction
and adduction) using the skeleton tracking data.

F1GURE 18: Geometrical description of the shoulder joint for computation of rotation angle of the hip joint about the local z-axis (flexion and
extension) using the skeleton tracking data.

FIGURE 19: Local skeleton data which are used in computing the local Euler angle rotation about the z-axis of the elbow coordinate frame
(flexion and extension).

F1GURE 20: Local skeleton data which are used in computing the Euler angle rotation about the z-axis of the knee coordinate frame (flexion
and extension).

i

FIGURE 21: Geometrical description based on the skeleton data for computing the vertebral column joint rotation about the local x-axis.

Hip” vector and the “Global Up” vector to get the “Forward The rotation around the local z-axis is the extension and
Facing” vector. The xAngle is then set to equal the angle  flexion which make the body bend forward and backwards.
between the “xProjected” vector and the “Right to Left Hip  The angle is computed by first finding the projection of the
Projection” vector. “Right to Left Hip” vector onto the plane with a normal
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FIGURE 22: Geometrical description based on the skeleton data for computing the vertebral column joint rotation about the local z-axis

(extension and flexion).

vector along the “Global Up” vector to get the “Right to Left
Hip Projection” vector. Then, the “Pelvis to Chest” vector is
projected onto the plane with a normal vector aligned with
the “Right to Left Hip Projection” vector to get the “zPro-
jected” vector. In Figure 22, all the green vectors are on the
plane with a normal vector aligned to the “Right to Left
Hip Projection” vector, shown as shaded blue. One more ref-
erence vector is found by taking the cross product of the
“Right to Left Hip” vector and the “Global Up” vector to
get the “Forward Facing” vector. The rotation angle is then
set to equal the angle between the “zProjected” vector and
the “Global Up” vector.

5. Conclusions

Tracking movements of the body using ambient sensing in a
natural living environment can offer many advantages for
various health monitoring and telemedicine systems. Such
setup can allow the subject to freely move around without
wearing any specialized sensors. Recent advancements and
availability of commercial body tracking systems using
RGB-D sensing have offered some promises in achieving
the above objectives. The implementation of these body
tracking systems is based on various deep-learning method-
ologies where they offer various body landmarks on the
image of the tracked subject in a form of joint and link place-
ments (i.e., skeleton model). Given this tracked information,
it can then be possible to reconstruct the virtual human
model using some off-the-shelf design tools. Playbacks of
the virtual human model in the VR of the living space can
protect the privacy of the subject while allowing visualiza-
tion of movements and activities of the subject.

In this paper, we experimentally study the performance
of one of these deep-learning approaches for body tracking.
We further explored the challenges of how this skeleton joint
information can be used to resolve and reconstruct the
graphical model of the subject using standard kinematic
model description. This paper presented some preliminarily
experimental studies and analyses of integrating one of these
commodity-based sensors (namely, Intel RealSense D435)
and the associated deep-learning body tracker (namely,
Cubemos) in a natural living environment. The paper fur-
ther presents results of ambiguity resolution of associating
the position of the skeleton joint data for the kinematic joint
angle reconstruction of the virtual human model.

Through our study, we were able to show that the cur-
rent implementation in extracting the movements of the
limbs of the body still requires an additional layer of signal
processing to alleviate the existence of noise (for example,

associated with the depth coordinate). We have shown some
basic approaches for obtaining a smoother transition of the
tracking data for in-between frames. However, one of the
challenges of future work is the design and development of
a robust intelligent layer which further incorporates the
existing skeleton tracking data that can be used in enhancing
or compensating for any missing information. Such missing
tracking data can be caused by various cases of occlusions
and self-occlusions of the body or the presence of another
person or pieces of furniture in the scene [19].

Reconstruction of the virtual human body from the
sparse tracking data is another main challenge. Kinematic
modeling of the human body can be accomplished through
the definition of various coordinate frames. The relative joint
movements of the limbs can be defined in various local
frames. However, associating the 3D coordinates of the
tracking skeleton data to that of the kinematic model can
present several challenges. This paper presents some initial
approaches for associating the data obtained from the track-
ing information to that of the virtual human model
reconstruction.

Data Availability

Associated data with the segmented and reconstructed
scenes is available from the authors.
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