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Abstract

Clinicians commonly recommend increased hydration to patients with voice disorders. How-

ever, effects on clinical voice outcome measures have been inconsistent. Hydration-induced

change within different layers of vocal fold tissue is currently unknown. Magnetic Resonance

Imaging (MRI) is a promising method of noninvasively measuring water content in vocal

folds. We sought to image and quantify changes in water content within vocal fold mucosa

and thyroarytenoid muscle after dehydration and rehydration. Excised porcine larynges

were imaged using proton density (PD) weighted MRI (1) at baseline and (2) after immersion

in one of five hypertonic, isotonic, or hypotonic solutions or in dry air. Larynges dehydrated

in hypertonic solutions or dry air were rehydrated and imaged a third time. Scans revealed

fluid-rich vocal fold mucosa that was distinct from muscle at baseline. Baseline normalized

signal intensity in mucosa and muscle varied by left vs. right vocal fold (p < 0.01) and by

anterior, middle, or posterior location (p < 0.0001). Intensity changes in the middle third of

vocal fold mucosa differed by solution after immersion (p < 0.01). Hypertonic solutions dehy-

drated the middle third of mucosa by over 30% (p < 0.001). No difference from baseline was

found in anterior or posterior mucosa or in muscle after immersion. No association was

found between intensity change in mucosa and muscle after immersion. After rehydration,

intensity did not differ by solution in any tissue, and was not different from baseline, but post-

rehydration intensity was correlated with post-immersion intensity in both mucosa and mus-

cle (p < 0.05), suggesting that degree of change in vocal fold water content induced by

hypertonic solutions ex vivo persists after rehydration. These results indicate that PD-MRI

can be used to visualize large mammalian vocal fold tissue layers and to quantify changes

in water content within vocal fold mucosa and thyroarytenoid muscle independently.
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Introduction

Voice disorders affect roughly 30% of the population during the lifespan [1]. Voice therapy for

the treatment of voice disorders frequently includes patient education regarding vocal hygiene

[2]. A common component of vocal hygiene, echoed by speech-language pathologists, physi-

cians, and singing teachers, is the recommendation to increase systemic hydration by increas-

ing dietary water and avoiding caffeine and alcohol. Two literature reviews and a meta-

analysis concluded that hydration and vocal function are likely associated, but that evidence is

currently limited [3–5]. One systematic review concluded that acoustic measures of voice pro-

duction improve with fluid ingestion and worsen with water deprivation [6]; however, direc-

tion and significance of change in each parameter was inconsistent among the studies cited.

Overall, changes in acoustic, aerodynamic, stroboscopic, perceptual, and self-reported voice

outcome measures have been inconsistent and transient following changes in systemic hydra-

tion [3,5]. Limitations of clinical studies include failure to control baseline medications and

hydration status and insufficient and inappropriately timed measures validating hydration lev-

els [3,6]. Long-term effects of commonly recommended quantities of daily water intake such

as “eight 8-ounce glasses” and “half the body weight in ounces” have not been tested for effects

on voice production or prevention or treatment of voice disorders.

Vocal folds, housed within the larynx, have high water content. Vocal fold mucosa, which

comprises epithelium, basement membrane, and lamina propria, is 83% water [7]. Vocal folds

oscillate hundreds of times per second during voice production, and their biomechanics are

dependent on the composition and organization of the lamina propria extracellular matrix

(ECM) [8,9]. Theoretically, increased water in the superficial layer of the lamina propria could

reduce viscosity and therefore reduce phonation threshold pressure (PTP) [10], a measure of

ease of voice production defined as the lowest subglottic pressure required to initiate and sus-

tain vocal fold oscillation [11]. However, a meta-analysis found that effects of systemic and/or

surface hydration interventions on PTP measures were not significant at the 95% confidence

level in people with voice disorders or normal voices [5]. The intermediate layer of the lamina

propria is rich in hyaluronic acid, a strongly hydrophilic glycosaminoglycan that regulates tis-

sue viscosity and absorbs shock [12–14], as well as elastic fibers, which impart recoil without

deformation to tissues through strong hydrophobicity of elastin [15]. Disordered ECM is char-

acteristic of many voice diagnoses [16]. While biomechanical properties of some of its compo-

nents are water-dependent on a molecular level, there is no evidence that drinking more water

restores vocal fold ECM to a healthy state or prevents its degradation. Deep to the vocal fold

mucosa is the thyroarytenoid muscle. Water content in the thyroarytenoid has not been

directly measured, but is likely 75–80%, consistent with other striated muscle [17,18]. Vocal

fold muscle and mucosa are distinct anatomical entities with different effects on voice function

[19]. Systemic or superficial hydration-induced change within different layers of vocal fold tis-

sue is unknown.

Magnetic Resonance Imaging (MRI) is a noninvasive modality that is highly sensitive to

water and has been used to image vocal fold layers ex vivo in human cadavers, dogs, ferrets,

and rats [20–24]. Proton-density weighted MRI (PD-MRI) is a protocol that provides high sig-

nal intensity in tissues with high water or fat content [25]. In tissues without abundant fat,

such as the ocular lens, it is well-accepted that PD-weighted signal is proportional to water

content [26]. In voice science, this is an emerging area of study. Recently, PD-MRI was used to

quantify the effect of systemic dehydration on water content of rat vocal folds in vivo [27].

Water deprivation that resulted in loss of mean 10.89% body weight decreased signal intensity

in vocal folds by a mean of 11.38% and in salivary glands by a mean of 10.74%. Since mean

PD-weighted signal change in vocal folds approximated weight loss due to water deprivation
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and since fat is not abundant in vocal folds, PD-MRI signal is likely proportional to water con-

tent in vocal folds, as in other tissues in the body. However, tissue layers within the vocal folds

were unable to be resolved in this rodent model [27].

Ex vivo studies of larger mammalian larynges hold promise for validating imaging parame-

ters that can reveal vocal fold tissue layers for eventual use in clinical research. Porcine vocal

folds, in particular, resemble human vocal folds in overall dimensions and tissue composition,

including depth of mucosa [28–30]. Water balance in healthy people is well-regulated by the

kidneys such that total body water varies by only 1% over a typical 3-day period [31]. There-

fore, the method of dehydration in an imaging study must produce small changes in vocal fold

water content, and imaging parameters must be sufficiently sensitive to detect these. There are

many excised larynx studies of dehydration and rehydration, but few quantify water loss, and

those that do report excessively high dehydration levels. For example, removing less than 30%

of water from vocal fold mucosa is not possible using a vacuum oven, a common procedure

reported in the literature [7,32,33]. However, immersion in 30% sodium chloride (NaCl) pro-

duced a smaller mass decrease in vocal fold mucosa than other methods, calculated at roughly

23%, which is still unacceptably high [34]. In contrast, healthy participants in imaging studies

of the effect of acute dehydration on the brain do not lose more than 2–3% body weight over

1–2 days [35–38]. Case reports of death in adolescent wrestlers include 7–9% water weight loss

over 3–4 days [39], and 10% is the threshold for severe dehydration in children [40]. In ex vivo
studies, concentration of hypertonic solutions can be controlled to produce smaller changes,

and 5% NaCl was sufficient to induce morphological change in rabbit subglottic lamina pro-

pria [41]. Since hypertonic solutions decrease transepithelial resistance [42] and water flux

continues in vocal fold epithelium ex vivo [43], hypertonic solutions are likely to penetrate epi-

thelium and dehydrate vocal fold lamina propria.

The objective of this study was to validate PD-MRI as a tool to image and quantify changes

in water content within separate vocal fold tissue layers after dehydration and rehydration in

an excised porcine larynx model. We hypothesized that PD-MRI would allow visualization

and measurement of water content in vocal fold mucosa and thyroarytenoid muscle of a large

mammalian larynx. We further hypothesized that immersing larynges in solutions of varying

concentrations of NaCl would induce physiologic levels of water loss in vocal fold tissues, thus

facilitating translation of imaging parameters to in vivo large animal and eventual clinical

studies.

Materials and methods

This study was exempt from the Institutional Animal Care and Use Committee (IACUC) of

the University of Wisconsin-Madison and Brigham Young University, because tissues were

obtained from the slaughterhouse after pigs were slaughtered for human consumption.

Tissue preparation

A total of 30 porcine larynges were transported immediately postmortem on ice from the

slaughterhouse (Circle V Meat Co., Spanish Fork, UT). Larynges were dissected to remove

esophagus, excess fat, and strap muscles (omohyoid, thyrohyoid, cricothyroid and sterno-

hyoid) from the thyroid cartilage and the trachea was cut below the second cartilaginous ring.

Larynges were inspected to ensure no damage affecting the intrinsic muscles, vocal folds, cri-

cothyroid membrane, or thyroid cartilage in order to prevent basolateral penetration of solu-

tion to the vocal folds. To prevent vocal folds from touching and confounding results with

capillary action of surface fluid, the posterior cricoid cartilage was hemisected in the superior

to inferior direction and held open with a 15-mL plastic centrifuge tube (Fig 1A).
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Immersion and rehydration

For the initial immersion condition, 5 larynges each were immersed in 500 mL of one of five

solutions (Fig 1B): hypotonic deionized water (H2O), isotonic phosphate-buffered saline (PBS,

pH 7.4, Fisher Scientific, Fair Lawn, NJ, USA), and hypertonic 5%, 10%, and 30% NaCl (Fisher

Scientific, Fair Lawn, NJ, USA). Five additional larynges were left dry in a sealed 500-mL con-

tainer for 30 minutes as controls. We expected that water in vocal fold mucosa would increase

after immersion in H2O, remain stable after immersion in PBS, decrease in direct proportion

to NaCl content of hypertonic solutions, and slightly decrease in dry air. Larynges dehydrated

Fig 1. Study procedures. (A): Posterior view of porcine larynx hemisected through the posterior cricoid cartilage and

held open with a 15-mL plastic centrifuge tube. Asterisk: arytenoid complex. Arrowheads: membranous vocal folds.

(B): Timeline of study procedures. 30 porcine larynges, 5 per group, underwent PD-MRI scans at baseline and after

immersion in water (H2O), phosphate-buffered saline (PBS), 5%, 10%, or 30% NaCl, or dry air. Larynges dehydrated

in NaCl solutions or dry air were rehydrated in H2O and scanned a third time. (C): Exemplar selections for intensity

measurement in a vocal fold slice. Asterisks: arytenoid complex. Yellow circles (D = 0.8–0.9 mm): intensity in anterior,

middle, and posterior thirds of membranous vocal fold mucosa. Green circles (D = 0.8–0.9 mm): intensity in anterior,

middle, and posterior thirds of thyroarytenoid muscle. Red circle (D = 1.5 cm): intensity of phantom.

https://doi.org/10.1371/journal.pone.0208763.g001
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in hypertonic solutions or dry air were then immersed in 500 mL H2O for 30 minutes to repre-

sent rehydration conditions (Fig 1B).

MRI

A 3 Tesla (3T) TIM-Trio MRI scanner (Siemens Healthineers, Erlangen, Germany) was used for

image acquisition. All larynges were imaged at baseline and after immersion. Dehydrated larynges

were imaged a third time after rehydration (Fig 1B). Larynges were positioned within a 32-chan-

nel head coil with the thyroid prominence superior and the posterior cricoid cartilage inferior.

They were wrapped in blue disposable underpads to protect the machinery from the tissues and

solutions, then were set on a series of wedges to lift them to isocenter in the coil and stabilized

with wedges on top. A vial of H2O was included within the scanner to serve as a phantom for sig-

nal normalization. Images were aligned at localization, and 2D axial images of the larynx parallel

to the true vocal fold with 4-mm slice thickness were acquired for PD-weighted sequences (echo

time (TE) 43 ms, repetition time (TR) 1740 ms) with 6 averages and 2 concatenations giving a

scan duration of 14–16 minutes, including localization and scan setup. The sequence field of view

was 88mm, base resolution was 384 and slice thickness was 4mm giving a voxel dimension of

0.2mm x 0.2mm x 4mm. Additional parameters include 25% phase oversample, generalized auto-

calibrating partial parallel acquisition (GRAPPA) turbo factor of 12 and flip angle of 150.

Image analysis

Digital Imaging and Communications in Medicine (DICOM) files were opened in the Radi-

ANT DICOM Viewer (Medixant, Poznan, Poland). One slice per file was selected just inferior

to the vocal process of the arytenoid cartilage to capture the medial surface of the vocal fold.

Codes were created with a random number generator (Microsoft Excel, Redmond, WA, USA)

and a key was saved in a separate file. Slices were renamed with codes and saved in a separate

folder. A total of 80 slices were acquired, 20% of which were saved twice using different codes

for determining intrarater reliability, resulting in a total of 96 slices used for measurement.

Coded slices were reopened in RadiANT with annotations off, thus masking group and

timepoint during measurement. Measures were taken by a clinician with five years’ experience

studying laryngeal anatomy and biology following initial consultation with the senior authors

who each have over a decade of experience in medical imaging and porcine vocal fold surgery

respectively. Since vocal folds are subject to different forces during vibration along the ante-

rior-posterior axis [44,45], particularly in the “striking zone” of the middle third where phono-

traumatic lesions are likely to occur [46,47], vocal folds were measured at multiple locations

within mucosa and muscle. Raw signal intensity (arbitrary units) was taken at 13 points per

slice: one each in the middle of the anterior, middle, and posterior thirds of left and right vocal

fold mucosa and thyroarytenoid muscle, and one in the phantom (Fig 1C). Because porcine

vocal fold mucosa is approximately 0.9 mm thick [28,48], mucosa was measured using circular

selections with D = 0.8–0.9 mm beginning at the vocal fold edge and moving laterally toward

the thyroid cartilage. Muscle was measured using circular selections of the same dimensions

placed laterally to the corresponding points in the mucosa. A circle with D = 1.5 cm was used

to measure intensity of the phantom. For each slice, normalized intensity for each point within

tissue was calculated as a percentage of intensity of the phantom. After normalized intensity

was calculated, the key was used to decode data.

Statistical analysis

Anatomical and group differences in baseline tissue intensity were analyzed using mixed mod-

els for mucosa and thyroarytenoid separately with normalized tissue intensity (% of phantom)
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as the response variable. Fixed effects were side (left or right), location within the vocal fold

(anterior, middle, or posterior), and group (H2O, PBS, Dry, 5% NaCl, 10% NaCl, or 30%

NaCl). Intercepts for each larynx were included as repeated measures. Tukey’s honestly signifi-

cant difference (HSD) test was used for post hoc analysis. Post-immersion intensity and post-

rehydration intensity were calculated as percentage of baseline, with baseline intensity set at

100%. For analysis of change from baseline, values were averaged between left and right vocal

folds for each location within mucosa and muscle. Intensity post-immersion and post-rehy-

dration was analyzed using one-way analysis of variance (ANOVA). Welch’s ANOVA was

used for data that failed Levene’s test for equality of variances at α = 0.05. Games-Howell test

was used for post hoc pairwise comparisons. Welch’s T-test with Bonferroni correction was

used to test the hypothesis that intensity in various subgroups of tissue was not equal to 100%.

The Pearson correlation coefficient was used to analyze correlations between mucosa and

muscle intensity in immersion and rehydration conditions and correlations between changes

in dehydration and rehydration within mucosa and muscle. For correlation analyses of

changes in intensity, data were paired by side and location (e.g. dehydrated left anterior

mucosa was paired with rehydrated left anterior mucosa and with dehydrated left anterior

thyroarytenoid). Intrarater reliability was analyzed using intraclass correlation coefficient

(ICC) estimates and 95% confidence intervals (CI) calculated based on a single-rater, absolute-

agreement, two-way mixed effects model [49]. Statistical analyses were performed with SAS

Studio 3.5 (SAS Institute, Inc., Cary, NC, USA) and RStudio 1.0.143 (RStudio, Inc., Boston,

MA USA). The α level for significance was 0.05.

Results

At baseline, vocal fold appearance in PD-MRI scans was characterized by a bright line at the

vocal fold edge, indicative of high fluid content in mucosa (Fig 2A). Muscle and cartilage

appeared in shades of gray as expected with PD-MRI. After dehydration in hypertonic solu-

tions, fluid in mucosa was no longer visible (Fig 2B) but was restored after rehydration (Fig

2C). In all scans, the phantom was bright white.

Intrarater reliability

ICC between first and second raw measurements of tissue intensity (arbitrary units) was

0.9566 with 95% CI = 0.9428–0.9672. ICC between first and second calculated values of nor-

malized tissue intensity (% of phantom) was 0.9533 with 95% CI = 0.9384–0.9646.

Baseline signal intensity in vocal fold tissue

Baseline intensity, representative of water content [25], was analyzed within mucosa and muscle

for differences by side, anterior-posterior location, and group. Within the mucosa, type 3 tests

of fixed effects in the mixed model revealed a significant interaction effect of location by group

(Table 1). Post hoc testing revealed a significant effect of location within larynges in Dry, 5%

NaCl, and 30% NaCl groups, but not those in H2O, PBS, or 10% NaCl groups (Table A in S1

File). There was a significant effect of group within the middle third of the mucosa (Table B in

S1 File); however, no pairwise comparisons were significantly different (Table C in S1 File). In

both mucosa and muscle, there were significant main effects of side and location on normalized

intensity (Table 1). Left vocal fold was brighter than right in both tissue types (Fig 3A and 3D).

In both mucosa and muscle, intensity increased from anterior to middle third and from middle

to posterior third (Fig 3B and 3E). There was no main effect of group (i.e., planned immersion

solution) on normalized intensity of mucosa or muscle (Table 1; Fig 3C and 3F). Taken

together, these data indicate that there were no between-group differences in vocal fold intensity
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at baseline once side and location were accounted for. Therefore, group differences in intensity

after immersion and rehydration resulted from experimental conditions.

Immersion

Post-immersion intensity in the middle third of vocal fold mucosa failed Levene’s test for

equality of variances (F(5, 24) = 4.40, p = 0.0055). Welch’s ANOVA revealed significant differ-

ences by group after immersion (Fig 4; F(5, 10.8726) = 8.55, p = 0.0017, ω2 = 0.55). Midfold

mucosa was brighter in larynges immersed in H2O than in those immersed in 5% and 10%

NaCl (Fig 4B; adjusted p = 0.011 and 0.012, respectively). Immersion in 5% and 10% NaCl

decreased intensity in midfold mucosa (Table 2). There was no evidence that other immersion

solutions produced differences from baseline intensity.

Post-immersion intensity did not vary by solution in anterior or posterior mucosa (Fig 4A

and 4C; Table A in S2 File) and did not vary from baseline intensity (Table B in S2 File). There

was no evidence for differences in intensity change by solution in any location in thyroaryte-

noid muscle (Fig 4D and 4F; Table A in S2 File), or for changes from baseline intensity

(Table B in S2 File). Taken together, our data indicate that brief immersion in hypertonic solu-

tions can induce water loss in vocal fold mucosa at the midfold, but not in thyroarytenoid

muscle.

Fig 2. PD-MRI image of porcine vocal fold. Representative images of slices through vocal fold of the same larynx. (A): Baseline. (B): After dehydration in 30% NaCl.

(C): After rehydration in H2O. Dashed boxes highlight mucosa at the vocal fold edge.

https://doi.org/10.1371/journal.pone.0208763.g002
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Rehydration

After rehydration, there were no group differences in intensity of any location in vocal fold

mucosa or posterior thyroarytenoid by one-way ANOVA (Table A and Fig in S3 File). Ante-

rior and middle thyroarytenoid failed Levene’s test for equality of variances (F(3,16) = 5.19

and 3.37, p = 0.0108 and 0.0445). Welch’s ANOVA revealed no differences in post-rehydration

intensity by group in anterior or middle thyroarytenoid (Table A in S3 File). There was no evi-

dence that intensity after rehydration was different from baseline in any group (Table B in S3

File). Therefore, rehydration restored intensity close to baseline levels.

Correlations

Correlation coefficient between mucosa and muscle intensity after immersion was not signifi-

cant (r = 0.0353, p = 0.7412, Fig 5A), indicating that various solutions produced different

effects in separate tissue layers. In dehydrated larynges, the correlation coefficient between

rehydrated mucosa and muscle was 0.3300 (p = 0.0100, Fig 5B). Correlation coefficient

between dehydrated and rehydrated intensity was 0.3014 (p = 0.0193) in mucosa and 0.3908

(p = 0.0020) in muscle (Fig 5C and 5D), implying that despite intensity approaching baseline

after rehydration, some effects of dehydration persisted.

Discussion

This is the first study to our knowledge to expose vocal fold tissue layers on MRI scans without

contrast and with clinically feasible acquisition times. Herrera et al. [20] were able to distin-

guish vocal fold epithelium, lamina propria, muscle, and cartilage, as well as scar and

implanted biomaterials, using 11.7T scans of paraformaldehyde-fixed dog and ferret larynges.

However, stated limitations included scanning duration that was too long for clinical

Table 1. Anatomical and group differences in baseline vocal fold tissue intensity.

Effect Result Significance (p)

Mucosa

Side F(1,24) = 17.95 0.0003���

Location F(2,96) = 20.25 < .0001���

Group F(5,24) = 1.97 0.1190

Side × Location F(2,96) = 0.14 0.8665

Side × Group F(5,24) = 0.37 0.8666

Location × Group F(10,96) = 0.33 0.0193�

Side × Location × Group F(10,96) = 2.28 0.9719

Muscle

Side F(1,24) = 9.51 0.0051��

Location F(2,96) = 78.81 < .0001���

Group F(5,24) = 1.06 0.4051

Side × Location F(2,96) = 0.10 0.9082

Side × Group F(5,24) = 1.53 0.2178

Location × Group F(10,96) = 1.38 0.1989

Side × Location × Group F(10,96) = 0.30 0.9786

Type 3 tests of fixed effects on vocal fold tissue intensity in mixed models with intercepts for each larynx included as repeated measures.

�p < .05

��p < .01

���p < .001.

https://doi.org/10.1371/journal.pone.0208763.t001
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application. Kishimoto et al. [21] resolved mucosa, muscle, cartilage, and scar tissue in excised

rat larynges in a 10-minute scan at 9.4T, but tissues were immersed for 10 days in gadolinium

contrast. In vivo scans in the same study did not reveal vocal fold tissue layers at 9.4T, even

with IV contrast. Chen et al. [22], Klepacek et al. [23], and Wu and Zhang [24] each distin-

guished mucosa from muscle in human cadaveric larynges without contrast; however, field

strength ranged from 4.7-7T and scan times ranged from 2–18 hours. Oleson et al. [27] used a

7T system to demonstrate pre-post changes in rat vocal fold and salivary gland signal intensity

after water deprivation, but again could not distinguish vocal fold tissue layers. The scans in

the present study were acquired with a 3T system that is widely clinically available and acquisi-

tion times of only 14–16 minutes. We revealed a bright, fluid-rich line at the vocal fold edge

Fig 3. Baseline tissue intensity varied by side and location within vocal folds. Normalized intensity (% of phantom)

at baseline in mucosa (A-C) and muscle (D-F). (A) and (D): Left and right vocal fold. (B) and (E): Location in vocal

fold. (C) and (F): Experimental group. Data plotted as mean ± SEM. n = 5 larynges per group. �p<0.05, ��p<0.01,
���p<0.001: significance of pairwise comparisons of group means using Tukey’s HSD test after significant main effects

were found in mixed model ANOVAs.

https://doi.org/10.1371/journal.pone.0208763.g003
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Fig 4. Intensity in vocal fold mucosa and thyroarytenoid after immersion in hypo-, iso-, and hypertonic solutions.

Intensity (% of baseline) as a function of immersion solution in mucosa (A-C) and in thyroarytenoid muscle (D-F).

Data plotted as mean ± SEM. n = 5 larynges per group. Pairwise comparison using Games-Howell test: �p<0.05.

https://doi.org/10.1371/journal.pone.0208763.g004

Table 2. Intensity in middle third of vocal fold mucosa after immersion in hypo-, iso-, and hypertonic solutions.

Group Intensity (% of baseline) Significance (p)

Mean 95% CI

H2O 105.26 89.22–121.29 0.4142

PBS 85.44 74.67–96.21 0.0199

Dry 109.75 75.05–144.46 0.4789

5% NaCl 68.20 61.51–74.89 0.0002�

10% NaCl 69.81 61.12–78.49 0.0006�

30% NaCl 77.90 57.63–98.16 0.0389

Results of Welch’s T-test of the hypothesis that intensity after immersion was not equal to 100% of baseline. n = 5

larynges per group.

�p < Bonferroni-adjusted α = 0.05/6 = 0.0083.

https://doi.org/10.1371/journal.pone.0208763.t002
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(Fig 2) consistent with known thickness of porcine vocal fold mucosa that was clearly distinct

from muscle.

High variability in intensity within vocal fold tissue at baseline (Fig 3) is consistent with

other ex vivo studies and hydration literature in general, but could be due to procedural limita-

tions. Specifically, larynges were positioned supine within the scanner with the phantom on

the right, so the increase in intensity from anterior to posterior and from right to left may be

explained by gravitational flow of water within tissue. Body position affects clinical measures

of total body water as well [50]. There was an interaction effect of location by group, with ante-

rior-posterior differences in some groups but not others. There was evidence for group differ-

ence in the middle third of the mucosa at baseline, but no pairwise differences were significant

and there were no group differences otherwise. By far, the strongest effects on baseline inten-

sity were side, which we accounted for by calculating mean values, and location, which we

accounted for by analyzing anterior, middle, and posterior vocal fold locations separately.

We immersed larynges in hypo-, iso- and hypertonic solutions with varying solute concen-

trations in order to produce changes in vocal fold lamina propria water content through osmo-

sis. Different solutions produced different levels of water content only in the middle third of

vocal fold mucosa (Fig 4B). We found that 5% and 10% NaCl dehydrated this tissue 32% and

31% respectively (Table 2), which are non-physiologic levels of water loss. Changes induced by

Fig 5. Correlations between intensity changes between tissues and across conditions. (A-B): Correlation between

intensity (% of baseline) in mucosa and thyroarytenoid muscle after immersion (A) and after rehydration (B). (C-D):

Correlation between intensity (% of baseline) after dehydration and after rehydration in mucosa (C) and muscle (D).

Pearson correlation coefficient: �p< .05, ��p<0.01.

https://doi.org/10.1371/journal.pone.0208763.g005
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other solutions were not significant. Heterogeneity and variability of hydration-induced

change in vocal fold tissues and functional voice measures is a common challenge in ex vivo, in
vivo, and clinical studies [3–6]. For example, in the study by Oleson et al. [27], some rat vocal

folds and salivary glands actually increased in intensity post dehydration. Similarly, in a clini-

cal study, 3 out of 16 patients had increased vocal fold thickness on endoscopy after hemodial-

ysis despite weight loss [51]. Our findings thus indicate that a higher number of larynges

should be included in future work. There were no significant post-immersion intensity

changes in anterior or posterior mucosa (Fig 4A and 4C). Due to the relatively steep angle of

the porcine vocal fold within the thyroid cartilage [28,52–54] and 4-mm thickness of our slices,

it is possible that selected points within anterior and posterior vocal folds included other tissue

types (e.g. cartilage or fat) that were not the focus of this study. By contrast, the middle third of

the mucosa was relatively isolated and measurements were more likely to include only mucosa

or muscle. Taken together, these results demonstrate that response of vocal fold mucosa to

solutions of varying tonicity is highly variable, and that 30-minute immersion in low-solute

concentrations produces excessively high dehydration levels in the middle third of the

mucosa.

There were no significant post-immersion intensity changes in muscle (Fig 4D and 4F),

possibly due to limited depth of solution penetration for the duration of immersion in this

study. Using hypertonic solutions for longer durations to dehydrate thyroarytenoid muscle is

ill-advised, as this is the basis of brining meat, which results in increased moisture. Increased

NaCl concentration below 5 molarity (M), roughly 29%, causes myofibril swelling, which is

maximized at 1 M (5.8%) [55]. Therefore hypertonic immersion has little relevance to the

effects of dehydration on muscle in vivo. Intensity change in mucosa after immersion in hypo-

, iso-, and hypertonic solutions was not associated with change in muscle at the same anterior-

posterior location (Fig 5A), which provides further evidence that this method can be used to

analyze hydration-induced changes in these tissues separately.

After rehydration, vocal folds dehydrated in different hypertonic solutions or dry air did

not differ in intensity in mucosa or muscle (S3 File). However, we found a positive association

between intensity after dehydration and after rehydration in both mucosa and muscle (Fig 5C

and 5D), indicating that the degree of change in water content due to immersion in hypertonic

solutions persisted even after rehydration. Karamzadeh et al. [41] found that after dehydrating

rabbit subglottis in 5% NaCl for 25 minutes, immersion for the same duration in H2O

increased subglottic lamina propria from its dehydrated thickness. They did not quantify

changes, so it is unclear whether tissue returned to baseline. Hanson et al. [33] dehydrated

excised canine vocal fold mucosa by 30% and 70% of mass using a vacuum oven. Using 0.9%

saline, they were able to restore mass of only half of tissues dehydrated by 30% and 1 of 10

dehydrated by 70%. Chan and Tayama [56] immersed canine vocal fold mucosa in a 25%

sucrose solution for 25 min and rehydrated in H2O for 30 minutes. Rheology revealed that

dehydration increased stiffness and viscosity, which was only partially recovered after rehydra-

tion. Consistent with these studies, our results suggest that ex vivo dehydration methods

induce irreversible changes in vocal fold mucosa, which limits generalization to clinical

settings.

This study has several limitations. Laryngeal position within the scanner may have influ-

enced fluid content within vocal fold locations and limited our ability to draw conclusions

based on anatomical variation. It is possible that moisture could have evaporated from the sur-

faces of the vocal folds during scanning, but applying a barrier to prevent this would have con-

centrated surface liquid in place by capillary action and confounded our measures. A single

rater completed all measurements; however, intrarater reliability was excellent (ICC > 0.95).

Mucosa was difficult to distinguish in dehydrated larynges, potentially resulting in imprecise
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measurements. Our dehydration method could not produce clinically applicable change in

muscle [57] and produced excessively high dehydration of mucosa.

Water deprivation has different effects on cellular and extracellular fluid compartments of

the body [58]. For example, ventricular volume in the brain paradoxically increases after acute

dehydration, possibly due to diffusion of water out of cells and into extracellular space

[35,36,38]. Thyroarytenoid muscle is largely cellular, and vocal fold mucosa comprises thick,

largely acellular lamina propria and relatively thin cellular epithelium [12]. Due to the different

effects of these tissues on phonation, it is important to understand hydration-induced changes

in vocal fold mucosa and muscle as separate entities. We have demonstrated that PD-MRI can

distinguish separate vocal fold tissue layers in a large mammalian larynx. Future studies should

(1) focus on the middle third of mucosa, which has clinical relevance in biomechanical load

and lesion occurrence [44–47], (2) include a higher number of larynges per condition, and (3)

use shorter duration of immersion to produce less extreme changes in water content. In vivo
studies are needed to quantify the relationship between change in vocal fold tissue and overall

systemic hydration level using multiple measurements such as weight change, urine specific

gravity, and serum osmolality [58].

Conclusions

PD-MRI can be used to visualize porcine vocal fold tissue layers and to quantify changes in

water content within vocal fold mucosa and thyroarytenoid muscle. Hypertonic solutions

dehydrate the middle third of vocal fold mucosa but produce excessively high water loss in 30

minutes. Degree of change in vocal fold water content induced by hypertonic solutions ex vivo
persists after rehydration.
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