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Abstract

Background

To identify metabolomic and genomic markers associated with the presence of clustering of

cardiometabolic risk factors (CMRFs) from a general population.

Methods and Findings

One thousand five hundred and two subjects, Caucasian, > 18 years, representative of the

general population, were included. Blood pressure measurement, anthropometric parame-

ters and metabolic markers were measured. Subjects were grouped according the number

of CMRFs (Group 1: <2; Group 2: 2; Group 3: 3 or more CMRFs). Using SNPlex, 1251

SNPs potentially associated to clustering of three or more CMRFs were analyzed. Serum

metabolomic profile was assessed by 1H NMR spectra using a Brucker Advance DRX 600

spectrometer. From the total population, 1217 (mean age 54±19, 50.6%men) with high gen-

otyping call rate were analysed. A differential metabolomic profile, which included products

from mitochondrial metabolism, extra mitochondrial metabolism, branched amino acids and

fatty acid signals were observed among the three groups. The comparison of metabolomic

patterns between subjects of Groups 1 to 3 for each of the genotypes associated to those

subjects with three or more CMRFs revealed two SNPs, the rs174577_AA of FADS2 gene

and the rs3803_TT of GATA2 transcription factor gene, with minimal or no statistically sig-

nificant differences. Subjects with and without three or more CMRFs who shared the same

genotype and metabolomic profile differed in the pattern of CMRFS cluster. Subjects of

Group 3 and the AA genotype of the rs174577 had a lower prevalence of hypertension com-

pared to the CC and CT genotype. In contrast, subjects ofGroup 3 and the TT genotype of

the rs3803 polymorphism had a lower prevalence of T2DM, although they were predomi-

nantly males and had higher values of plasma creatinine.
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Conclusions

The results of the present study add information to the metabolomics profile and to the poten-

tial impact of genetic factors on the variants of clustering of cardiometabolic risk factors.

Introduction
Clustering of cardiometabolic risk factors (CMRFs) such as abdominal obesity, high fasting glucose,
elevated blood pressure, elevation of triglycerides and reduced HDL levels, is a frequent condition,
and when three or more of these conditions are present, this has been named the Metabolic Syn-
drome (MS). It is a highly prevalent condition, with an estimated quarter of all adults having three
or more CMRFs, and its presence increases the risk to develop type 2 diabetes as well as the risk for
cardiovascular morbidity and mortality [1–3]. Although theMS concept has been challenged, as
clustering does not provide more risk than the sum of the individual risk factors, assessment of the
clustering of CMRFs is still a useful tool in clinical practice to recognize patients at risk [4].

Factors related to the development of the clustering of CMRFs factors are not well under-
stood, but it is thought to be the interplay of genetic and environmental factors. The relative
impact of each of them on the development of the MS components was studied by Poulsen
et al [5] in a total of 303 elderly twin pairs. The concordance rates for glucose intolerance, over-
all obesity and low HDL-cholesterol were significantly higher among monozygotic than dizy-
gotic twins indicating a genetic influence on the development of these phenotypes. In contrast,
the heritability estimates for waist-to-hip ratio, fasting insulin, triglycerides and blood pressure
were low, indicating a major environmental influence. As a complex trait, several genes can
participate in the development, forming a pleiotropic intertwined genetic network [6].
Genome-wide association studies (GWAS) have identified several genes associated with the
clustering of CMRFs, including genes involved in lipid metabolism (CETP, APOA1/C3/A4/A5
cluster, LPL, LIPC and ABCB11), glucose sensing (GCKR), insulin signaling (IRS1), beta‐cell
function (TCF7L2), and appetite control (FTO). However, these variants explain only a small
fraction of the observed heritability [7], and the relevance of each genetic variant, or others that
may act in concordance, is not well understood (Song et al, 2006).

Recently, studies have applied the metabolomic approach to identify a discriminatory
metabolite profile in a large number of diseases [8–11]. Metabolomics, which attempts to cap-
ture global changes and overall physiological status in biochemical networks and pathways,
can be useful in order to elucidate sites of perturbations and has shown great promise as a
means to identify biomarkers [12] even at early stages of disease. Likewise, it may be useful for
understanding metabolic imbalances and for detecting previously unsuspected links to patho-
logical conditions [11,13]. Abnormalities in metabolomic profile have been described in sub-
jects with clustering of CMRFs [14–16]; however, no studies have considered the information
provided for the interplay between genomics and metabolomics.

In order to better understand the role of genetics in this complex trait disease and to look
for potential early identification of people with higher genetic risk to develop it, the objective of
the present study was to identify links between genetic markers and metabolomic profile in
subjects with a clustering of CMRFs.

Materials and Methods

Study Population
The study was performed in subjects from a population-based study in which the selection cri-
teria and methodology have been previously described [17]. Briefly, the sample included
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individuals older than 18 years in the absence of serious concomitant disease or psychiatric dis-
order, which could interfere with the study. All the subjects included were white, living in an
area with a low immigration rate. To be representative of the general population, investigators
calculated the sample size by using local public resources and finally 1502 subjects were
included. From all the patients studied, 1213 with a high genotyping call rate were analysed.
The study was approved by the local Ethics Committee of Hospital Clinico Universitario de
Valencia, INCLVIA Research Institute, Valencia, and informed consent forms were signed by
all of the subjects prior to participation in this study. Participants gave their informed consent
to use their blood samples for genetic studies.

The population included in the present study is the same that has been used in a previous
study of our group in which the risk of microalbuminuria was presented (Marrachelli VG,
Monleon D, Rentero P,Mansego ML,Morales JM, Galan I, Segura R,Martinez F,Martin-Escu-
dero JC, Briongos L,Marin P, Lliso G, Chaves FJ, Redon J. Genomic and metabolomic profile
associated to microalbuminuria. PLoS One. 2014 Jun 11;9(2):e98227. doi: 10.1371/journal.
pone.0098227). The data presented are different to those in the referenced manuscript since the
issue analysed is unrelated, the former assessed the risk of microalbuminuria and the present
the risk to develop metabolic syndrome unrelated to the microalbuminuria issue.

Assessment of Metabolic Syndrome Components and Other
Cardiovascular Risk Factors
The study included the assessment of anthropometric measurements, blood pressure, glycae-
mia, lipid profile and smoking status as well as personal and familial information about cardio-
vascular risk factors and disease. Cardiometabolic risk factors were identified, according to the
ATPIII criteria used for MS [18], and MS was defined by the presence of three or more of the
following components: 1) high waist circumference (men� 102cm; women�88 cm); 2) high
triglycerides (�150mg/dL); 3) low HDL cholesterol (men� 40mg/dL; women�50mg/dL); 4)
high blood pressure (systolic blood pressure�130 mmHg and/or diastolic blood pressure� 85
mmHg or being on antihypertensive medications) and 5) high fasting glucose (� 110 mg/dL or
being on drug treatment for elevated glucose). The subjects were divided into three groups:
Group 1 comprised of 617 subjects with less than two risk criteria of the ATPII guideline;
Group 2 comprised of 295 subjects with 2 risk factors and Group 3 comprised of 283 subjects
with 3 or more of the criteria, which is considered to be MS. Weight was assessed with precise
scales while the individuals were without shoes and wearing light clothing. Height was deter-
mined in a similar way. Body mass index (BMI) was calculated using the following formula
"weight (kg)/height2 (m)". Glucose and lipid profile was measured in blood samples obtained
with a mean of 3 hours fasting (range 0–17). Basic serum biochemistry and lipid profile (total
cholesterol, HDL cholesterol and triglycerides) were measured in Hitachi 917 autoanalyzer
(Boehringer, Germany). Blood pressure was measured using a mercury sphygmomanometer
following the recommendations of the British Hypertension Society. Systolic BP (SBP) and dia-
stolic BP (DBP) were the average of 3 readings measured at 5-minute intervals.

Single-Nucleotide-Polymorphism Selection and Genotyping
One thousand two hundred and fifty one single nucleotide polymorphisms (SNP) potentially
associated to metabolic risk components were selected based on a bibliography search and
those frequency described in the dbSNP database for a Caucasian population. These include
genes involved in lipid metabolism, oxidative stress, mitochondrial respiratory chain, renin-
angiotensin system and other biological processes. Genotyping was carried out by using SNPlex
(Applied Biosystems, Foster City, California, USA).
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NMR Spectroscopy
Eighty-two microliters of D2O were added to 418 μl of blood serum and placed in a 5-mm
NMR tube. 1H NMR spectra were recorded using a Bruker Avance DRX 600 spectrometer
(Bruker GmbH, Rheinstetten, Germany). Samples were measured at 37°C. Nominal tempera-
ture of the sample was kept at 37°C. A single-pulse pre-saturation experiment was acquired in
all samples. The spectra were referenced using the doublet of Alanine at 1.478 ppm. The chemi-
cal shift region, including resonances between 0.50 and 4.70 parts per million of spectrometer
frequency (ppm), was investigated. The spectra were binned into 0.01 ppm buckets and nor-
malized to total aliphatic spectral area to eliminate differences in metabolite total concentra-
tion. Signals belonging to selected metabolites were quantified using semi-automated in-house
MATLAB 6.5 (The MathWorks Inc., Natick, Massachusetts) integration and peak-fitting rou-
tines. Reproducibility of NMR spectroscopy was tested by superposition of normalized spectra
of blood serum. Chenomx NMR Suite 4.5 software and two-dimensional NMR methods
including homonuclear correlation spectroscopy (TOCSY) and heteronuclear single quantum
correlation spectroscopy (HSQC) were used to identify and subsequently confirm the assess-
ment of metabolites.

Chemometric statistical analyses were performed using in-house MATLAB scripts and the
PLS Toolbox (Eigenvector Research, Inc.). Principal Components Analysis (PCA) was per-
formed after data was pretreated by mean centering and Pareto scaling. A PLS-DA model dis-
criminating between group 1 and group 3 was constructed. The multivariated chemometric
models were cross-validated with 10-fold Venetian blind cross-validation; in each run, 10% of
the data was left out of the training and used to test the model. The whole cross validation pro-
cess was run 10 times. The results of cross validation were evaluated by the Q2 (R2CV) and
RMSCV parameters. Q2 is the average correlation coefficient between the dependent variable
and the PLS-DA predictions and provides a measure of prediction accuracy during the cross-
validation process (higher values mean better prediction). Root Mean Square Error of Cross-
Validation (RMSCV) was calculated as an adequate measurement of over fitting. Permutation
test was also performed for testing for over-fit regression models (Random t-test) as well as for
providing a probability that the given model is significantly different from one built under the
same conditions but on random data. Score plots were used to visualize the separation of the
groups, while the variable importance in the projection (VIP) value of each variable in the
model was calculated to indicate its contribution to the classification. A higher VIP value repre-
sented a stronger contribution to discrimination among groups. VIP values>1.0 were used to
determine which spectral variables significantly contributed to the separation of the samples
on the score plots. Fold change was calculated by dividing the mean metabolite concentration
in Group 3minus Group 1 divided by Group 3.

Statistical Analysis
All values are expressed as mean ± SD. The χ2 goodness-of-fit test was used to compare the dis-
tribution of the study population. Genotypes and allele frequencies were calculated for every
SNP. The Hardy-Weinberg equilibrium was sought by a χ2-distribution with one degree of
freedom. Those SNPs that were not in Hardy-Weinberg equilibrium and did not have more
than 90% of genotyping were excluded from the subsequent analysis. The Hardy-Weinberg
equilibrium was calculated using PLINK (http://pngu.mgh.harvard.edu/~purcell/plink/). The
association of MS with each polymorphism was performed using PLINK by logistic regression
models. The mean differences of the two groups’ p-values were tested against a conservative
Bonferroni p-threshold for α = 0.05 experiment-wise, which corresponded to p = 1.85e-04 for
27 tests. MS associations were tested by linear regression models.
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The metabolomic profiles of patients of Group 1 and Group 3 were compared. The associa-
tion between metabolic profile and genetic variants was sought by using the loading plots of
the metabolic discriminating PLS-DA model for each selected SNP genotype. For more accu-
rate characterization of each metabolite association with the SNPs, we calculated the difference
of the relative metabolic levels’ average between Group 1 and Group 3 patterns for each poly-
morphism normalized to the same differences at global levels, irrespective of genotype. Differ-
ences in the 28 metabolite values for each SNP in patients from Group 1 and Group 3 of each
genotype were calculated. Finally, the metabolic profile and the most relevant metabolites of
each genotype and allele were compared between patients from Group 1 and Group 3. The data
were co-variated with respect to age, sex and smoking status. Bonferroni correction was applied
in all the analysis. Statistical analyses were performed using the IBM SPSS Statistics 19
software.

Results

General Characteristics of the Study Population
The general characteristics of the 1213 subjects grouped by the number of CMRFs are in
Table 1. Thirty-two percent of subjects had two CMRFs, and 23% had three or more. Subjects
in Group 3 were older compared to the other two groups. As expected, there was a progressive
increment in the prevalence of diabetes, hypertension and abdominal obesity from Group 1 to
Group 3. Likewise, BMI, fasting glucose, systolic and diastolic BP and triglycerides were also
higher and HDL lower in Group 3 compared to the other groups.

Table 1. General characteristics of the study population grouped by CMRFs.

Group 1 Group 2 Group 3

Number of samples 596 290 281

Sex, n (%) Male 276 (46.3%) 168 (28.2%) a 152 (25.5%) a

Female 320 (56.0%) 122(21.4%) a 129 (22.6%) a

Age (years) 47 ± 18 57 ± 19a,b 67 ± 15a

BMI (kg/m2) 24 ± 3 27 ± 4a,b 30 ± 4a

SBP (mmHg) 122 ± 17 134 ± 20a,b 146 ± 21a

DBP (mmHg) 75 ± 9 81 ± 10a,b 86 ± 10a

Glycemia (mg/dl) 86 ± 11 93 ± 17a,b 109 ± 30a

Creatinine (mg/dl) 0.8 ± 0.2 0.9 ± 0,4 0,9 ± 0,6a

Total Cholesterol (mg/dl) 194 ± 34 205 ± 39a 211 ± 39a

LDL (mg/dl) 111 ± 33 118 ± 35a 116 ± 36

HDL (mg/dl) 58 ± 12 47 ± 12a,b 43 ± 11a

LogTG (mg/dl) 2.1 ± 0.2 2.3 ± 0.2a,b 2.4 ± 0.2a

Diabetes mellitus 2 11 (1.8%) 20 (6.9%) a,b 67 (23.8%) a

Hypertension 134 (22.5%) 135 (46.6%) a,b 224 (79.7%) a

Abdominal obesity 178 (29.9%) 157 (54.1%) a,b 190 (67.6%) a

Obesity 42 (7.0%) 85 (29.3%) a,b 156(55.5%) a

HTN treatment 62 (10.4%) 59 (20.3%) a,b 109 (38.8%) a

DM treatment 6 (1.0%) 10 (3.4%) a,b 36 (12.8%) a

HCT-TG treatment 25 (4.2%) 18 (6.2%) b 36 (12.8%) a

a statistically different from Group 1;
b Statistically different from Group 2.

doi:10.1371/journal.pone.0160656.t001
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CMRFs and SNPs Polymorphism
From the total 1251 SNPs tested, six polymorphisms on 4 genes were significantly associated
with the presence of at least three CMRFs: FADS2 (rs174577 and rs174589), GSR (rs 2978663),
GATA 2 (rs3803), TFAP2B (rs2272903). The main characteristics of the SNPs and the degree
of association are shown in Table 2. No associations remained significant after Bonferroni cor-
rection (Bonferroni-corrected p = 0.000039).

CMRFs and Metabolomic Profile
Principal component analysis (PCA) was initially performed with the normalized peak areas
obtained from all the samples to evaluate the quality of sample analysis and to view the holistic
distribution, clustering, and outlier of samples. The PCA scores plot shows that most of the
samples in the study are tightly clustered in a small area, indicating that the current protocol is
reliable and thereby the variance derived from metabolomic analysis can be ignored at the fol-
lowing data analysis. Then, partial least squares discriminant analysis (PLS-DA) was applied.
The PLS-DA model showed significantly improved goodness of fit, adequate model predict-
ability, and fairly good capability to explain the metabolic variation between subjects from
Group 1 and Group 3 (Fig 1A). Samples from the different groups were well separated along
the first PLS components, which indicates that NMR- based metabolic profile could reveal
characteristic alterations in plasma from subjects from Group 3 compared to the other two
groups. Permutation testing and cross validation, two established methods of internal valida-
tion, were used to confirm model validity. Permutation tests involve the random assignment of
class labels to cases and controls. Permutation testing using 50 random permutations demon-
strates that the goodness of fit (RMSCV = 0.84) and predictive ability (Q2 = 0.30 and an accu-
racy of 88%) of the original model discriminating groups (Fig 1C) was higher than those of the
permuted models. Using cross-validated Y-predicted values, model sensitivity and specificity
were summarized using ROC curves for the model distinguishing Group 1 (AUROC = 0.8763)
from Group 3 subjects (Fig 1B). Results were indicative of quite a strong predictive power.
After spectral integration, differences were observed among patients in Group 1 and Group 3
(Fig 2). As shown in Table 3, the differential endogenous compounds detected included mito-
chondrial metabolism (citrate), extra mitochondrial metabolism (glucose, pyruvate, lactate,
creatinine, creatine, creatine phosphate) and several amino acids and their derivative signals
(such as proline, glutamine, N-acetylglutamine, alanine, tyrosine, tryptophan). Among these,
branched amino acids (valine, isoleucine, leucine) exhibited a relatively high statistical signifi-
cance. We also detected fatty acid signals, (FA-CH2-CH2CO, FA(-CH2-)n, FA-CH2-CH3), as
well as signals from cholesterol, phosphoethanolamine, choline, isobutyrate, 3-hydroxybuty-
rate, trimethylamine, methanol, acetone, acetate, 2-phenylpropionate and albumin.

Metabolomic Profile, Selected Genotypes and CMRFs
The metabolomic profiles of the genotypes of the 4 SNPs associated to three or more CMRFs
were obtained. In each of these genotypes, we compared the metabolomic profile between

Table 2. SNPs associated to CMRFs in the general population.

Chr SNP Model Gene Location Gene description p-value

11 rs174589 FADS2 intron variant Fatty acid desaturase 2 0.00027

11 rs174577 FADS2 intron variant Fatty acid desaturase 2 0.00078

8 rs2978663 GSR intron variant glutathione-disulfide reductase 0.00037

3 rs3803 GATA2 utr variant 3 prime GATA binding protein 2—TF 0.00079

6 rs2272903 TFAP2B utr variant 5 prime transcription factor AP-2 beta 0.00086

doi:10.1371/journal.pone.0160656.t002
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subjects from Group 1 and those from Group 3 with three or more CMRFs and those with less.
The values for each metabolite were tested for statistical significance between Group 1 and
Group 3 both as a whole and at the individual SNP level (Fig 3). The comparison of the statisti-
cal significance patterns revealed four SNPs (rs2272903_TT of the TFAP2B gene; rs3803_TT
of the GATA 2 gene; rs174589_CC and rs 174577_AA of the FADS2 gene) with minimal or no
statistically significant differences between three or more CMRFs and a metabolic profile with
very few differences between those with three or more, and less status (Fig 4). Genotypes
rs2272903_TT and rs174589_CC were considered to have too low a sample count and they
were excluded for further analysis. Then, we looked for the characteristics of the subjects from
Group 1 and Group 3 who shared the same genotype and the same metabolomic profile. Sub-
jects from Group 3 and of the AA genotype of the rs 174577 had a lower prevalence of hyper-
tension (15 subjects, 57.7%) compared to the CC (95 subjects, 83.3%) and CT (109 subjects,
80.7%) genotype (Table A in S1 File). Subjects from Group 3 and of the TT genotype of the

Fig 1. PLS-DAmodel scores plot (A) for discrimination between subjects from Group 1 (red circles) and Group 3
(close circles) based on the NMR spectra of blood serum of the entire cohort. The permutation tests were carried
out with 100 random permutations in PLS-DAmodels. Cross-validated receiver operating characteristic (ROC)
curve (B) showing the prediction capacity of the model, with an area under the curve of 0.876. Permutation analysis
of PLS-DAmodel (C) derived from subjects group 1 versus subjects from group 3. Statistical validation of the
PLS-DAmodel by permutation analysis using 50 different model permutations. The Probability of Model
Insignificance vs. Permuted Samples is shown below.

doi:10.1371/journal.pone.0160656.g001
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rs3803 polymorphism, 19 subjects, had a lower prevalence of DM2 (5.3% vs 24.2%; p = 0.009)
compared to the CC genotype (151 subjects, 25.8%) although they were predominantly male
and had higher values of plasma creatinine (1.37 ± 0.2 mmol/L vs 0.91 ± 0.24 mmol/L)
(Table B in S1 File).

Discussion
Metabolomic profiling of clustering of CMRFs has recently opened up new expectations for
better detection, characterization and stratification of the patient. In the present study we ana-
lyzed a general Spanish population and identified an MS metabolomic profile associated to
changes in amino acid metabolism, glucose homeostasis, lipid β-oxidation, tricarboxylic acid
(TCA) cycle, urea cycle and microbiota-host co-metabolism. The study identified two genes in
which subjects with a given genotype did not show differences in the metabolic profile between
subjects from Group 1 and Group 3, and that differed in the pattern of CMRFs cluster. While
the subjects with at least three CMRFs and the TT genotype of the rs3803 had a very low preva-
lence of diabetes and obesity, those with the AA genotype of the rs174577 had less prevalence
of hypertension and higher prevalence of low HDL.

Fig 2. Keymetabolite differences subjects from group 1 and from group 3 in the whole population.

doi:10.1371/journal.pone.0160656.g002
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The study was performed in subjects, representative of the general population from an area
with a low rate of external admission. Almost a quarter of the adults in this study had a diagno-
sis of MS, which is in agreement with other population-based studies in Spain [3]. Our cohort
exhibited a BMI that seems slightly lower than that reported for the cohorts in other studies
with Spanish populations [19]. The average BMI of the subjects in Group 3 was 30±4, indicat-
ing a general population with overweight or moderate obesity, but not very severely obese as
described elsewhere [20]. Subjects in Group 3 were weakly associated to genotypes of SNPs
located in the chromosomes 3, 6, 8 and 11. These SNPs were located mainly in genes related to
atherosclerosis and obesity such as FADS2 (rs174577 and rs174589), GATA 2 (rs3803) and
TFAP2B (rs2272903). However, the degree of association in some of them was not high enough
to be considered a positive association per se, and therefore data from metabolomics was used
to improve the capacity of analysis. Data from the metabolomic study provides further insight
into the potential relationship between genotypes and the clustering of CMRFs.

Metabolomics provides a powerful approach to identifying biomarkers caused by both
genetic and non-genetic factors, by analyzing global changes in an individual’s metabolic pro-
file even at early stages of disease. In this study, an RMN-based serum metabolomics approach,
coupled with multivariate statistical methods, provides a powerful approach which allows for
discrimination between patients with three or more, and less CMRFs, and the identification of
potential biomarkers. The good match between the results in training and cross-validation

Table 3. Metabolite relative levels in serum from subjects group 1 versus subjects from group 3.

Metabolites ppm Group 1 Group3 P-value

Cholesterol 0.60–0.75 3.53 ± 0.49 3.24 ± 0.46 <0.00001

Lipid (-CH3) 0.80–0.90 8.06 ± 0.39 8.11 ± 0.38 1.23E-01

Leucine 0.95–0.97 1.02 ± 0.05 0.95 ± 0.06 <0.00001

Isoleucine 0.99–1.02 0.99 ± 0.04 0.95 ± 0.05 <0.00001

Valine 1.02–1.05 1.10 ± 0.05 1.03 ± 0.07 <0.00001

Isobutyrate 1.05–1.07 0.71 ± 0.04 0.66 ± 0.05 <0.00001

Lipids (-CH2-)n 1.18–1.31 14.05 ± 1.98 16.47 ± 2.76 <0.00001

Lactate 1.32–1.35 2.02 ± 0.41 2.34 ± 0.47 <0.00001

2-phenylpropionate 1.40–1.44 1.35 ± 0.07 1.26 ± 0.10 <0.00001

Alanine 1.46–1.50 1.66 ± 0.08 1.54 ± 0.12 <0.00001

Lipids (CH2-CH2-CO) 1.55–1.60 1.85 ± 0.16 2.03 ± 0.22 <0.00001

Acetate 1.91–1.92 0.56 ± 0.03 0.52 ± 0.05 <0.00001

N-acetylglutamine 1.92–1.95 0.92 ± 0.05 0.86 ± 0.06 <0.00001

Lipids (-CH2CH3) 1.95–2.03 3.77 ± 0.17 3.91 ± 0.22 <0.00001

Acetone 2.21–2.23 0.64 ± 0.09 0.76 ± 0.14 <0.00001

Pyruvate 2.35–2.36 0.18 ± 0.02 0.17 ± 0.02 <0.00001

Citrate 2.50–2.54 0.46 ± 0.04 0.41 ± 0.05 <0.00001

Lipids (= CH-CH2-CH =) 2.71–2.80 1.25 ± 0.09 1.26 ± 0.10 9.48E-01

Trimethylamine 2.9–2.95 0.66 ± 0.06 0.60 ± 0.07 <0.00001

Proline 3.30–3.35 0.34 ± 0.05 0.32 ± 0.05 <0.00001

Methanol 3.35–3.36 0.08 ± 0.01 0.07 ± 0.02 5.70E-03

Creatine 3.91–3.92 0.17 ± 0.01 0.16 ± 0.02 <0.00001

Tyrosine 3.92–3.94 0.27 ± 0.02 0.25 ± 0.03 <0.00001

Creatine-P 3.94–3.95 0.17 ± 0.01 0.15 ± 0.02 <0.00001

O-Phosphoethanolamine 3.95–3.99 0.61 ± 0.05 0.57 ± 0.06 <0.00001

Creatinine 4.03–4.05 0.31 ± 0.02 0.30 ± 0.02 2.84E-05

Tryptophan + choline 4.05–4.07 0.33 ± 0.02 0.35 ± 0.03 <0.00001

doi:10.1371/journal.pone.0160656.t003
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datasets provides further support to the model. PLS-DA revealed an evident and statistically
significant separation between Group 1 and Group 3 (leaving group 2 between them), thus sug-
gesting that metabolomics may unravel metabolic differences before they become clinically or
biochemically evident.

The differential metabolomic profile shows that branched amino acids (BCAA) are reduced
in MS. BCAA can act as signalling molecules in many processes. The combined effect of lipids
and BCAA seems pivotal in a complex network of interactions involving muscle, adipose, liver
and brain metabolisms [21]. Although some studies report increased BCAA levels in diabetes
and insulin resistance, the role of these metabolites in cardiometabolic diseases is still contro-
versial. In rodents, diet-induced insulin-resistance and obesity are associated with a decrease in
BCAA serum levels [22]. Previous clinical studies also showed that hypertensive patients suffer
from depleted proteins stores [23,24]. Diet, exercise and basal metabolism strongly affect
BCAA levels [25] and preclude an explanation of the findings.

Fig 3. Patterns of statistical significance, calculated as p-values, for the comparison of metabolic profiles from subjects group 1 versus
subjects from group 3 in the whole population (first column) and in individuals with different SNPs (rest of the columns). (white) p> 0.01;
(white-gray) p< 0.01; (gray) p< 0.001; (black) p< 0.00001.

doi:10.1371/journal.pone.0160656.g003
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The metabolic changes observed in patients with at least three CMRFs are numerous and of
complex interpretation. Changes in lipids, glucose, pyruvate, lactate, alanine and glutamine
suggest shifts in energy metabolism. Choline, which is also altered, has a predominant role in
cell membrane integrity, methyl metabolism and lipid-cholesterol transport [26]. Cardiovascu-
lar risk factor profile has been associated with high choline in plasma suggesting a disruption
of choline oxidation to betaine as part of the mitochondrial dysfunction [27].

Acetate is a final product of lipid metabolism and can be converted into acetyl-Coenzyme A
(acetyl-CoA) by acetyl-CoA synthetase. It can also be related to acetone by the spontaneous
decarboxylation of acetoacetate, which may explain up to 11% of gluconeogenesis in fasting
obese subjects [28]. However, in addition to the complex network of interactions among the
different metabolites due to the host metabolism, it is necessary to take into account the co-
metabolism with the gut microbiota. Acetate, propionate and n-butyrate, altered in Group 3
and related to the metabolites mentioned above, are the most important short chain fatty acids
(SCFAs) produced during fermentation by gut bacteria [26]. These findings, combined with

Fig 4. Bar chart showingmetabolic differences between Group 3 and Groups 1 normalized with respect to
changes in group 3 (see Table 1). The bars represent the difference in the average metabolic levels between
Group 3 and group 1 for each SNP divided by the same difference calculated for the entire cohort. SNPs with bars
closer to 1 (dotted line) show CMRFs associated metabolic changes similar to those of the global population
(irrespective of genotype). On the other hand, SNPs with bars closer to 0 exhibit minimal or no metabolic changes
associated to CMRFs. Bars with negative values indicate a CMRF associated metabolic change opposite to that
detected in global population. Metabolites from top to bottom are: tryptophan + choline; creatinine;
phosphoethanolamine; creatine phosphate; tyrosine; creatine; methanol; proline; trimethylamine; lipids (=
CH-CH2-CH2 =); citrate; 3-hydroxybutyrate; pyruvate; acetone; lipids (-CH2-CH3); N-acetylglutamine; acetate;
lipids (-CH2-CH2_CO); alanine; 2-phenylpropionate; lactate; lipids (-CH2-)n; isobutyrate; valine; isoleucine;
leucine; lipids (-CH3) and cholesterol.

doi:10.1371/journal.pone.0160656.g004
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the observation of decreased TMA and methanol in Group 3 subjects, suggest a potential role
for microbiota co-metabolism in the development of CMRFs in our population.

The combined analysis of -omics data represents a highly challenging task in the analysis of
clinical samples. Although systems biology may provide useful models for prediction of system
response to particular perturbations, the application to the analysis of multicellular organisms
is not exempt from difficulties. The analysis of multi -omic data in patient cohorts by molecular
stratification represents a practical approach for better characterization of the disease. We per-
formed a genotype stratified metabolomic analysis of CMRF status. This allowed us to detect
genotypes with atypical CMRF metabolomic profiles. For example, we detected four polymor-
phisms in which the metabolomic impact of the clustering of CMFRs is different to that of the
global cohort. These polymorphisms (FADS2 rs174577 and rs174589, GATA2 rs3803 and
TFAP2B rs2272903) affect genes mostly associated to lipid metabolism.

Δ-6-fatty acid desaturase (FADS2) is the key enzyme in the biosynthesis of polyunsaturated
fatty acids (PUFAs). We report that individuals with the rs174577_AA in the same gene have
larger Group 3 changes in proline and no changes in methanol and some fatty acids. The strong
association between FADS genotype and fatty acid levels in our data is in line with previous studies
and suggests a role in lipid homeostasis for this gene [29–31]. FADS gene cluster polymorphisms
are associated to HOMA-IR in healthy men [32]. The lipid changes observed in our metabolomic
data may be related to those observed in FADS2-deficient mice, which in turn are obesity-resistant
[31]. However, the effects of FADS2 on plasma lipid profiles are very variable since differences in
the dietary intake of polyunsaturated fatty acids may be responsible for this variability and increase
the complexity of the analysis [33]. The different profiles for these two polymorphisms have a
reflection in their phenotype. Hypertension is less prevalent inGroup 3 patients with the
rs174577_AA polymorphism with a higher component of metabolic abnormalities.

GATA2 transcription factor (rs3803) plays a key role in adipogenesis. Our stratified meta-
bolomic analysis reveals that having at least three CMRFs affects the fatty acids profile differ-
ently in individuals with this genotype. Constitutive GATA-2 expression suppresses adipocyte
differentiation and traps cells at the preadipocyte stage [34]. This effect is mediated through
the direct suppression of peroxisome proliferator-activated receptor gamma PPARγ 2 [34] and
the interaction of GATA factors with C/EBP [35]. In our population, individuals from Group 3
and this genotype had a lower prevalence of DM2 and obesity.

Conclusions
The results of the present study add information to the metabolomics profile and to the poten-
tial impact of genetic factors on the variants of clustering of cardiometabolic risk factors.
The global metabolomic profile of subjects with three or more CMRFs was also present in indi-
viduals without them but with specific genotypes. These individuals have different clinical
characteristics, which suggest that those genotypes may represent distinct phenotypes of the
clustering of MS and may help in the better stratification of these patients. Moreover, the meta-
bolomic profile is similar in those with or without the minimal clustering of risk factors to ful-
fill the criteria of MS, indicating the potential risk to develop in the future and/or the necessity
for additional interventions to prevent development and reduce cardiovascular morbidity and
mortality. The potential risk of the different clustering can result in more selective interven-
tions tailored according to the main risk of each genotype.

Supporting Information
S1 File. Table A: General characteristics of subjects with Group 1 and Group 3 for the geno-
type of the rs174577. Table B: General characteristics of subjects with Group 1 and Group 3 for
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