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Abstract: Salivary diagnostics is an emerging field for the encroachment of point of care technology
(PoCT). The necessity of the development of point-of-care (PoC) technology, the potential of saliva,
identification and validation of biomarkers through salivary diagnostic toolboxes, and a broad
overview of emerging technologies is discussed in this review. Furthermore, novel advanced
techniques incorporated in devices for the early detection and diagnosis of several oral and systemic
diseases in a non-invasive, easily-monitored, less time consuming, and in a personalised way
is explicated. The latest technology detection systems and clinical utilities of saliva as a liquid
biopsy, electric field-induced release and measurement (EFIRM), biosensors, smartphone technology,
microfluidics, paper-based technology, and how their futuristic perspectives can improve salivary
diagnostics and reduce hospital stays by replacing it with chairside screening is also highlighted.
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1. Introduction

Laboratory testing remains the dominant mainstay for analytical processes of a large number of
samples involving the disciplines of biochemistry, haematology, microbiology, anatomical pathology,
and much more [1]. Due to the limitations and pressure on healthcare budgets faced by a very
large number of countries, primary care is best suited for the world to reduce expenses instead of
secondary and tertiary hospitals. Poverty, chronic disease, infections lead to significant problems in
developing the world, and adequate diagnostic testing turns out to be difficult to meet the needs.
Hence, consequently, initiatives in making solid models using point-of-care technology (PoCT) came
into existence [2].

1.1. Paradigm Shift from Central Laboratory (CL) to Point-of-Care

A self-monitoring blood glucose meter, coagulation (INR), and pregnancy testing kits using
urine samples are well-known examples of PoCT and has become over-the-counter products to be
sold in the market. Saliva is predicted to be a substitute for blood, collected non-invasively for the
diagnosis of oral and systemic diseases. Thus, PoCT replaces the specialist testing centres by using
the samples other than blood and urine [3]. For the development of PoCT devices, minimum risk
of infection with no mental and physical pain is of utmost importance to consider, in addition to
automation, integration, multiplexed detection ability, quick analysis, small sample size, and minimal
training as the primary goals of modern medicine [4]. With the advent of the struggle in the growing
potential of developing PoCT, the World Health Organization (WHO) provided guidelines which had
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the features for designing devices, known as the ASSURED criteria, which indicated that devices had
to be affordable, sensitive, specific, user-friendly, rapid and robust, with no complex equipment, and
be delivered to end users efficiently.

The precision to central lab testing is being facilitated by the use of biomarkers and saliva is
a viable biofluid for diagnostic applications. The human saliva revolution in medical and dental
sciences through its property as a “mirror of body health” in the last decade brought many disease
detections through its compositional changes in disease conditions [5]. Human oral cavity consists of
different sources, such as salivary glands (major and minor), gingival crevicular fluid (GCF), microbes,
and oral epithelial sheds for the production of whole mouth fluid (WMF) [6–12]. This fluid is 99%
water, but 1% consists of DNA, mRNA, microRNA, proteins, metabolites, and microbiota which are
utilised as a diagnostic fluid for disease analysis and even for forensic analysis [13,14]. In this particular
review, we present the current knowledge of saliva, diagnostic toolboxes, how PoC technology works,
developed PoC devices for detection of various diseases, and the future prospects of utilising saliva as
a diagnostic tool.

1.2. Saliva in the Diagnosis of Oral and Systemic Diseases

Saliva is a complex fluid containing various enzymes, electrolytes, proteins, nucleic acids,
antimicrobial constituents, hormones, cytokines, and antibodies. Its composition virtually reflects
the entire state of health and disease in a body and it has the potential of being a diagnostic medium
for a broad range of diseases [15,16], such as in the detection of periodontal diseases, caries risk
assessments, breast cancer, oral cancers, salivary gland diseases, HIV, and much more [16]. However,
the effects of alteration in the salivary composition are seen in the lipid profile of cystic fibrosis patients,
which is markedly changed in comparison to healthy subjects [17]. The submandibular gland saliva of
cystic fibrosis patients contains 66% more lipids per 100 mL of saliva than that of a healthy subject.
The salivary fatty acid profile can be a good indicator for the early detection of tumorigenesis processes
and cardiovascular diseases. The increase in production of salivary arachidonic acid, relevant for their
eicosanoid production related to the tumorigenesis process and cardiovascular diseases, is influenced
by dietary fat intake [18]. Figure 1 portrays alterations of biomarkers in various body organs in
diseased states through which saliva can detect a variety of oral and systemic diseases.
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Figure 1. Depiction of the detection of various oral and systemic diseases through salivary biomarkers.
Acquired Immuno Defeciency Syndrome (AIDS), Human Papilloma Virus (HPV), Myocardial infarction
(MI), Chronic Obstructive Pulmonary Disease (COPD), Sexually Transmitted Infection (STI), End Stage
Renal Failure (ESRD) and Oral Squamous Muccous Fibrosis (OSMF).
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Similarly, in Sjogren’s syndrome (SS) the saliva flow is compromised in the patient due to ductal
changes by lymphocytic infiltration and fibrosis of the salivary glands and the patient also suffers
from the consequences of dental caries, infections dysphagia, and other oral pain [19]. The lipid
profile of SS patients is twice higher than an average healthy person and elevated level of cytokines
(IgA, IgG, interleukin-6, and prostaglandins-E2) and antibodies. Many salivary proteins were reported
as biomarkers for SS diagnosis; for example, profilin [20], anhydrase-I [21], IL-4, IL-5 [22], MxA [23],
and CXCL13 [24,25]. Human saliva has a proven diagnostic role in the detection of cardiovascular
diseases, reported in studies examining whole mouth salivary biomarkers e.g., C-reactive proteins
(CRP) [26], cardiac troponin (cTn) [27], creatine phosphokinase [28], and NT-ProBNP [29]. Diabetes is
another common disease faced all around the world and developing rapidly due to dietary habits,
genetic, and other systematic disease-related complications [30]. Due to its non-invasiveness,
a cheap and easy sampling of saliva is attractive as a diagnostic fluid for diabetes analysis [31].
Previously reported studies concluded the different biomarkers for diabetes detection in early stages.
A recently-reported study saw a marked alteration in levels of salivary glucose, amylase, calcium,
and phosphorus in comparison to serum from diabetic and non-diabetic patients [32], as seen in
Table 1 below.

The current review presents a broad overview on salivary diagnostics, the validation of biomarkers
(diagnostic targets) through diagnostic toolboxes, discussion related to new biomarker-related PoC
platforms, the latest emerging PoC technologies including highlights on biosensors, biological
micro-electro-mechanical systems (BioMEMS), microfluidics/paper based technology, electric
field-induced release and measurement (EFIRM), and smartphone-based biosensors their functions
and clinical utility in medical field.

Table 1. Description of Point-of-care (PoC) devices for detection of diseases through specific
salivary biomarkers.

Salivary Biomarkers Diseases/Conditions Developed PoC References

A-amylase Clinical judgment for
stress-induced disease

Salivary α-Amylase (sAA)
biosensor system [33]

HIV AIDS Oraquick, tablet-based kiosks [34,35]

Hep C Hepatitis OraQuick [36]

HPV HPV-associated cancers,
sexually transmitted diseases

simple fluorescent and colorimetric assay
that enables DNA and RNA detection [37]

Cortisol Stress levels Label-free chemiresistor immuno-sensor [38]

Proteins (Dipeptidyl
peptidase etc.),

metabolites, DNA
Periodontitis

Integrated Microfluidic Platform
for Oral Diagnostics (IMPOD),

lab-on-a-chip (LOC)
[39]

C-reactive protein, myoglobin,
and myeloperoxidase Acute Myocardial Infarction Luminex, lab-on-a-chip methods [40]

Cytokines Asthma and chronic obstructive
pulmonary disease (COPD)

Fiber-optic microsphere-based
antibody array [41]

IL-8, IL-8mRNA Oral Cancer Electrochemical magneto biosensors [42]

(NO2− and uric acid),
and pulmonary

inflammation biomarkers

End-stage renal disease (ESRD),
asthma and chronic obstructive

pulmonary disease (COPD) patients
Optical fibre microarrays [43]

Salivary nicotine metabolites Smoking/tobacco use Point of care test for salivary nicotine
metabolites [44]

Porphyromonas gingivalis chronic periodontitis P. gingivalis saliva kit

Gonorrhoea and chlamydia Sexually transmitted
infections (STIs) Oral STI point-of-care (PoC) [36]
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Table 1. Cont.

Salivary Biomarkers Diseases/Conditions Developed PoC References

Salivary anti-Ro60 and
anti-Ro52 Antibody Profiles Sjögren’s Syndrome Luciferase Immunoprecipitation

Systems (LIPS) [45]

Salivary glucose Diabetes Glucose monitoring using saliva
nanostructured biosensor [46,47]

cRP, MPo, ctnl, Myo, cK-MB,
d-dimer, apoa1, apoB, BnP,

nt-proBnP, scd40l,
McP-1, adiponectin

Cardiovascular disease (CVD) Programmable bio-nanochip
(P-BNC) system [48]

cea, ca125, Her2-neu, Psa
(free and complexed) Cancer Programmable bio-nanochip (P-BNC)

system, 2D nanomaterials [48,49]

2. Point-of-Care Technology: An Overview

Point-of-care (PoC) technology in diagnostics tends to evaluate biomarkers that are suggestive of
underlying biological or physical characteristics of an individual. Therefore, biomarkers determine
the risk and severity of the disease, as well as the individual’s response to treatment [15]. In addition
to it, diagnostic methodologies other than biomarkers also include biochip and biosensor systems.
Biochip systems obtain the requisite volume of saliva for testing whereas the biosensor system is the
analytical high-sensitive technology for the detection of biomarkers [50]. Accurate PoC diagnostics
needs no pre-processing and screening for biomarker identification on top of it non-invasive testing,
as seen in already-patented devices, such as for the detection of oral cancer known as the Oral Fluid
NanoSensor Test (OFNASET), the detection of human papillomavirus (HPV) infection OraRisk HPV
test, and the diagnosis of periodontal diseases PerioPath [51,52]. Moreover, measuring the molecular
level biomarkers in the form of proteins, mRNA, DNA, electrolytes, and small molecules requires
techniques of microfabrication, such as in the developed micro/nanoelectromechanical systems
(MEMS/NEMS) [53], and current emerging technologies provide new avenues of PoC diagnostics
in the variety of “lab-on-chip” techniques which integrates the complexities of lab procedures on
a computer chip in the size of a device that, hence, gives an opportunity to detect and diagnose
multiple diseases simultaneously with the help of biomarkers [54].

2.1. Diagnostic Targets

Salivary diagnostics needs appropriate identification and validation of biomarkers for the
detection of diseases, and a biomarker is a quantifiable parameter that can interact physiologically
and biochemically at a molecular or cellular level, which sequentially acts as an indicator of normal,
pathological, and interventional behaviours of the body’s response [55,56]. Biomarkers include several
classes, such as proteins, DNA, RNA, metabolites, and microbes, so collectively these all are used for
diagnosis of several diseases and are called a molecular signature [57].

2.2. Diagnostic Toolboxes

Major salivary diagnostic tool boxes include proteomes, metabolomes, genomes (transcriptome,
epigenome), microbiomes, and immunologic categories. Table 2 shows the variety of methods used
to analyse molecules for the investigation and validation of biomarkers. Proteomes make up the
biological system and could be employed for the detection of diabetes, periodontitis, caries, cystic
fibrosis, AIDS, OSCC, breast cancer, lung cancer, pancreatic cancer, Sjogren’s syndrome, and many more
through mass spectroscopy, 2D gel electrophoresis, ELISA and protein immunoblot techniques [58–61].
However, mRNA and DNA come under salivary transcriptomes and genomes, and their profiling
through gene chip arrays, DNA hybridization, qPCR, and gel electrophoresis helps in the detection of
OSCC, as conducted by Li et al. [62], and in Sjogren’s syndrome, hepatitis, HIV, etc. The metabolic
investigation, on the other hand, requires and uses gas chromatography mass spectrometry, nuclear
magnetic resonance spectroscopy, and high-performance liquid chromatography [63] for the detection
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of diabetes, lung, pancreatic, breast cancers, and Sjogren’s syndrome [64,65]. In the same way,
the salivary microbiome and immnomics used different methods, as mentioned in the table for
the detection of infectious diseases, HIV, hepatitis, malaria, dengue, Ebola virus, cytomegalovirus,
herpes infection, and countless other diseases [66–68].

Table 2. Methods used for the evaluation of diagnostic toolboxes.

Diagnostic Toolbox Methods of Evaluation Molecules to Be Analysed References

Proteomics
Mass spectroscopy and 2D gel
electrophoresis, ELISA, protein

immunoblot techniques

Post-translational modifications and
protein-enzyme complexes [69]

Genomics (Transcriptomics
and Epigenomics)

Gene chip arrays, DNA hybridization,
qPCR, and gel electrophoresis DNA, RNA and mRNA [70]

Metabolomics

Nuclear magnetic resonance
spectroscopy (NMR), gas

chromatography-mass spectrometry,
direct flow injection/liquid

chromatography-mass spectrometry,
inductively coupled plasma mass

spectrometry, and high-performance
liquid chromatography (HPLC),

capillary electrophoresis time of flight
mass spectroscopy

Small molecules end products of
metabolic processes in the body such as

organic species, together with
non-protein hormones (epinephrine,

peptide hormones and cortisol).

[71]

Microbiome

Bacterial microarrays, DNA
hybridization, PCR, next-generation

sequencing, and quantitative 16S rRNA
gene sequencing, oligonucleotide

microarray based on 16S rRNA, aptly
named human-microbe identification

microarrays (HOMIM)

Bacterial species
(Streptococcus, Staphylococcus) [68,72,73]

Immunomics Immunologic analysis
Immunological markers (IgM, IgA,
and IgG tests, and hepatitis B virus

and hepatitis C virus, IgG)
[67]

2.3. Salivary Biomarker-Based PoC Platforms

In Table 3, shows analysis system based on different technologies applied on saliva for the
detection of biomarkers to reduce the time duration and early diagnosis of certain diseases. As shown
in table it is revealed that single and multiplexed systems were being used such as MEMS, ORI,
chromatography test strips and several salivary diagnostics devices (USA) for the detection of proteins
solely, also proteins and nucleic acids altogether (for e.g., IL-8, MMP-8, a-amylase, HIV, HCV) with
lowering the time limit as much little as one minute. These technologies, therefore, reduces the invasive
procedures significantly to a larger level [16].

Table 3. Examples of single and multiplexed salivary biomarker-based PoC diagnostics [9].

PoC Platforms System Used Biomarker Test Duration Region of Origin

Single

Microelectromechanical
technology (MEMS), optical
fluorescent system followed

by electrophoresis

Matrix metalloproteinase-8 MMP 10 min Sandia National Lab
(USA)

Oral risk indicator ORI MMP-8 Less than 10 min Dentognostics (Germany)

Chromatography test strips HIV1&2, HCV, influenza 20 min Orasure
Technologies (USA)

Handheld device Cortisol, a-amylase 1 min Nipro (Japan)

Multiplexed Salivary diagnostics Salivary proteins and nucleic acids Less than 15 min SDx (USA)

Salivary diagnostics IL-8 mRNA, IL-8 protein Less than 15 min SDx (USA)
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3. Emerging Novel PoC Technologies

3.1. Biosensors

The biosensor is a bioanalytical device which has the ability to mimic any biological material,
i.e., antibodies/antigens, nucleic acids, cellular structures or enzymes. That organic material is
integrated into a transducing microsystem. The transducer could be electrochemical, thermometric,
optical, piezoelectric, or magnetic, and this is called label-free detection [74], while label-based
detection includes fluorescent immunoassays, FRET, and quantum dots. Biosensors function with the
biorecognition of particular elements for particular targeted analytes and the maintenance of selectivity
and sensitivity in the existence of other interfering compounds [75]. In the medical field, biosensor
applications are growing rapidly, such as for the diagnosis of diabetes mellitus, urinary tract infections
(UTI), identification of end-stage heart failure, and acute leukaemias (Table 1) [76].

3.2. Fluorescent Biosensors

Fluorescent biosensors can be used for cancer, drug discovery, arthritis, cardiovascular and
neurodegenerative diseases, viral infections, chronic myeloid leukemia, and many more, by using the
principal of high throughput screening approaches, the use of fluorescent probes in gene expression,
localization of protein in cell cycle, apoptosis, signal transduction, and transcription. For the detection
of chronic myeloid leukaemia, a genetically-encoded FRET biosensor was developed to detect Bcr-Abl
kinase activity to see the correlation, it was further used to check the response to treatment, drug
resistance, and predictive values for alternative therapeutics [77]. Moreover, Lee et al. applied hafnium
oxide in a novel biosensor for the detection of human interleukin (IL-10) (atomic layer deposited
hafnium oxide gate dielectrics for charge-based biosensors) [78]. Applications of nanomaterial
biosensors give opportunities for a new generation of biosensor technologies that can be broadly
used in monitoring, diagnosis, control, and analysis.

3.3. Biological Micro-Electro-Mechanical Systems (BioMEMS)

PoC lab-on-chip systems use small and simply-constructed (BioMEMS) devices for the detection
of biological and chemical agents. BioMEMS are utilized for the detection of cells, proteins,
microorganisms, viruses, and DNA in biological samples. They are based on micro/nanoscale
fabrication systems which help in increasing the sensitivity of results from sensors, increased reliability,
increased performance, reduced detection time, and cost effectiveness. It has label-free detection
techniques, including micro-cantilevers, surface plasmon resonance (SPR), quartz crystal microbalances
(QCM), and organic field-effect transistors (BioFETs) [79]. BioMEMS are used for a range of applications,
such as for drug delivery, cardio MEMS to monitor heart patients, hearing aids, insulin micropumps,
endoscopic pills, and retinal prosthesis [80,81] (Table 3). By blending molecular biology with
computational systems, the major nanotechnology achievement could be bio-nano-electro-mechanical
systems (BioNEMS) in the future for further improvements in the medical sector.

3.4. Microfluidics/Paper-Based Technology

Microfluidic applications operate on integrated microfabrication and specific physiochemical
properties. Initially, the use of silicon, inorganic glass, and ceramic was used in microfluidic devices
which have been vastly replaced by the soft and rigid thermostatic and thermoplastic materials and,
finally, into paper-based technologies, using biodegradable and hydrogel materials [82]. At Harvard
University in 2007 microfluidic paper-based analytical devices (µPADs) were pioneered by Whitesides.
Paper is porous and hydrophilic, therefore, it provides a platform for the fabrication of microfluidic
channels by patterning the paper with 2D and 3D µPADs and having a variety of assay designs.
They are used in the detection of urine metabolites, blood glucose, pH value, liver function, and
infectious agents, and they are also widely used in pregnancy test kits [83].
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3.5. Electric Field-Induced Release and Measurement (EFIRM)

A liquid biopsy technique called EFIRM, uses readout enzymes and immobilised probes for the
capturing and detection of biomarkers from biofluids. EFIRM uses the electrochemical method to
facilitate nucleic acid hybridization. This approach is advantageous for accurate detection of RNA,
protein biomarker targets in exosomes. Additionally, without the extraction of DNA and nucleic acid,
EFIRM can analyse the mutation status within an hour. IL-8 protein and IL-8 mRNA markers for
oral cancer, non-squamous cell lung cancer (NSCLC) oncogenic mutation, and epidermal growth
factor receptor (EGFR) mutation in non-small cell lung cancer can be detected through this EFIRM
system [57,84].

3.6. Smartphone-Based Biosensors

Smartphones operate similarly to miniature computers, acting as cheap, portable analytical
laboratory devices. They are helpful for the detection, and diagnosis, of various diseases, such as
cancer, tuberculosis, and the self-monitoring of blood glucose. Figure 2 illustrates the few shapes and
designs of currently-used PoC technologies while Table 4 shows all the functions, techniques, and
clinical utilities of these techniques in a concise manner.
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Recent advancements in smartphones electronics and new app development have made its
use as a smart detector by having all the mixed optical methods, i.e., fluorescence, surface plasmon
resonance (SPR), reflectance, absorbance, bio-chemiluminescence, and electrochemiluminescence [85].
Amongst them all SPR gained importance because of its high sensitivity, label-free, microfluidic
technique. Conventional SPR utilizes planar thin gold film while localized SPR (LSPR) contains
metal nanostructures [86]. Hence, SPR becomes the powerful tool in biomedical application such as
for the study of several DNA, RNA, proteins, lipids, carbohydrates, even mutation detection [87].
Moreover, Lee et al. described the smartphone’s function as a compact microscope in which ambient
illumination as a light source was being used instead of a chip-scale method. This lensless imaging
scheme allows sub-micron resolution and the built-in android application brings simplicity, robustness,
and employability for several field applications [88].
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Table 4. Variety of emerging PoC technologies and their clinical utility and functions.

Types of Emerging Technologies Biomarkers/Clinical Utility Technique Used Function References

Biosensors
Diabetes mellitus, (glucose
biosensors), UTI, cardiac

markers, acute leukaemias
Electrochemical

Drug delivery, cardio MEMS
to monitor heart patients,

hearing aids, insulin
micropumps, endoscopic pills,

retinal prosthesis

[79]

Fluorescent biosensors/
FRET biosensor

Drug discovery, arthritis,
cancers, cardiovascular and
neurodegenerative diseases,

viral infections, chronic
myeloid leukaemia

Fluorescent probes are
mounted through a receptor

They are able to probe gene
expression, localisation of

protein, signal transduction,
transcription and cell

cycle apoptosis

[77]

Biological Microelectromechanical
Systems (BioMEMS)

Drug delivery, cardio MEMS,
insulin micro pumps,

endoscopic pills,
retinal prosthesis

lab-on-a-chip systems/micro/
nano-scale fabrication

Detection of, proteins, viruses,
DNA and microorganisms [80,81]

Microfluidics/paper
based technology

Stomach cancer biomarkers
(H. pylori), detection of urine
metabolites, blood glucose,

pH value, liver function,
infectious agents

Optoelectronic and
microfluidic system

DNA extraction,
polymerase chain reaction

(PCR) amplification
[83]

Electric field induced release and
measurement EFIRM

IL-8 protein and IL-8 mRNA
markers for oral cancer,
non-squamous cell lung

cancer (NSCLC) oncogenic
mutation, EGFR mutation in

no small cell lung cancer

Electrochemical Liquid biopsy technique,
selective hybridization [57,84]

Smartphone based biosensors

Blood samples of falciparum
malaria infected and
fluorescent images M.

tuberculosis-positive sputum
smears, self-monitoring of

blood glucose, cancer

Metal-oxide semiconductor
(CMOS)-based photo cameras,

optical-based methods
including absorbance,
chemiluminescence,

fluorescence, reflectance,
surface plasmon resonance

(SPR), bio- and
electrochemilumines-cence

Detector system for
reflectance, colorimetry

and luminescence
[85]

4. Future Direction and Conclusions

This article gives an overview of research in molecular diagnostics, microbiology, and immunology.
Routine laboratory testing includes the majority of haematology testing, clinical chemistry, and
immunochemistry by using high-throughput instrumentation. Therefore, salivary PoCT diagnostics is
replacing the central laboratory and offers efficient, fast, quick and easy automation. Since the emphasis
is switching more towards prevention and early detection of a variety of diseases, development of
small wireless devices has made a dramatic impact on healthcare services. The next decade will bring
breakthroughs in terms of precision, efficiency, and bedside monitoring instead of hospital setups.

Personalised medicine, with the help of biosensors, lab-on-chip systems, individual genetics,
smartphones monitoring parameters, and microfluidic devices, will improve the primary healthcare
system. Moreover, it allows clinicians to be accurate, to be more consistent, to capture clinical
data quickly, provide patient satisfaction, and streamline workflow. Salivary diagnostics’ impact
on the healthcare system is enormous, being non-invasive, convenient, and well-credentialed, while
bioinformatics introduction will make standards and performance higher and improved.
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