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Abstract
Protein receptor conformations, obtained from molecular dynamics (MD) simulations, have

become a promising treatment of its explicit flexibility in molecular docking experiments

applied to drug discovery and development. However, incorporating the entire ensemble of

MD conformations in docking experiments to screen large candidate compound libraries is

currently an unfeasible task. Clustering algorithms have been widely used as a means to

reduce such ensembles to a manageable size. Most studies investigate different algorithms

using pairwise Root-Mean Square Deviation (RMSD) values for all, or part of the MD confor-

mations. Nevertheless, the RMSD only may not be the most appropriate gauge to cluster

conformations when the target receptor has a plastic active site, since they are influenced

by changes that occur on other parts of the structure. Hence, we have applied two partition-

ing methods (k-means and k-medoids) and four agglomerative hierarchical methods (Com-

plete linkage, Ward’s, Unweighted Pair Group Method and Weighted Pair Group Method) to

analyze and compare the quality of partitions between a data set composed of properties

from an enzyme receptor substrate-binding cavity and two data sets created using different

RMSD approaches. Ensembles of representative MD conformations were generated by

selecting a medoid of each group from all partitions analyzed. We investigated the perfor-

mance of our new method for evaluating binding conformation of drug candidates to the

InhA enzyme, which were performed by cross-docking experiments between a 20 ns MD

trajectory and 20 different ligands. Statistical analyses showed that the novel ensemble,

which is represented by only 0.48% of the MD conformations, was able to reproduce 75% of

all dynamic behaviors within the binding cavity for the docking experiments performed.

Moreover, this new approach not only outperforms the other two RMSD-clustering solu-

tions, but it also shows to be a promising strategy to distill biologically relevant information

from MD trajectories, especially for docking purposes.
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Introduction
Molecular dynamics (MD) simulation and the insights it offers into protein motion is a power-
ful technique for understanding the structure and function of biological macromolecules in
rational drug discovery [1, 2]. It incorporates flexibility on 3D structures of biological macro-
molecules by exploring the dynamic behavior of proteins at different timescales. A typical MD
simulation may generate above of 104 conformations or snapshots to explore the conforma-
tional space of the protein concerned by individual particle motions as a function of time [1].
Although this approach is time-consuming, it provides improved accuracy in the molecular
docking process and opens new opportunities for the discovery of novel potential drugs [3]. In
this study, the large ensemble of snapshots generated by an MD simulation is called a Fully-
Flexible Receptor (FFR) model [4]. Typically, FFR models are used to play docking experi-
ments with accessible ligand libraries, which hold currently at least 106 possible solutions
[5–8]. Therefore, the high computational cost involved in using FFR models to perform practi-
cal virtual screening in such ligand databases may make it unfeasible. For this reason, new and
promising approaches to reduce the dimensionality of FFR models systematically—without
losing critical structural information—should be investigated and applied [9].

Clustering has been used in a variety of situations, such as understanding virtual screening
results [10], partitioning data sets into structurally homogeneous subsets for modeling [11, 12],
and picking representative chemical structures from individual clusters [13–15]. The use of
clustering algorithms to group similar conformations is the most appropriate data mining
technique to distill the structural information from properties of an MD trajectory [16–18]. In
this approach, MD receptor conformations are grouped according to some similarity metric
such as Root Mean Square Deviation (RMSD) [13, 19] or Distance Matrix Error Dab (DME)
[17].

Several studies used clustering algorithms to investigate dissimilar behavior on the MD tra-
jectory. For example, Li [11] used RMSD differences and dihedral angles transitions from a
small MD trajectory of the HIV-1 integrase catalytic core to create conformational ensembles
using the Bayesian clustering method. Li applied the posterior probability and the class cross
entropy to identify the optimal number of clusters; however, the quality of clustering was mea-
sured by visual inspection. Philips et al. [12] developed a framework to validate the perfor-
mance and utility of spectral clustering algorithms for studying molecular biopolymer
simulations. A more detailed analysis on clustering of MD trajectories using different methods
was done by Torda and van Gunsteren [17] and Shao et al. [16]. Torda and van Gunsteren cre-
ated the distance measure Dab for clustering an MD trajectory with 2,000 structures applying
single linkage and hierarchical divisive algorithms, and they concluded that the divisive algo-
rithm produced satisfactory results when a trajectory configuration is evenly distributed across
the conformational space. Shao et al. [16] compared eleven different clustering algorithms to
assess the performance and differences between such algorithms based on the pairwise RMSD
distance. Shao and co-authors used the clustering metrics to find an adequate number of clus-
ters in ensembles of structures taken from a sieving approach. In this approach, a portion of
the data is clustered and the remaining data are added to existing clusters in order to handle
very large data sets more efficiently. To assess the advantages of using the sieving approach,
Shao et al. [16] performed four clustering experiments and concluded that pairwise RMSD val-
ues were able to keep the DB [20] and CH [21] values similar to MD conformations collected
at every 10, 20, 50, and 500 ps. This sieved clustering performs well when the pairwise RMSD
value is the only metric applied to measure the similarity between structures. However, making
use of a sieving approach for identifying similarities from properties of the substrate-binding
cavity (such as area, volume, and heavy atoms) may lead to loss or distortion of the relations

An Approach for Clustering MD Trajectory Using Cavity-Based Features

PLOS ONE | DOI:10.1371/journal.pone.0133172 July 28, 2015 2 / 25

Competing Interests: The authors have declared
that no competing interests exist.



among the original data and to a biased grouping, if the selection at the first stage is not
representative.

Alternative studies generate groups of similar conformations in order to find representative
objects that reproduce the original MD trajectory [13, 22]. Nevertheless, the ability to apply a
clustering method that is strongly sensitive to a measure of similarity and accurately extracts
the most meaningful biological information remains challenging. For instance, Lyman et al.
[22] generate sets of reference structures by building histograms of nearest MD structures
based on different cutoff distances (RMSD). The authors identify the optimal representative
ensemble by comparing the convergence of the MD simulation and the relative populations of
the clusters. On the other hand, Landon et al. [13] produce representative MD conformations
by mapping the number of cluster representatives at a 1.3 Å cutoff using the CS-Map clustering
algorithm on apo and holo N1 X-ray structures. Even though both studies are capable of cover-
ing very different portions of the conformational space of different MD trajectories, the pair-
wise RMSD distances remain the only measure of similarity applied. Further, they conduct the
experiments with a reduced MD trajectory, which is generated by choosing the smallest
observed distance between any pairs of structure based on cutoff values.

In contrast to previous works, we concentrate our efforts on identifying small and localized
changes that are expected to have a major influence on the interactions between flexible recep-
tors and different ligands. The method we introduced may group similar behavior in the sub-
strate-binding cavity of every MD conformation, which is impossible when using traditional
clustering methods, as shown in Fig 1. This figure highlights the differences in the cluster distri-
bution between a traditional RMSD-based clustering (Fig 1a) and the strategy that we are pro-
posing (Fig 1b). The latter depicts alternatives groups of binding modes that the MD
simulation holds at different timescales when several attributes from the binding cavity (such
as area, volume, RMSD and heavy atoms) are used as input for the k-means clustering algo-
rithm. However, because of the pairwise RMSD distance applied as attribute for clustering the
partitioning from Fig 1a, the groups of conformations appears strongly influenced by structural
changes that occurs along the MD trajectory.

This study presents two main contributions. First, we provide a detailed comparison of six
clustering algorithms applied to three different data sets from an MD trajectory. Subsequently,
we identify ensembles of reduced and representative MD conformations from the best cluster-
ing solutions based on measures of dispersions of estimated Free Energy of Binding (FEB) val-
ues by docking experiments performed on AutoDock4 [23]. Towards this end, we compared
resulting partitions of every data set, which contain features extracted from a 20 ns MD trajec-
tory of the InhA-NADH complex. The applied algorithms are partitioning methods (k-means
[24] and k-medoids [25]) and agglomerative hierarchical methods (Complete linkage, Ward’s
and Group average agglomerative methods). A performance comparison was made among two
data sets formed by different pairwise RMSD-based approaches and a data set built with prop-
erties from the substrate-binding cavity, which is our novel approach for clustering MD trajec-
tories. The analysis of the generated partitions were conducted by taking into account the
representative object of each partition, i.e. the medoids. To select the best partitions, we assess
quartile values from medoids of each partition based on predicted FEB values, which were
obtained by performing cross-docking experiments involving protein-ligand complexes with
20 different ligands and the FFR model under study. Quartile values are computed in a detailed
progression of the partitioning, thereby allowing characterization of clustering performance
across a range of number of clusters. Ensembles of representative MD snapshots were selected
from the best partitioning performance to evaluate the quality of the proposed ensemble. To
illustrate this, we evaluated if such a small and representative ensemble, which holds less than
0.4% of all conformations, is able to cover a high level of dissimilar binding modes that the full
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Fig 1. Comparisons of clustering results relative to two different measures of similarity for the InhA enzymeMD trajectory. In each case, the k-
means clustering algorithm with the number of clusters of eight was used. The difference of the cluster dispersion between the traditional method and our
methodology is evidenced by using the pairwise RMSD distance and the properties from the substrate-binding cavity in the scatter plots (a) and (b),
respectively.

doi:10.1371/journal.pone.0133172.g001
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set of MD conformations can assume when it is submitted to docking experiments. Conse-
quently, we expect to significantly reduce the redundancy in the full set of conformations, and
thus make computationally tractable the practice of performing virtual screening experiments
on MD trajectories, without losing the most biologically relevant information.

This paper is structured as follows. Section 2 describes details from the MD simulation, the
structural features from the substrate cavity of every MD conformation, clustering methods
and statistical metrics used to evaluate the quality of the produced clustering. Section 3 reports
the analyses and experiments performed to group MD structures from three different data sets
and six clustering algorithms as well as presents the reference structures selected to span the
whole MD trajectory. Finally, Section 4 describes the conclusions and future work directions.

Materials and Methods

Molecular Dynamics (MD) simulation
The MD trajectory used in this study was generated from the 2.2 Å crystal structure of the
enzyme Enoyl-Reductase or InhA-NADH complex fromMycobacterium tuberculosis (PDB
ID: 1ENY) [26] with 41 crystallographic water molecules as described in Gargano et al. [27]. In
this simulation, the Amber 9 program suite [28] and the AMBER ff99SB force field [29] were
used to extract data at every 1 ps interval over the 20 ns simulation, yielding a set of 20,000
instantaneous receptor structures, being also referenced as a FFR model of InhA. For the
NADHmolecule the atomic charges were assigned by ab initio calculations in the HF 6-31G�

level [30] and fitted with the RESP procedure [31], which are fully compatible with the
AMBER force field [29]. The structures belonging to the FFR model were superimposed onto
the initial structure using a least-square fit and the protein was solvated with 10,491 TIP3P
water molecules in a rectangular box of 77.7 Å x 73.3 Å x 77.3 Å. All hydrogen atoms, ions and
water molecules were initially submitted to 100 steps of energy minimization with steepest
descent in order to remove closely contacts of van der Waals forces. The pressure of the simula-
tion was kept at 1 atm and, in order to avoid disturbance to the system, the temperature was
gradually increased from 10 K up to 298 K in six steps (10 K to 50 K, 50 K to 100 K, and so
forth). For these steps of temperatures, the velocities were reassigned according to the Max-
well-Boltzmann distribution and equilibrated for 200 ps.

We emphasize the changes that the macromolecular structure suffers during an MD simula-
tion. The RMSD of protein backbone atoms from the initial structure is often used as an indica-
tor of structural changes, as shown in Fig 1. The plot displays the structural variation of the
InhA’s full trajectory and delineates the equilibration phase at 500 ps. During the equilibration
stage, the results present significant variations because the initial structure is not within the
equilibrium phase of the simulation conditions. After this initial stage, MD properties can be
efficiently studied by keeping the system in a steady non-equilibrium state [32]. For this reason,
the first 500 conformations were withdrawn from the MD trajectory before starting the cluster-
ing analyses. The RMSD variation of the production phase is stabilized between 1.0 Å and 1.8
Å, reaching a plateau around 1.4 ± 0.1 Å.

Extracting structural features from the MD trajectory
For clustering the MD conformations, we generated the following data sets:

1. Protein RMSD. It has the pairwise RMSD distance between the first and every MD’s struc-
ture, considering all structure residues as applied by [16, 22, 33] (S1 Dataset).

2. Cavity RMSD. This data set contains the RMSD distance between the first and every MD’s
structure, considering the residues that enclose the substrate-binding cavity of the InhA
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enzyme in complex with NADH and the C16 substrate analog (PDB ID: 1BVR) enzyme.
Application examples of this measure of similarity are in [13, 34] (S2 Dataset).

3. Cavity Attributes. It was built by using a set of features extracted from the substrate-binding
cavity of the MD trajectory. This is the proposed data set and a more detailed explanation is
given in this section (S3 Dataset).

The first two data sets were generated from typical measures of similarity for clustering MD
simulations. Our purpose in using these data sets is to compare the quality of partitions
between them and the Cavity Attributes data set.

For generating the Cavity Attributes data set, we extract structural properties from the sub-
strate-binding cavity of each conformation generated by an MD simulation. From those fea-
tures, we seek to partition dissimilar behaviors found within the binding site along an MD
simulation followed by generating an ensemble of representative structures that allows the cov-
ering of localized protein movements to improve the fitting of ligands during the docking pro-
cess. The structural features extracted from the substrate cavity of each FFR model’s
conformation and used as input to the clustering algorithms are:

1. the volume of the substrate cavity (in Å³);

2. the number of heavy atoms present in the substrate-binding cavity of the 1BVR structure
[35]; and;

3. the pairwise RMSD distance relative from the first to the current snapshot (in Å).

Pairwise RMSD distances were evaluated by using the differences among the backbone Cα
atoms from the first structure against the conformation being compared, using the following
equation:

RMSDrt ;rref
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

jrt;i � rref :ij2
vuut ð1Þ

where rt,i and rref,i are the positions of equivalent atoms in the conformation at time t(rt) along
the MD simulations and the reference structure (rref), respectively. The RMSD was calculated
using the ptrajmodule from AmberTools14 [36].

The remaining features were taken from CASTp’s results [37]. CASTp is an online software
tool that allows us to obtain information from all cavities in a structural manner through a free
access to the source code of the results page. It relies on the alpha-shape method [38] to enclose
the substrate cavity on proteins. This method uses the solvent-accessible surface area model
[39] and the molecular surface model [40] with a probe sphere of radius 1.4 Å. To identify the
substrate cavity on an ensemble of conformations generated by MD simulation, we developed
a heuristic function based on the number of heavy atoms present in the substrate-binding cav-
ity of the 1BVR structure [35]. The substrate analog, which is inside the 1BVR crystallographic
structure, allowed us to identify the substrate cavity and the largest number of atoms, consider-
ing the residues that encloses it. Thus, we calculated the volume and the number of heavy
atoms of the substrate cavity for each snapshot based on the substrate analog, according to the
cavities present in the 1BVR and selected by CASTp. Fig 2 shows the substrate cavity of the
1BVR structure identified by the CASTp software along with the residues that enclose the sub-
strate-binding cavity, which are GLY96, PHE97, MET98, MET103, PHE149, TYR158,
MET161, LYS165, MET199, NADH (coenzyme).

The volume from the substrate-binding cavity was chosen as one of attributes from Cavity
Attributes data set since it varies considerably along the MD simulation (S1 Fig). This is
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evidenced by analyzing the substrate-binding cavity volumes generated by CASTp, which ran-
ged from 45.4 Å3 to 2,852.9 Å3 for the entire 20 ns MD simulation trajectory. We also note that
the volumes of the substrate-binding cavity from the MD trajectory comprise proportionally
those found in the boundaries of the InhA crystal structure. For instance, cavity volumes from
2B37 and 4OXN structures are 445.1 Å3 and 2,032.8 Å3, respectively, pointing out to signifi-
cantly different volume values in the MD trajectory.

Fig 2. Substrate-binding cavity of the InhA enzyme (PDB ID: 1BVR) identified by the CASTp software tool.On the left, the substrate-binding cavity of
the 1BVR structure represented by molecular surface and colored by atom types (carbon and hydrogen: light grey; nitrogen: blue; oxygen: red; sulphur:
yellow). The projection displays all residues from the binding pocket in stick representation.

doi:10.1371/journal.pone.0133172.g002

Table 1. Fragment of the Cavity Attributes data set used for clustering the MD trajectory. The first line labels the substrate-binding cavity features. The
number below each residue indicates the maximum number of heavy atoms it can hold.

RMSD Volume GLY96 PHE97 MET98 MET103 PHE149 TYR158 MET161 LYS165 MET199 NADH
(Å) (Å3) (4 atoms) (11 atoms) (8 atoms) (8 atoms) (11 atoms) (12 atoms) (8 atoms) (9 atoms) (8 atoms) (9 atoms)

0.37 607.00 2 4 3 2 6 4 3 2 6 6

0.37 795.10 2 4 3 2 5 3 2 0 6 6

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.39 1551.40 3 8 5 4 2 4 4 3 1 5

1.38 929.80 2 6 4 3 2 5 3 3 1 5

1.38 516.90 3 4 3 2 2 4 3 2 2 6

doi:10.1371/journal.pone.0133172.t001
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Although the volume allows us to identify the biggest accessible surface of the substrate-
binding cavity, we also considered the geometric properties of the cavity to identify whether or
not the cavity dimension allows the fitting of a ligand within this 3D space. For that, we devel-
oped a function based on a weight system. It gives weight 1 for the atoms whose residues deter-
mine the substrate analog in the crystal structure, and 3 for atoms whose residues surround the
NADH nicotinamide ring. Remember that the substrate cavity is placed on the NADH coen-
zyme, which shapes the base of the target cavity and, for this reason, has more weight. The
algorithm output is a set of cavities and their respective scores (sum of weights) for every con-
formation. Hence, we consider cavities with potential level of binding those that show high
scores of weights.

The number of heavy atoms summarized by the residues from the binding cavity are illus-
trated in Table 1. In this table, it is clear that the RMSD values are fully sensitive to conforma-
tional changes. However, the direction of internal motions is only detected by the volume and
heavy atoms, which in turn recognizes small and localized changes that take place in the sol-
vent-accessible surface of flexible systems. For instance, the first two and last two structures
contain equal RMSD values; however there is a considerable difference between the volume
value and the number of heavy atoms for each residues. The values from Table 1 are in differ-
ent ranges since they correspond to the original information of each conformation. For cluster-
ing purposes, we created a CSV file with the data normalized within the interval [0,1]. It is
noteworthy that this methodology is not specific for the InhA’s protein; it may be used for any
structure that contains its binding sites known in advance.

Clustering Algorithms
The large ensemble of MD conformations was clustered using algorithms implemented in the
R Programming Language [41]. k-means [24], k-medoids [25], agglomerative hierarchical [25]
methods and their variations were used to find representative clusters of the FFR model. k-
means and k-medoids belong to the set of partitioning clustering methods, which divide a set
of data objects into non-overlapping subsets with spherical shape such that each data object is
in exactly one subset [42, 43].

k-means is a well-known clustering algorithm that locally optimizes the average squared dis-
tance of points from their nearest cluster center (centroid). It randomly chooses k centroids,
and refines them throughout several iterations, where the distance of every point to the k cen-
troids are computed to determine the cluster memberships [24]. To generate groups more
compact and separate as possible, the k-means algorithm applies the sum of squared errors
(EMeans) between all objects p of a given cluster Ch and its centroid ch for all clusters k accord-
ing to the following equation:

EMeans ¼
Xk

h¼1

X
p2Ch

distðp; chÞ2 ð2Þ

In contrast to k-means, whose centroid almost never correspond to an object, k-medoids
uses the PAM (Partitioning Around Medoids) algorithm [25] for clustering data sets based on
central objects. This algorithm chooses a set of representative objects or medoids to determine
whether a non representative object is a good replacement for a current medoid [43]. While the
k-means technique uses the sum of the squared error function to measure the within-cluster
variation, the k-medoids algorithms apply an absolute error criterion. In this method, the
objects (n) are grouped into k clusters by minimizing the sum of the dissimilarities between
each object and its corresponding representative. Then, the sum of the absolute error for all
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objects p in the data set is defined as:

EMedoids ¼
Xk

h¼1

X
p2Ch

distðp; ohÞ ð3Þ

Where oh is the representative object of Ch. PAM is the algorithm used to compute medoids
for small data sets. To deal with large data, PAM has an extension called CLARA (Clustering
LARge Applications) [25]. CLARA optimizes the k-medoids performance by generating sam-
ples from the entire data set and computing the medoids from them using PAM algorithm.
Even though CLARA is used to reduce the time taken to generate partitions from k-medoids, it
is still a time-consuming task since its complexity is O(ks2+(k(n-k))), where s is the size of the
sample, k is the number of clusters and n the number of objects. In this study, CLARA is the
algorithm applied to generate the k-medoid partitions due to the dimension of our data sets.

Unlike partitioning clustering, hierarchical clustering methods aim to group data into levels
such as in a hierarchy or “tree” of clusters [43]. It has two basic approaches, known as agglom-
erative and divisive. The agglomerative hierarchical clustering, which uses the bottom-up strat-
egy, starts with each object as an individual cluster and interactively merges the closest pair of
clusters until all the objects are in a single cluster or the maximum number of clusters is
reached. The divisive hierarchical clustering, which uses the top-down strategy, starts with all
objects in the same cluster and splits a cluster into smaller clusters in each iteration until each
object becomes a singleton cluster or a termination condition holds [42, 43]. In this study, we
use only the agglomerative algorithms since the divisive method does not handle efficiently
large data sets due to its computational costs. The limiting factor of the divisive method is that
there are 2n−1−1 possible ways to partition a set of n objects into two subsets.

To measure the proximity between two points in two different clusters, the agglomerative
algorithms widely use the methods known as single linkage, complete linkage, median, cen-
troid, group average and Ward’s. In our study, all these methods were applied for clustering
the data sets using the AGNES (AGglomerative NESting) method [25]. However, there are cer-
tain drawbacks associated with the use of some agglomerative algorithms. Two of these are the
high number of singleton clusters and sensibility to outliers. For instance, we found in some
partitions more than 50% of all MD conformations within a single large cluster. Hence, we
identified that the best agglomerative methods to adopt for this investigation are Complete
Linkage, Unweighted Pair Group Method using Arithmetic averages (UPGMA), Weighted
Pair Group Method using Arithmetic averages (WPGMA) andWard’s.

The complete linkage version of hierarchical clustering tends to minimize the increase in
diameter of the clusters at each iteration by determining the proximity of two clusters (Ci, Cj)
as the maximum distance based on the following equation:

CompleteðCi;CjÞ ¼ max
x2Ci ;y2Cj

distfjx � yjg ð4Þ

where |x-y| is the distance between two objects or points x and y.
In UPGMA andWPGMA, which are group average agglomerative methods, the distance

between two clusters is defined as the average pairwise proximity among all pairs of points or
objects in different clusters. The difference between these methods is the weight given to the
points in different clusters to measure the pairwise proximity. While UPGMA takes into
account the number of points in each cluster making a linkage between groups, WPGMA treats
all clusters equally making a linkage within groups. The equations defined to measure the
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distance between the clusters for UPGMA andWPGMAmethods are:

UPGMAðCi;CjÞ ¼
1

ninj

X
x2Ci

X
y2Cj

distjx � yj ð5Þ

WPGMAðCi;CjÞ ¼
1

2

X
x2Ci

X
y2Cj

distjx � yj ð6Þ

where ni and nj are the number of objects from cluster Ci and Cj, respectively, and |x-y| is the
distance between two objects or points x and y.

The Ward’s method, also called the minimum variance method, aims to merge pairs of clus-
ters with minimum variance. It evaluates how much the sum of squares will increase when two
clusters are merged. The “merging cost” of combining the clusters is defined as:

Ward ¼
Xk

h¼1

X
xi2Ch

Xp

j¼1

distðxij � �x
hj
Þ2 ð7Þ

�xhj ¼
1

nh

X
xi2Ch

xij ð8Þ

where xij denotes the value for the i
th individual in the j-cluster, k is the total number of clusters

at each stage, and nj is the number of individuals in the jth cluster. As hierarchical agglomera-
tive clustering method starts defining each data point as its own cluster, the sum of squares
begins at zero and grows as the algorithm merge clusters. At each state, this growth is regulated
by the Ward’s method, which in turn seeks to merge clusters with the smallest sum of squares.

There are several comparative studies reported in the literature that evaluate the clustering
methods described in this section and apply them to different data set types [25, 44, 45].
According to Jain and Dubes [45], there is no perfect clustering algorithm that assures the best
solutions for all data sets. The exploratory analysis and understanding on data sets are deci-
sions as important as to the selection of the strategy (such as number of clusters, prototype and
clustering method) to be adopted [45].

Evaluating the data partition
The proposed data set, which uses properties from the substrate-binding cavity of the MD tra-
jectory, and the other two RMSD-based data sets were submitted to six different clustering
methods and their results were compared. For each data set different seed values for k-means
and k-medoids were configured and Complete linkage, UPGMA, WPGMA andWard’s meth-
ods from agglomerative hierarchical clustering methods were applied to generate the partitions
of MD conformations. The quality of partitions were assessed by computing the first, second
and third quartiles values of the medoids for the number of clusters ranging from 10 to 200.
Quartiles are robust statistic measures capable of indicating central tendency and dispersion of
the data points inside a data set, being also resistant to outliers. As we seek to identify partitions
that contain MD conformations with high affinity in their binding mode, we investigate the
performance of our resulting partitions for evaluating binding conformations of different drug
candidates to the enzyme under study. In this regard, 20 compounds experimentally tested (Fig
3) were used in the cross-docking experiments against the FFR model to predict their lowest
energy bound conformation (i.e. pose). This set of ligands was extracted from 20 InhA crystal
structures available on Protein Data Bank (PDB) [46]. We decided to use ligands from the
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Fig 3. 3D structure of the 20 ligands used in docking experiments. Each ligand is colored by atom type (carbon and hydrogen: light grey; nitrogen: blue;
oxygen: red; chloro: green; phosphorus: orange; sulphur: yellow) and displays its name and PDB identification (PDB ID). The dashed circle represents the
rotatable bounds selected by AutoDockTools 1.5.6. Ligand Abbreviations: TCL: triclosan; 665:(3S) N-(3-bromophenyl)-1-cyclohexyl-5-oxopyrrolidine-
3-carboxamide; 566:(3S)-1-cyclohexyl-5-oxo-N-phenyl pyrrolidine-3-carboxamide; 8PC: 2-(2,4-dichloro-phenoxy)-5-(pyridin-2-ylmethyl)phenol; JPJ: 2-
(2,4-dichlorophenoxy)-5-(2-phenylethyl)phenol; JPL: 5-(cyclohexa-1,5-dien-1-ylmethyl)-2-(2,4-dichlorophenoxy) phenol; JPM: 5-benzyl-2-
(2,4-dichloropheno-xy)phenol; 468:(3S)-N-(3-chloro-2-methylphenyl)-1-cyclohe xyl-5-oxopyrrolidine-3-carboxamide; 641:(3S)-1-cyclohexyl-N-
(3,5-dichlorophenyl)-5-oxopyrrolidine-3-carboxamide; 744: (3S)-N-(5-chloro-2-me-thylphenyl)-1-cyclohexyl-5-oxopyrrolidine-3-carboxamide; INH-NAD:
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available InhA crystallographic structures since the overall topology RMSD of their complexes
are significantly different. According to Pauli et al. [47] the binding cavity volumes of the 36
InhA Crystal structures available on PDB ranges from 1,597.3 Å3 to 3,046.7 Å3 for the whole
cavity (NADH + substrate-binding cavity). This range represents the different sizes and struc-
tures of the ligands that are bound in such structures, being a good sample of structures to
dock in our MD trajectory, which has its binding cavity volume ranges from 419.4 Å3 to
2,032.8 Å3 (InhA-NAD complex).

The docking experiments were performed on FReMI [48], which is a powerful middleware
developed to execute molecular docking simulations of FFR models in multiprocessing
machines using the AutoDock4.2.5.1 software [23]. We set up AutoDock4.2 to run the
Lamarckian Genetic algorithm on three Intel Core i7-2600 3.4 GHz computers with 12 GB
RAM, using as operating system the Linux Ubuntu version 13.04. The number of docking runs
was set up to 25 since we are working with flexible structures. The box dimensions for grid
parameters were tailored according to the structure of each ligand. We defined the atom types
of AutoDock, add the Gasteiger charges and merge the non-polar atoms for each snapshot of
the FFR model. All these configurations were determined before running the docking experi-
ments and the input AutoDock files were generated during the experiments by FReMI [48]
based on AutoDockTools 1.5.6 parameters. The energy evaluation and the number of genera-
tions were configured as 300,000 and 27,000, respectively. All ligands were treated as flexible in
AutoDock and their rotatable bounds are highlighted in Fig 3. In order to preserve the environ-
mental conditions available to the substrate and ligands, the NADH coenzyme was considered
as part of the protein receptor. Conversely, we removed the NADH coenzyme from all snap-
shots of the FFR model when we performed the experiments with adducts (INH-NAD and
PTH-NAD), since they already have the coenzyme as part of their structures.

To obtain ensembles of representative MD conformations from the clustering algorithms
used we assessed the dispersion of the resulting partitions based on the predicted FEB values.
The dispersion corresponds to the first, second and third quartile values that were calculated to
compare the level of convergence between the resulting partitions and the MD’s full trajectory.
The first step in this process was to extract the medoids from all partitioning and obtained an
ensemble of medoids for every partitioning. This provided us diverse reduced and representa-
tive ensembles of MD conformations. The second step was to calculate the quartile values from
the ensembles of reduced MD conformations (or medoids) as follow:

Quartiles ¼
XN

i¼1

XQ

j¼1

xij ð9Þ

where N is the amount of ligands and Q identifies the first, second and third quartiles, which
were measured based on the predicted FEB values obtained from cross-docking experiments.
With the quartile values at hand, we then evaluated the Sum of the Quartile Differences (SQD)
in order to identify ensembles of medoids having similar dispersion to the MD’s full trajectory.

Isoniazid + NADH coenzyme; 5PP: 5-pentyl-2-phenoxyphenol; 8PS: 5-octyl-2-phenoxyphenol; TCU: 5-hexyl-2-(2-methylphenoxy)- phenol; PTH-NAD:
Prothionamide + NADH coenzyme; THT: trans-2-hexadecenoyl-(n-acetyl-cys-teamine)- thioester 4PI: N-4-methylbenzoyl-4-benzylpiperidine;GEQ: 5-{[4-
9H-fluoren-9-YL)pipera- zin-1-YL]carbonyl}-1H-indole.

doi:10.1371/journal.pone.0133172.g003
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Thus, the SQD values were taken based on the following equation:

SQD ¼ jð �xq1 � �yq1Þj þ jð �xq2 � �yq2Þj þ jð �xq3 � �yq3Þj ð10Þ

�xqj ¼
1

ni

X
xi2Qj

xji ð11Þ

�yqj ¼
1

ni

X
xi2Qj

yji ð12Þ

where xji and yji denotes the value for the j ligand in the i-quartile and Eqs (11) and (12) detail
the means of quartiles calculated for medoids and the MD’s full trajectory, respectively. Low
SQD values indicates ensemble of representative MD conformations with high similarity of
dispersion to the MD’s full trajectory.

In this study, we analyzed partitions from three different data sets and six different cluster-
ing methods. Even though we are using FEB predicted values to select and validate the optimal
partitions, we believe that our methodology can provide an effective strategy for improving
clustering MD trajectory approaches. Further, we expect that the best set of medoids can also
be able to reproduce a fairly good level of distinct binding models for different ligands—espe-
cially when the Cavity Attribute data set is used as input for the clustering algorithm.

Results
One of the major challenges in performing docking experiments of FFR models is the compu-
tational demand to screen large databases of small compounds and extract potential binders.
According to Amaro et al. [9], performing virtual screening experiments in the full set of struc-
tures is computationally intractable and likely unnecessary. Zhong et al. [49] and Cheng et al.
[50] show that using a minimal representative ensemble of MD conformations is a promising
way to reduce the number of docking experiments and predict high ligand-binding affinity in
the ensemble of receptor conformations. For instance, Zhong et al. [49] compared the docking
results between the crystal structure and the representative ensemble of five conformations
from an MD trajectory with 1,000 snapshots, and concluded that around 90% of active com-
pounds discovered were chosen based on MD-generated representative clusters. Another simi-
lar approach is applied by Cheng et al. [50], which distill the three dominant configurations
from the MD simulations of avian influenza N1 neuraminidase in the apo form and in complex
with the inhibitor oseltamivir. They performed virtual screening with the representative struc-
tures and the docking results (FEB values) were validated using the relaxed complex scheme.

The hypothesis we try to confirm in this paper is that the methodology used for clustering
the MD trajectory can distill its most meaningful substrate-cavity binding information more
effectively. Specifically, we seek to reduce the computational time of using a very large MD tra-
jectory, i.e., more than thousands of conformations, to perform virtual screening of thousands
or millions of ligands. One way to address this issue is to create minimal representative ensem-
bles by selecting an MD conformation of each cluster (i.e. a medoid) from a suitable partition.
With this in mind, we analyze if the use of clustering algorithms can help us to find relation-
ships between the interactions of FFR models and ligands. Thus, we concentrate efforts on
using clustering methods and check their results in order to validate our working hypothesis.
Our main contribution is on investigating clustering algorithms to find similarities among
snapshots from an MD simulation in order to reduce the FFR model dimension to a manage-
able size, without losing its biologically relevant information. For this purpose, we apply six dif-
ferent clustering methods to group similar snapshots of the FFR model. Then, we analyze their
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results by evaluating the data distribution of each clustering, taking into account the best FEB
results predicted, by performing cross-docking experiments between the whole MD trajectory
and the 20 compounds tested experimentally.

Cross-Docking Experiments
Unlike other studies, which generate ensembles of representative MD conformations by select-
ing the most variable structures based on RMSD distance [13], we take into account extra fea-
tures from the substrate-binding cavity to create partitions with high affinity in their clusters.
In this work, the level of dispersion among the clusters is evaluated through the SQD (Eq 10)
from all partitions generated, using the estimated FEB values. Towards this end, we performed
large cross-docking experiments taking inhibitors from 20 crystallographic structures of InhA
(Fig 3) and docking them to the FFR model. The lower FEB values equivalent for these docking
experiments were taken to compute the partition dispersions from the resulting clustering.
Using this method, we seek partitions capable of detecting those binding modes that can be
considered for performing virtual screening of libraries of potential ligands.

Table 2 describes the redocking results and summarizes the cross-docking experiments for
the ligands used. Redocking experiments were performed to be used as benchmark to assess
the quality enhancements by using the FFR model of InhA (20,000 snapshots). Overall, cross-
docking experiments present FEB values close and, for some ligands, higher than redocking
experiments, as in the case of TCL300, 566, 5PP, 8PS, PTH-NAD, THT and INH-NAD. In
addition to FEB, we also considered the RMSD values. This index verifies whether docking
parameters specified in the input file are capable of reproducing the interaction and the

Table 2. Summary of docking experiments performed to analyze the clustering results. The sixth column highlights the cross-docking experiments
that showed RMSD values above 2.0 Å for the best FEB values (kcal/mol). For comparison, the third and fourth column indicates docking results (FEB and its
corresponding RMSD) obtained by reproducing the original pose of the ligand in its crystal structure.

PDB ID Ligand Redocking Cross-docking Best FEB Best FEB

FEB RMSD Best FEB RMSD Average Std. deviation

1P45 TCL400 -8.7 0.7 -7.8 0.4 -5.5 0.5

2B35 TCL300 -6.8 0.5 -8.5 1.5 -6.2 0.6

2H7L 665 -10.5 0.9 -9.7 2.3 -7.0 0.6

2H7I 566 -8.7 1.2 -8.9 1.7 -6.5 0.5

3FNE 8PC -9.9 1.1 -9.6 1.8 -6.9 0.5

3FNH JPJ -10.2 1.3 -9.9 1.8 -7.0 0.6

3FNG JPL -10.4 0.5 -9.9 1.6 -7.2 0.7

3FNF JPM -10.0 0.4 -9.1 1.9 -6.3 0.8

2H7P 468 -9.5 0.7 -9.0 2.5 -6.6 0.6

2H7M 641 -9.8 0.8 -9.1 2.4 -6.8 0.6

2H7N 744 -10.1 0.9 -9.0 2.6 -6.5 0.6

1ZID INH-NAD -10.9 2.0 -10.9 0.8 -7.0 0.9

2B36 5PP -7.9 1.0 -8.9 1.4 -6.2 0.6

2B37 8PS -7.3 0.9 -8.8 2.9 -6.1 0.7

2X22 TCU -9.9 0.5 -8.3 1.4 -5.9 0.6

2NTJ PTH-NAD -10.3 1.9 -11.8 0.8 -6.1 0.9

1BVR THT -5.8 1.7 -10.7 1.9 -8.1 0.7

2NSD 4PI -11.0 0.8 -10.2 2.0 -6.8 0.7

1P44 GEQ -11.6 0.5 -10.7 2.8 -6.4 1.6

2IDZ INH-NAD -8.3 2.8 -10.2 0.7 -6.4 0.9

doi:10.1371/journal.pone.0133172.t002
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structure of a known complex [23]. The best results are achieved when the predicted position
by the docking algorithm with the lowest energy has the RMSD value less or equal to 2.0 Å
from the crystallographic position of the ligand [51]. Table 2 highlights the RMSD values for
665, 468, 641, 744, 8PS, and GEQ since these ligands present energetically favorable interac-
tions with the MD trajectory, but their final binding-mode are significantly different from
those obtained by the crystallographic structures.

It is worth notice that the FEB and RMSD values from Table 2 show that ligands resulting
from adducts of NADH fit better in the FFR model than their crystallographic structures. For
instance, RMSD values from the lowest energy conformation for INH-NAD and PTH-NAD
ligands are around 0.8 Å in cross-docking experiments and over 1.9 Å in redocking experi-
ments. This well fit is justified by the fact that the FFR model was generated from an MD simu-
lation of the InhA-NADH enzyme complex, which in turn provides suitable clefts in the
substrate-binding cavity due to its flexibility. Remaining ligands were unable to overcome
RMSD values undertaken by crystallographic structures but they present very similar FEB val-
ues. It means that, the FFR model of 1ENY was able to produce a favorable interaction with the
ligands even when the RMSD is higher than the crystallographic conformation.

In this study, we omitted details on the level of accuracy of docking experiments since our
focus is to employ FEB values predicted from cross-docking experiments and to analyze them
to identify optimal partitioning solutions from the clustering methods used. Redocking experi-
ments were performed to take the input docking parameters for cross-docking experiments.
The statistical analysis, i.e. average and standard deviation, represents FEB variations predicted
by AutoDock4 along the production phase of the MD trajectory against each of the 20 ligands.
From Table 2, we can concluded that, except for GEQ ligand, the variation of the FEB values in
the cross-docking experiments was less than 0.9 kcal/mol in 68% of the MD conformations,
concentrating a large quantity of conformations closely to the average FEB values.

Clustering analyses on data sets from the MD trajectory
This section reports and compares the results obtained for clustering three different data sets
from structural information of the FFR model. We applied the six clustering algorithms
described in the Materials and Methods section. In this regard, we first executed the clustering
algorithms for Cavity Attributes, Cavity RMSD, and Protein RMSD data sets varying the num-
ber of clusters from 10 to 200, and afterward we extracted the medoids from every generated
partitioning. Solutions were evaluated based on statistical assessments in the predicted FEB val-
ues. We decided to start the clustering analyses from 10 since low k values shows poor level of
scatter and, consequently are unable to reflect all possible movements of a 20 ns MD trajectory.
In opposition, high numbers of clusters tend to represent better dispersion but we limit the
cluster ranges up to 1% of all MD conformations since our findings show the best partitioning
solution used cluster count less than 100. Our first set of experiments was performed with a
number of clusters range from 2 to 1,000. However, we decided to decrease this range for two
reasons: (i) the time consuming taken for performing practical virtual screening of large data-
base of ligands in an ensemble with 1,000 representative MD conformations; and (ii) the high
level of accuracy achieved by using a representative ensemble with 200 MD conformations.

To support the second reason above described, we analyzed and compared all clustering
solutions taking into account the level of coverage reached by them in terms of dispersion and
MD trajectory representativeness. The dispersions among the partitions generated from 10 to
200 clusters were analyzed by assessing the SQD values (Eq 10). The resulting SQD values by
clustering method for Attribute, Cavity RMSD and Protein RMSD data sets are in S1, S2 and
S3 Tables, respectively. While Figs 4 and 5 show the SQD values as a function of the cluster
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Fig 4. Comparative performance of partitioning clusteringmethods for the three data sets under study. Variations in the SQD values as a function of
the number of clusters for k-means and k-medoids are showed in the graphs (a) and (b), respectively. The black points identify the optimal partitioning
solutions.

doi:10.1371/journal.pone.0133172.g004
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Fig 5. Comparative performance of hierarchical agglomerative clustering methods for each of the
three data sets generated from the conformations of the MD trajectory. The SQD values as a function of
the number of clusters for, UPGMA,WPGMA, Complete andWard’s methods are showed in the graphs (a),
(b), (c) and (d), respectively. The black points identify optimal partitioning solutions.

doi:10.1371/journal.pone.0133172.g005
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count, Table 3 shows statistical assessments from the optimal partitions (lowest SQD values)
for every clustering method.

Fig 4 shows the unbalanced SQD values generated by the partition-based clustering algo-
rithms. Even though k-means and k-medoids methods are able to reach low SQD values, they
present the statistical values, which were also calculated based on FEB values, far from those
found in the MD’s full trajectory (Table 3). For instance, Fig 4a and 4b show Cavity Attributes
and Protein RMSD data sets having better SQD values than Cavity RMSD data set for both par-
titioning methods. However, Table 3 indicates the high difference on the average and variance
between the best partitions from these methods and the MD’s full trajectory, which in turn
reduces favorable representativeness to the MD trajectory. These inaccurate values can be
explained by the fact that partitioning methods work well for finding spherical-shaped clusters
in small to medium-sized dataset [43]. The practical consequence of this is represented by the
graphs from Fig 4, where the lines come up and down and show slight differences in the SQD
values between the data sets as the number of clusters varies.

Unlike partition-based clustering methods, hierarchical algorithms appear to outperform
the partitioning for all data sets and present more stable SQD values after a certain number of
clusters (Fig 5). As stated earlier, small numbers of medoids are unable to provide large width
and are therefore not able to achieve good level of similarity to the quartile values of the MD’s
full trajectory. This is evidenced by the high SQD values in the beginning of the graphs (a), (b)
and (c) from Fig 5. The Ward’s method presents low SQD values in partitions with 16, 22 and
25 clusters for the Protein RMSD data set. The average and variance values of medoids from
these partitions are: -6.62 and -0.51 for k = 16; -6.62 and -0.52 for k = 22; and -6.61 and -0.53
for k = 25. Similar to partitioning methods, these statistical values are far away from the same
statistical values found in the MD trajectory and we may conclude that such solutions are
unable to become an ensemble of representative MD conformations.

Comparing the performance from hierarchical clustering methods, Fig 5 shows that Ward’s
method improved the SQD values for all data. This method also outperforms the affinity with
the MD’s full trajectory for the Protein RMSD data set, which in turn shows the worst solutions
on other hierarchical methods. Even thoughWard’s method presents the best results for all
data sets, Table 3 shows the low variance achieved by its best partitioning, i.e. -0.51 for Ward’s
solution against -0.57 for the MD trajectory. Jain and Dubes [45] observe that Ward’s method
works better for clustering functional data, particularly that are periodic tendencies in the data,
but because distance is measured equally in all directions the clusters tend to be spherical—the
sum of squares criterion tends to merge small clusters given the same amount of separation. As
k-means algorithm, Ward’s method also is able to reach similarity dispersion, but incapable of

Table 3. Statistical evaluations for the optimal partitioning solutions obtained from the best partitions (lowest SQD value) of every clustering
method. Third column indicates the number of medoids used in the statistical assessments. Average, standard deviation and variance were calculated for
each set of medoids based on predicted FEB values. Last row indicates the statistical values for the MD’s full trajectory.

Clustering Method Data Set k cluster SQD Average Standard Deviation Variance

k-means Protein RMSD 19 0.01 -6.61 -0.70 -0.54

k-medoid Protein RMSD 66 0.01 -6.63 -0.70 -0.55

UPGMA Cavity Attribute 133 0.04 -6.58 -0.72 -0.56

WPGMA Cavity Attribute 84 0.03 -6.59 -0.73 -0.58

Complete Cavity Attribute 48 0.01 -6.59 -0.69 -0.51

Ward’s Cavity Attribute 95 0.01 -6.60 -0.68 -0.51

- MD trajectory 20,000 0.00 -6.58 -0.72 -0.57

doi:10.1371/journal.pone.0133172.t003
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achieving the similar central tendency undertakes for the entire ensemble of MD
conformations.

As expected, the partitions from Cavity Attributes data set appear to accurately determine
crucial changes that occur in the substrate-binding cavity of the MD conformations under
study. Fig 5 evidences this statement by drawing the Cavity Attributes analyses (blue lines)
with lower SQD values and Table 3 indicates the statistical significance for the hierarchical
methods regarding to the FEB values. Even though Fig 5 indicates that UPGMA, WPGMA and
Complete algorithms are well suited for clustering Cavity Attributes and Cavity RMSD data
sets, it does not mean that both data sets have the best representativeness for the MD trajectory
since the smallest SQD values are reached by the Cavity Attributes data set only. It means that
the black points, which denotes the best solutions, are in the blue line and far from the Cavity
RMSD data set line.

The representative ensemble of MD receptor conformations
One of the major challenges to perform virtual screening experiments on FFR models is to
assess to what extent the MD sampling can cover all or most of the binding cavity conforma-
tions realized in nature [9, 52]. According to Zhang et al. [33], we should take as many struc-
tures as possible to find the most representative conformations. By contrast, Landon et al. [13]
showed that a small number of representative conformations could support the development
of high-affinity inhibitors capable of binding hot spot regions. Although previous studies
apply different techniques to determine an optimal number of representative MD conforma-
tions, we validate our solution by examining the level of coverage from the entire MD ensem-
ble based on the results obtained from the cross docking experiments—as we intend to distill
crucial changes that occurs within the substrate-binding cavity of the MD trajectories. For
that, we statistically evaluated the optimal partitioning solution by accessing the binding cav-
ity of representative MD conformations (medoids) generated by six different clustering
methods.

As previously stated, hierarchical clustering methods outperform the clustering solutions
for the Cavity Attributes data set, showing statistical values similar to the 20 ns InhA MD tra-
jectory and lowest SQD values. Latter reason is determinant to decide which solution repre-
sents the original MD trajectory more accurately. Table 3 shows that Complete and Ward’s
methods have the best SQD value for Cavity Attributes data set (SQD = 0.01). Complete
method has the average and standard deviation slightly nearest to the MD’s full trajectory and
its best solution encloses less medoids than Ward’s method. Bearing this in mind, we defined
that the partitioning with 48 clusters from Complete method, that corresponds to 0.01 SQD
value, is the optimal solution for representing the MD trajectory under study.

We generated the boxplot graph to compare the data distribution between the optimal parti-
tion solution and the MD’s full trajectory based on predicted FEB values from cross-docking
experiments. Fig 6 represents the conformations range from the first quartile to the third quar-
tile with the median FEB values denoted by the black line across the central box region. The
bottom and top whiskers each extend an additional 1.5 times the distance from the median to
the first and third quartiles, but they are truncated to the minimum and maximum data values,
respectively [53]. The coverage comparison between the representative ensembles produced by
Cavity Attributes, Cavity RMSD and Protein RMSD data set and the MD’s full trajectory for
the 20 ligands analyzed is depicted in Fig 6.

As can be seen from Fig 6, the boxplots from Cavity Attributes report dispersions and cen-
tral tendencies noticeably more similar to the entire MD ensemble than the other two data sets
(Cavity RMSD and Protein RMSD). It can therefore be assumed that the representative
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ensemble generated by the proposed data set reproduces a fairly good number of docking poses
obtained when the ligands tested were docked into the MD’s full trajectory. Remember that
each ensemble of representative MD trajectory contains 48 conformations. However, only the
Cavity Attributes data set successfully embodied the highest percentage of different changes in
the binding cavity for all ligands tested. At the same time, it must be pointed out that this small
set of ligands is used to validate our approach for clustering MD trajectories relied on features
from the substrate-binding cavity. The level of convergence achieved by using this new repre-
sentative ensemble may change depending on the ligands. For instance, Fig 6 shows the poor
convergence reached by the ligands from 3FNE, 2H7P, 2H7I, 2H7L and 1P44 PDB ID on the
MD trajectory. According to our findings, the reduced ensemble of MD conformations was
capable of representing all possible moves within the substrate-binding cavity for 75% of tested
ligands. It means that, our approach performed successfully as the ensemble of representative
MD conformations represents a high level of docking results. Further, we identified that three
of the remaining 25% ligands contain the median closely to the MD trajectory (PDB IDs:
3FNE, 2H7I and 2H7L), one represents the best FEB values (PDB ID: 2H7P) and only one cov-
ers the worst FEB values (PDB ID: 1P44). Therefore, we concluded that properties from the
substrate-binding cavity and the functionality offered by Complete hierarchical algorithm can
overcome the problem of reducing the FFR model dimension to a manageable size, keeping the
most meaningful information to find novel inhibitors during a docking search. The reduced
ensemble is called a RFFR model [10, 48].

Fig 6. The ensemble of representative MD conformations generated from the best partitioning solution. The boxplot represents the trends in docking
result changes in median FEB per data set and per ligand. The data sets are represented by different colors, where, pink, yellow, and green are the data sets
used in the clustering experiments and blue is the original simulation.

doi:10.1371/journal.pone.0133172.g006
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Discussion
We have presented a strategy to generate ensembles of representative MD conformations that
are more sensitive to changes in the substrate-binding cavity properties than the widely used
RMSD approaches. This strategy uses two partitioning clustering methods (k-means and k-
medoids) and four agglomerative hierarchical clustering methods (complete linkage, UPGMA,
WPGMA andWard’s). We use them in order to compare and analyze the quality of partition-
ing outcomes between the binding cavity data set that we are proposing and two different data
sets composed by pairwise RMSD distances. To provide the optimal ensemble of representative
MD conformations, we obtained the FEB values from docking experiments with 20 known
inhibitors of the InhA enzyme by which we identified optimal partitions by statistical assess-
ments and calculated their percentage of similarity with the original MD trajectory.

The results for hierarchical algorithms highlighted their main advantages, i.e. they are more
versatile and embed flexibility regarding seeking a proper level of granularity. Comparing the
performance from clustering methods, Fig 5 shows that UPGMA, WPGMA and Complete are
good methods for clustering kinds of data sets similar to Cavity Attributes and Cavity RMSD
while Ward’s methods can be considered a good solution for all data set. However, the ability
of Ward’s in grouping objects that are as homogeneous as possible ended in partitions with
central tendencies considerably far from that found in the MD’s full trajectory. Further, the
high cohesion in the clusters generated from UPGMA andWPGMAmethods were unable to
reach low SQD values and number of clusters. Complete method looks for maximum distance
to merge a new object in a cluster and therefore it becomes more susceptible to noise and outli-
ers. Remember that the first 500 conformations from the MD trajectory were eliminated as
they constitute the equilibration phase. For this reason Complete method shows the lowest
SQD values and number of clusters for the Cavity Attributes. Hence, we conclude that due to
the farthest neighbor method the representative ensemble of MD conformations is composed
by medoids belonging to compact clusters of approximately equal diameters.

The complexity of clustering algorithms is strongly related to the number n of data objects
and the number k of clusters [54, 55]. From all experiments, CLARA was the algorithm that
required the longest execution time, considering an experiment when the number of partitions
starts from 2 until 200. The time noticeably increased since the size of the sample grows pro-
portionally to the number of clusters. It happens on the account of k-medoids is more robust
in the presence of noise and outliers. The complexity to compute and select a new medoid
from representative objects by PAM algorithm is O(k(n-k)2). Algorithms from hierarchical
agglomerative methods are in second position. They are expensive in terms of their computa-
tional and storage requirements [42]. Agglomerative methods compute the proximity matrix
that needs O(n2) time to store and keep track of the clusters. The total time required for these
algorithms is O(n2 ×logg n) where logn is the additional complexity of keeping data in a sorted
list. In contrast to the hierarchical algorithms that have the quadratic asymptotic running time
with respect to the number of objects, k-means produces a number of partitions for every k in a
linear time complexity with respect to any aspect of the problem size [54]. The complexity of
k-means algorithm is O(nkh), where the number of clusters (k) and the number of interactions
(h) are usually less than the number of objects (n).

Several works explore the relative accuracy of various clustering algorithms in extracting the
right number of clusters from generated data [43]. According to Hartigan et al. [18], we cannot
point the best clustering method since different approaches are right for different purposes.
Chen and Lonardi [15] say that the more popular methods for clustering MD conformations
are agglomerative hierarchical clustering since its linkage method is able to use the attributes
for describing the chemical structures. More specifically, linkage is the only method able to
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calculate the dissimilarities between two clusters of chemical structures using Euclidean dis-
tance. Alternatively, Shao et al. [16] found that UPGMA, k-means, and SOM outperformed
COBWEB, Bayesian, and other hierarchical clustering methods by using the pairwise RMSD
distance as measure of similarity. Although our analyses also show hierarchical agglomerative
methods as the best choices for all data sets, the k-means and k-medoids algorithms appear as
the worst choice for all data sets. Each study has its own way to generate data and to identify
the best clustering algorithm and, therefore, comes with its own advantages and drawbacks.
Indeed, an appropriate solution depends on a given analysis or application scenario, so data
collection, data representation, and interpreting the clusters found are crucial for selecting a
clustering strategy [45, 55].

Conclusions
The work we present here analyzes and combines clustering partitions using three different
data sets in order to reduce the structural redundancy in a 20 ns MD trajectory of a target pro-
tein receptor. Previous studies tackled this computational issue using only the RMSD measure
of similarity [13, 16, 17]. The present study, in addition to investigating RMSD-based cluster-
ing, also provides a novel measure of similarity, which is based on features from the substrate-
binding cavity (pairwise RMSD, volume and number of heavy atoms). It addresses the high
computational cost involved in using MD ensembles for performing virtual screening of large
libraries. We learned that the use of binding cavity properties for clustering MD trajectory is an
efficient method to distill significant conformational flexibility within the receptor binding cav-
ity. The chosen properties also outperformed other RMSD measures of similarity. This meth-
odology can be extended to other proteins/receptor, as long as the binding pocket from the
FFR model is known in advance. Further applications may include the investigation of ensem-
bles of MD conformations from other target receptor enzymes, as well as with longer MD sim-
ulation trajectories. Future directions involve the extension of this approach to the exploration
of virtual libraries of compounds where the ensemble of representative MD conformations,
shaped by properties of the substrate-binding cavity, can be investigated more effectively.
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