
Introduction to ankyrin proteins

The protein family of ankyrin repeat containing proteins 
derives its name from the ankyrin polypeptides that serve 
as anchor proteins and thus constitute critical structural 
components in the erythrocyte membrane (Bennett, 
1978). Since the discovery of this protein more than 30 
years ago, ankyrins have emerged as multifunctional pro-
teins, present in a variety of tissues and cell types, includ-
ing skeletal and cardiac myocytes (Ayalon et al., 2008; 
Hashemi et al., 2009), neurons, photoreceptors (Kizhatil 
et al., 2009a; 2009b), and epithelial cells (Kizhatil et al., 
2007a; Bennett and Baines, 2001). Although ankyrins 

fulfil important functions in many cell types, anchoring 
cytoskeletal components to the intracellular machinery 
in muscle tissues is especially important. Ankyrins are 
particularly prominent in contractile tissues and genetic 
knock-out experiments convincingly demonstrate the 
importance of ankyrins in this respect (Mohler et al., 
2003; 2004; Borzok et al., 2007). This point is further high-
lighted by the high expression of ankyrins in the muscle 
types of non-vertebrates (Chen et al., 2001), showing the 
strong evolutionary pressure that exists on the presence 
of ankyrin proteins in this type of tissue.

In higher vertebrates, there are three canonical ankyrin 
genes: Ank1 (Ankyrin-R polypeptides) (Lux et al., 1990), 
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Abstract
The ankyrin repeat is a protein module with high affinity for other ankyrin repeats based on strong Van der 
Waals forces. The resulting dimerization is unusually resistant to both mechanical forces and alkanization, 
making this module exceedingly useful for meeting the extraordinary demands of muscle physiology. Many 
aspects of muscle function are controlled by the superfamily ankyrin repeat domain containing proteins, 
including structural fixation of the contractile apparatus to the muscle membrane by ankyrins, the archetypi-
cal member of the family. Additionally, other ankyrin repeat domain containing proteins critically control 
the various differentiation steps during muscle development, with Notch and developmental stage-specific 
expression of the members of the Ankyrin repeat and SOCS box (ASB) containing family of proteins control-
ling compartment size and guiding the various steps of muscle specification. Also, adaptive responses in fully 
formed muscle require ankyrin repeat containing proteins, with Myotrophin/V-1 ankyrin repeat containing 
proteins controlling the induction of hypertrophic responses following excessive mechanical load, and 
muscle ankyrin repeat proteins (MARPs) acting as protective mechanisms of last resort following extreme 
demands on muscle tissue. Knowledge on mechanisms governing the ordered expression of the various 
members of superfamily of ankyrin repeat domain containing proteins may prove exceedingly useful for 
developing novel rational therapy for cardiac disease and muscle dystrophies.
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Ank2 (Ankyrin-B polypeptides) (Otto et al., 1991) and 
Ank3 (Ankyrin-G polypeptides) (Kordeli et al., 1995), with 
only Ank1 (Lux et al., 1990; Lambert and Bennett, 1993) 
and Ank3 (Kordeli et al., 1995; Peters et al., 1995; Kordeli 
et al., 1998; Thevananther et al., 1998; Mohler et al., 2004) 
being expressed in the skeletal muscle. The presence of 
three ankyrin genes is likely due to genome duplications 
in vertebrates. The nematode Caenorhabditis elegans 
and urochordate Ciona intestinalis possess only a single 
ankyrin gene, while the genome of arthropoda such as 
Drosophila melanogaster contains two ankyrin genes. 
One view of ankyrin evolution is that they are a solution 
to the problems of independent motility in metazoans 
by contributing membrane resilience to the forces of 
muscle contraction (Bennett and Baines, 2001; Hopitzan 
et al., 2006). Based on the obscurin-titin binding domain 

(OTBD), at the C-terminal domain of ankyrins, the 
Kordeli group described a proposed evolutionary event 
leading to present day ankyrins (Figure 1) (Hopitzan 
et al., 2006). Interestingly, a vertebrate-specific module 
of the OTBD is expressed exclusively in muscle tissues, 
after the divergence from Urochordates. Following the 
discovery and resolution of the primary sequence of 
Ankyrin proper, it soon emerged that a variety of other 
proteins contained one or more repeats of a motif that 
bear structural resemblance to a stretch of 33 amino acid 
residues present in the original Ankyrin protein, and was 
thus named ankyrin repeat (Sedgwick and Smerdon, 
1999). The ankyrin repeat is defined by specific shape-
determining residues, including a TPLH motif at posi-
tions 4 through 7 and glycines at positions 13 and 25, 
together resulting in the formation of two antiparallel 
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Figure 1. Proposed model of evolutionary events leading to obscurin-titin binding domain (OTBD) in present-day ankyrins. In vertebrates, suc-
cessive duplications led to three different modules, I, II and III. Ank1 and Ank2 have all three modules, while Ank3 has only modules I and II. 
Adapted from Hopitzan et al. (2006). (permission has been obtained from Oxford University Press for the reproduction on this figure).
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α-helices followed by either a β-hairpin or a long loop. 
Such ankyrin repeats were first identified in the sequence 
of yeast Swi6p, Chc10p and Drosophila Notch (Breeden 
and Nasmyth, 1987), and was later named after the 
cytoskeletal protein Ankyrin as the latter consists of 22 
tandem repeats of the 33 amino acid motif (Lux et al., 
1990). As ankyrin repeats are present abundantly in a 
multitude of proteins in all branches of eukaryotic life, 
the ankyrin repeat as a motif almost certainly predates the 
ancestral eukaryote living approximately 2.3 billion years 
ago. The potential of ankyrin repeat proteins to interact 
strongly with themselves has made this motif exquisitely 
suitable for functioning as part of a membrane anchor in 
muscle tissue, explaining the importance of ankyrins for 
muscle contraction. In addition, it has emerged that the 
ankyrin motif is present in many other genes expressed 
in muscle. In the present review, we aim to explore the 
various functions of the ankyrin repeat domain for skel-
etal muscle physiology and come to the conclusion that 
the ankyrin repeat domain is unusually important for the 
 biochemistry of contractile tissue.

Ankyrin repeat proteins

Following the recognition that a pan-eukaryotic ankyrin 
repeat motif existed, further investigations have identi-
fied a multitude of sometimes very different proteins that 
display such ankyrin repeats in their primary structure. 
Often these proteins as a whole, as well as the ankyrin 
repeats in particular, exhibit strong evolutionary conser-
vation, which is testimony to the versatile action ankyrin 
repeats can have in cellular function. Indeed, estab-
lished functions for ankyrin repeat containing proteins 
are diverse and include regulation of transcription, cell 
cycle, cell fate determination, cytoskeletal integrity, cel-
lular mechanosensation, and endocytosis (Mosavi et al., 
2004). The suitability of ankyrin repeat proteins to act in 
many diverse physiological settings is dependent on their 
capacity to interact with other polypeptides, especially 
with other ankyrin repeats. Furthermore, they are unique 
in their capacity to be stable both in the highly different 
redox potential settings of the intracellular and extracellu-
lar compartments (Michaely and Bennett, 1992; Sedgwick 
and Smerdon, 1999). Many investigators have speculated 
on the importance of this interaction to allow develop-
ment of complicated multicellular life forms (Marcotte 
et al., 1999). Ankyrin repeat proteins typically function in 
mediating specific protein–protein interactions, although 
recently they have been shown to be required for enzy-
matic function as well (Rider and Zhu, 2009). A literature 
search on the cellular roles of ankyrin repeats reveals a 
strikingly high proportion of muscle-specific publications 
(12% against e.g. < 4% for PH or SH2 domains), which may 
be related to the unusual strong nature of ankyrin repeat 

interactions which can easily survive the  mechanical 
strains of changes in cell shape and the changes in pH 
and oxidative status that characterizes the muscle cell. An 
exhaustive screen of the available literature on ankyrin 
repeat containing proteins in skeletal muscle is given in 
Table 1, and is subdivided with respect to subclass within 
the ankyrin repeat superfamily of proteins.

Ank1, sAnk1 and Ank3 are members of the ankyrin 
superfamily, which is composed of proteins that are 
ubiquitously expressed and typically found within the 
membrane associated cytoskeleton. Ankg119, a small 
cytoplasmic ankyrin isoform, is also important for vesi-
cle transport. Less is known regarding the roles of Asb 
family of proteins in muscle development, although 
various ASB proteins are found to be expressed in the 
skeletal muscle. The most well-studied muscle-related 
ankyrin repeat proteins are, as clearly suggested by their 
name, the muscle ankyrin repeat proteins (MARPs), 
which are generally important for stress response. While 
the approximately 50% sequence homology between 
the three different MARP proteins is relatively high, the 
tissue distribution of the MARPs is different – Cardiac 
Ankyrin Repeat Protein (CARP) is highly expressed in 
cardiac muscle, while Ankyrin Repeat Domain Protein 2, 
(ANKRD2) and Diabetes Related Ankyrin Repeat Protein 
(DARP) are most prominently expressed in skeletal mus-
cle – and there is no upregulation or compensation by 
the remaining MARPs when one or more are removed 
(Barash et al., 2007). The question as to the in vivo func-
tional redundancy of the three genes, therefore, remains 
unclear. The possible functions and importance for 
muscle-expressed members of the superfamily of ankyrin 
repeat domain containing proteins (which also include 
the Notch protein) will be the subject of this review, the 
order of the proteins described following the course of 
their  expression during myogenesis.

Skeletal muscle development

Skeletal muscle progenitor cells arise from the paraxial 
mesoderm, which forms the somites. Somites are formed 
sequentially as segments of the paraxial mesoderm on 
each side of the neural tube, from anterior to posterior, 
at regular time intervals. Somites are transient structures 
that later differentiate into different types of tissue giving 
rise to several trunk structures: sclerotome (precursor of 
the bones, cartilages and tendons), myotome (precursor 
of muscle) and dermatome (precursor of the dermis) 
(Figure 2; Brand-Saberi and Christ, 2000). The primary 
myotome is formed as the first differentiated muscle 
from the dermomyotome between E11.5 and E15.5 in 
the mouse. At this stage, some myoblasts irreversibly exit 
the cell cycle, align with each other, and fuse, forming 
multinucleated myotubes. After primary myogenesis, 
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Table 1. Ankyrin repeat proteins expressed in skeletal muscle.

Protein
Number of  

repeats Organism Function Partners References

Canonical ankyrins

sANK1 2  Linker between sarcomere and  
sarcomeric reticulum (SR)

Obscurin 11

ANK3/ANKG 24  SR and post-synaptic membrane 
organization

 19

ANKG119 13  Cell membrane organization and  
vesicle transport

ΒIΣ-spectrin 27

Ankyrin and SOCS box containing proteins

ASB2β 11 Mouse Differentiation FLNb 28

ASB5 6 Rabbit, mouse Not known  29; 30

ASB8 4 Human Not known  31

ASB11 6 Zebrafish Proliferation and maintenance of  
muscle progenitor compartment

Ckm? Unpublished data

ASB15 10, 7 Mouse, human Protein synthesis, differentiation Akt 32-34

Muscle ankyrin repeats

Ankrd2 4  Stress response Titin 
YB1

35

CARP 4  Stress response Titin 
Myopalladin

36

DARP 4  Stress response, energy metabolism Titin 
Myopalladin

37

Other ankyrin repeat proteins

Myotrophin 3 Rat Intitiation of muscle hypertrophy Actin capping  
protein; NFΚB

38

Notch 7  Muscle differentiation SKIP 39

βCAP73 6 Bovine Cell motility  40

NFΚB   Inflammation   

Tankyrase2 24 Human Cytoplasmic signal transduction Grb14 41

Myofibers

Notochord Sclerotome
Myotome

Neural tube

Surface ectoderm

Epaxial dermamyotome

Hypaxial dermamyotome

Figure 2. Caricature showing the structures in the skeletal muscle. In general, the main skeletal muscle anatomy consists of the dermomyotome, 
myotome and sclerotome, and is conserved throughout species. The dermomyotome is the source of the primary myotome, as well as contribut-
ing to the formation of the dermis, the endothelial and smooth muscle cells. The dermomyotome is divided into epaxial and hypaxial domains, 
which give rise to the epaxial muscle (deep muscle of the back) and hypaxial muscles (appendicular musculature, abdominal muscles, diaphragm, 
hypoglossal chords) respectively.
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secondary myoblasts in the dermomyotome use the 
 primary myotome as a scaffold to attach to and fuse with 
each other, giving rise to secondary myotubes (Bryson-
Richardson and Currie, 2008). A similar molecular proc-
ess of myogenesis occurs postnatally, to recruit adult 
muscle precursors into forming new myofibers during 
skeletal muscle damage.

The genetic basis for muscle formation and the sig-
naling pathways involved in patterning the myotome is 
similar in all vertebrates. Primary myogenesis is initiated 
by signals from the notochord (Sonic hedgehog), neural 
tube (Wnt) and overlying surface ectoderm (fibrob-
last growth factor) that induce (Linker et al., 2003) or 
downregulate (Hirsinger et al., 2001) the expression of 
the basic-helix-loop-helix myogenic regulatory factors: 
Myogenic factor 5 (Myf5), Myogenic factor 6 (Myf6, also 
known as Mrf4), Myogenic differentiation (MyoD), and 
Myogenin (Myog) (Charge and Rudnicki, 2004). Several 
ankyrin repeat proteins have been shown to negatively 
regulate these myogenic regulatory factors, and will be 
described below.

Notch intracellular domain (Notch ICD)

Notch is emerging as an important molecule in orga-
nogenesis. Very broadly, it can be stated that it acts to 
stimulate proliferation in progenitor compartments 
whilst simultaneously inhibiting/delaying differen-
tiation. Briefly, upon activation of the Notch ligand, 
the Notch intracellular domain (Notch ICD) is cleaved 
and released from the plasma membrane and translo-
cates into the nucleus to function as a transcriptional 
coactivator for CSL (mammalian C promoter-binding 
factor 1, also known as CBF1, Suppressor of Hairless or 
LAG1) proteins (reviewed in Weinmaster, 2000; Fortini, 
2001; 2002). Notch inhibits myogenesis caused by Myf5 
or MyoD (Kopan et al., 1994) or inhibits DNA binding 
by Mef2c and the cooperation of Mef2c for Myod and 
Myogenin DNA binding (Wilson-Rawls et al., 1999). The 
ankyrin repeat located in the ICD of Notch plays a sig-
nificant role in these inhibitory actions for myogenesis 
(Kopan et al., 1994; Wilson-Rawls et al., 1999). Thus, 
Notch ICD is a crucial determinant of compartment size 
in  pregestational muscle.

It is important to note that proper Notch-induced gene 
expression in many cases involves a process called lateral 
inhibition. Once Notch signaling is initiated by its ligands 
of the Delta family, Delta is downregulated in the Notch 
signaling cell. In turn, this causes diminished Notch sig-
naling in the neighboring cells, which react to upregulate 
Delta, amplifying differences between adjacent cells. 
Powerful negative feedback mechanisms, however, act 
on this lateral inhibition and a substantial original bias 
is essential for Notch signaling to ensue. Recent work 

showed that in the developing nervous system especially, 
the subfamily of six ankyrin repeat domain containing 
ASB proteins is important for creating the original bias 
that allows lateral inhibition to develop (Diks et al., 2008). 
We discuss below the importance of ASB proteins in later 
stages of muscle development, as they control important 
steps of muscle cell differentiation, probably at least 
partly though control of Notch signaling.

Ankyrin repeat and SOCS box containing 
 proteins (ASB)

The ankyrin repeat and SOCS box (ASB) family of pro-
teins contains two functional domains: an ankyrin repeat 
region where specific protein–protein interactions occur, 
and a SOCS box region, which serves as a generic adap-
tor directing the degradation of proteins targeted by 
the ankyrin repeat region (Kile et al., 2002). To date, 18 
mammalian ASB proteins have been identified. These 18 
ASB proteins have varying forms and numbers of ankyrin 
repeats and other novel regions, suggesting they bind 
different target proteins (Li et al., 2007). Human ASB3 
and ASB8 proteins are strongly expressed in the skeletal 
muscle (Liu et al., 2003; Chung et al., 2005), while ASB6, 
ASB7 and ASB9 proteins are weakly expressed in the 
skeletal muscle (Human Protein Atlas). In mice, Asb2, 
Asb5, Asb8, and Asb10 proteins are strongly expressed in 
the skeletal muscle (Kile et al., 2000; 2001). Interestingly, 
Asb5 was found to be expressed in both quiescent and 
activated satellite cells (Boengler et al., 2003; Seale et al., 
2004), as well as three days after differentiation (Seale 
et al., 2004). Although it has been known for some time 
that ASB proteins are expressed in skeletal muscle, the 
important functional role of ASBs in skeletal myogenesis 
has only recently received recognition. Different ASBs, 
however, have markedly different actions in muscle 
development, maybe as a consequence of the different 
number of ankyrin repeats these proteins contain.

Asb5 is expressed in the earliest phase of muscle 
development following somitogenesis in the embryo, as 
it is present in the MyoD-positive myogenic cells. Asb5 
forms together with Asb9, Asb11, Asb13 and Asb15, a 
specific subfamily within the ASB protein family, being 
highly similar to each other with respect to the primary 
protein sequence, and different from the other ASBs as 
they contain six ankyrin repeats. The functional impor-
tance of Asb5 expression is not known, but the homolo-
gous asb11 is essential for canonical Notch signaling in 
zebrafish by allowing lateral inhibition (a process that 
leads to the formation of complementary expression of 
Notch and Delta in early embryogenesis) and Notch sig-
naling is an established driver of further muscle cell dif-
ferentiation at this stage of development. Furthermore, 
in C2C12 cells, a cellular model for certain aspects of 
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myogenesis, it was shown that forced expression is 
sufficient to drive transactivation of a Notch reporter 
(Peppelenbosch, 2004). Thus, it is tempting to speculate 
that Asb5 expression helps myogenesis at this stage of 
embryogenesis. Our group identified that zebrafish asb11 
(which is evolutionarily equivalent both to human ASB9, 
expressed in muscle, and human ASB11, not expressed 
in muscle) (Human Protein Atlas) is expressed in and 
important for maintenance of the muscle precursor pool 
(Tee, 2010; Tee and Peppelenbosch, unpublished data). 
Furthermore, adult zebrafish with a mutation resulting 
in homozygous loss of asb11 were found to be less effi-
cient in muscle regeneration post-injury (Tee, 2010; Tee 
and Peppelenbosch, unpublished data). Thus, sequential 
expression of the homologous ASB5 and ASB9 driving 
Notch signaling may be an important determinant of 
muscle development.

ASB2β protein, containing 11 ankyrin repeats, was 
identified in chick embryonic as well as adult skeletal 
muscle and regulates muscle differentiation by target-
ing actin/myoblast fusion and myotube formation, and 
thus this protein seems important for this later phase of 
muscle development (Bello et al., 2009).

Finally, Asb15 is expressed in fully differentiated 
 muscle and has emerged as a regulator of protein synthe-
sis, probably via activation of mTor and MAPK pathways 
and subsequent activation of p90Rsk and p70S6 kinase 
(McDaneld and Spurlock, 2008). As protein synthesis is 
an important adaptive response towards strain and exer-
cise, this ankyrin repeat containing protein seems impor-
tant in a specific phase of myogenesis. So, in toto a picture 
emerges in which different ASB proteins govern the tran-
sition of one specific phase of muscle  development to the 
next (Figure 3).

Myotrophin/V-1 ankyrin repeat containing 
proteins

Myotrophin is a ubiquitously expressed 12 kDa cyto-
plamic protein (Sivasubramanian et al., 1996a) that was 
first isolated from the hearts of spontaneously hyperten-
sive rats (Sen et al., 1990), and two years later, in the rat 
cerebellum, where it was named V-1 protein (Taoka et al., 
1992). Protein sequencing (Taoka et al., 1992) and cDNA 
cloning (Taoka et al., 1994) revealed that Myotrophin/V-1 

NICD

hAsb9/dAsb11

MyoD Mef2C

PI3K/Akt

Myoblasts
Mesodermal Progenitor Cells

MARP

Sarcomere Sarcomere

A-bandI-band

M-band
(Myomesin)

Actin

I-band
Myofiber

Myotubes

Asb15
Asb15

Myo/V-1
+ (NFκB?)

?

Asb2ß

Titin

Myopalladin

MARP

Figure 3. Summary of the ankyrin repeat proteins in muscle biology, from specification and differentiation of muscle precursors (hAsb9/dAsb11, 
NICD, Asb15, Myo/V-1+NFΚB?, Asb2β) to the structures of the muscle fibers (MARPs).
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was composed of 117 amino acids and 78% of the entire 
molecule was occupied by two and a half internal 33 
amino acid ankyrin repeats (alternatively cdc10/SW16 
motif) arranged in tandem.

Myotrophin/V-1 is evolutionarily conserved and 
is expressed at low basal levels in every mammalian 
organ and cell type (Sivasubramanian et al., 1996b; 
Anderson et al., 1999) with the least expression in skel-
etal muscle (Sivasubramanian et al., 1996b). The levels of 
Myotrophin/V-1 were found to be elevated in tissues of 
failing human hearts (Sil et al., 1993), although the levels 
of these proteins gradually decreased in human plasma 
during the progression of heart failure (O’Brien et al., 
2003). Myotrophin/V-1 has been shown to stimulate pro-
tein synthesis in cardiomyocytes leading to hypertrophy, 
as well as the expression of a number of cardiac genes 
(e.g. β-myosin heavy chain and atrial natriuretic pep-
tide) and proto-oncogenes (e.g. c-Myc, c-Fos and c-Jun) 
(Mukherjee et al., 1993; Sivasubramanian et al., 1996a; 
Hayashi et al., 2001; Gupta et al., 2002; Gupta and Sen, 
2002; Knuefermann et al., 2002; Mosavi et al., 2002) and 
hence seems to play an important role in muscle adapta-
tion to increased load. How this relates to its functions in 
non-muscle tissue, however, remains unclear.

Myotropin/V-1 resembles a truncated form of I-κBα 
protein without the signal response domain, nuclear 
localization signal masking domain and PEST degrada-
tion domain (Knuefermann et al., 2006). The ankyrin 
repeats in Myotrophin/V-1 are capable of interacting 
with the rel domain of NF-κβ protein, which is also an 
ankyrin repeat containing protein itself (Knuefermann 
et al., 2002). Several studies have proposed that 
Myotrophin/V-1 is an extracellular growth factor, which 
functions to initiate cell surface signal transduction 
events leading to cardiac hypertrophy (Sen et al., 1990; 
Sil et al., 1998). Contrasting studies however show that 
extracellular expression of Myotrophin/V-1 does not 
provoke hypertrophy (Pennica et al., 1995; Yamakuni 
et al., 2002), and that its function is mainly intranuclear, 
acting as a modifier of NF-κB in the nucleus, possibly 
by promoting the formation of Rel family homodimers 
over heterodimers. As NF-κB activation is a predicted 
response to challenging muscle load, it is easy to envi-
sion how such a nuclear function could be implicated 
in the regulation hypertrophic response. Also, the pres-
ence of a nuclear localization signal and the absence 
of a clear secretion signal (as is present in insulin-like 
growth factor-1, to which in the original publications 
on the extracellular functioning of Myotrophin/V-1 
the protein was compared), we strongly favor the 
nuclear hypothesis, although definitive experiments 
that include the introduction of Myotrophin/V1 vari-
ants that lack the nuclear localization domain could 
help provide the final answer here (Gupta et al., 2002; 
Knuefermann et al., 2006).

Although the activity of Myotrophin/V-1 as a 
hypertrophic molecule in cardiac muscle is fairly well 
established, there is less known regarding the role of 
Myotrophin/V-1 in skeletal muscle. A study showed that 
exogenous application of Myotrophin/V-1 to skeletal 
muscle cells has hypertrophic effects, suggesting that the 
protein has at least the potential to act as hypertrophic 
molecules in such tissue. However, whether it also 
 functions as such in practice is still a very open question 
(Hayashi et al., 1998). Expression of Myotrophin/V-1 in 
myoblasts decreases during the process of muscle dif-
ferentiation, reaching an undetectable level in mature 
skeletal muscle, suggesting that it does not have a major 
physiological role in this context. In contrast, the expres-
sion of Myotrophin/V-1 is markedly increased in regener-
ating muscles of Duchenne muscular dystrophy and of its 
animal model, mdx mouse (Furukawa et al., 2003). Thus, 
further work is necessary to address this issue.

Muscle ankyrin repeat proteins (MARPs)

There are three identified proteins in the family of mus-
cle ankyrin repeat proteins (MARPs): CARP/MARP, 
ANKRD2/ARPP, and DARP. All three molecules were 
identified previously by their cytokine-like induction 
following cardiac injury and muscle denervation (CARP/
MARP) (Baumeister et al., 1997; Kuo et al., 1999; Aihara 
et al., 2000), skeletal muscle stretch (ANKRD2/ARPP) 
(Kemp et al., 2000), or during recovery after metabolic 
challenge (DARP) (Ikeda et al., 2003). These three 
isoforms share in their C-terminal region a minimal 
structure composed of four ankyrin repeats involved in 
protein–protein interaction, PEST motifs characteristic 
of proteins targeted for rapid degradation protein, and 
at the N-terminal region, a putative nuclear localization 
signal (Miller et al., 2003; Lydie et al., 2009). The members 
of this nuclear as well as cytoplasmic family of proteins 
(Zou et al., 1997; Ishiguro et al., 2002; Tsukamoto et al., 
2002) are found in the central I-band of the sarcomeres, 
where they bind to the N2A region of Titin (Miller et al., 
2003), and the amino terminus of Nebulin anchoring 
protein, myopalladin (Bang et al., 2001). The Titin-
binding domain is located in the second ankyrin repeat 
of all three proteins (Miller et al., 2003). Their function 
is as a resource of last resort to maintain muscle func-
tion despite high demands; this is supported by their 
induction following strain and muscle injury, and their 
capacity to reinforce muscle structure through interac-
tion with structural elements of contractile machinery, 
by introducing the highly robust pH- and redox-insen-
sitive ankyrin bonds as a response to excessive demand 
to the muscle tissue. In agreement with this notion, 
mice lacking all three MARP proteins show a relatively 
mild phenotype, with a trend towards a slow fiber type 
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distribution, but without differences in muscle fiber size 
(Barash et al., 2007) Thus, the expression of this family of 
ankyrin repeat domain containing proteins suggests that 
this family is a part of the machinery that helps muscle 
cells deal with excessive mechanical load.

CARP, also known as C-193, was originally isolated 
as a cytokine responsive gene in fibroblasts (Chu et al., 
1995), but its main action seems to lie in the heart, where 
it helps in controlling hypertrophic reactions by provid-
ing negative feedback to the genomic cardiac hyper-
trophic response. However, as a cytoplasmic structural 
protein, it reinforces the cardiac contractile machinery, 
a response which acts to limit the consequences of 
excessive demand on heart pump function. Support for 
this view comes from the observation that it is naturally 
upregulated during hypertrophy and downregulated 
during atrophy, and that aberrant upregulation of this 
protein can actually drive atrophy under certain con-
ditions (Baumeister et al., 1997; Stevenson et al., 2003; 
Yang et al., 2005). CARP is expressed throughout all the 
heart chambers. Furthermore, the protein is also present, 
albeit much more weakly expressed, in skeletal muscle 
(Ishiguro et al., 2002; Tsukamoto et al., 2002) where it 
probably serves similar functions, although this has been 
less well investigated. Its possible beneficial role as a car-
diac anti-hypertrophic mediator over the past 15 years 
has prompted a significant research effort into this pro-
tein. As to be expected from such an anti-hypertrophic 
gene, CARP inhibits cardiac-specific gene expression and 
hence its expression is differentially regulated between 
embryonic and adult heart (Baumeister et al., 1997; Zou 
et al., 1997; Jeyaseelan et al., 1997; Kuo et al., 1999), as 
to allow proper cardiogenesis. The protein has both a 
nuclear and a cytoplasmic action. Its role in the negative 
feedback on cardiac hypertrophic genomic responses is 
dependent on the former form of the protein (Jeyaseelan 
et al., 1997; Zou et al., 1997), although not all mechanistic 
details as to how nuclear CARP influences gene expres-
sion have been elucidated. Overexpression in cardiomyo-
cytes results in suppression of Cardiac troponin C and 
Atrial natriuretic factor transcription (Jeyaseelan et al., 
1997). CARP interacts with integral components of the 
muscle such as desmin and titin (Mikhailov and Torrado, 
2008). CARP also interacts with the transcription factor 
YB1 and inhibits the synthesis of the ventricular specific 
myosin light chain 2v (MLC-2v) (Zou et al., 1997).

As stated, the molecular function of CARP in skel-
etal muscle is less well known, but there it also seems 
mainly to act in limiting the consequences of exces-
sive load. Recently, it has been suggested that CARP 
is important for sarcomere length stability and muscle 
stiffness, as well as having an inhibitory role in regen-
erative responses of muscle tissue (Barash et al., 2007). 
CARP overexpression induces a switch towards fast-
twitch muscle fibers (Lydie et al., 2009). Interestingly, 

CARP was found to be expressed exclusively in small 
 regenerating myofibers in muscular dystrophy patients 
(Nakada et al., 2003b) as well as significantly upregu-
lated in numerous muscular dystrophy models and den-
ervation induced atrophy (Lydie et al., 2009). In vascular 
smooth muscle cells, increased CARP expression has 
been demonstrated to be associated with upregulation 
of the protein p21WAF1/CIP1, an inhibitor of the cell 
cycle (Kanai et al., 2001), which might also be seen as 
a protective response. Thus, CARP as protein involved 
in limiting damage to muscle overactivation does not 
show an absolute restriction towards the skeletal muscle 
lineage.

Like CARP, Ankrd2 acts to limit damage following 
excessive demand on muscle, and accordingly, it was first 
identified as a stretch responsive gene product upregu-
lated in stretched muscle (Kemp et al., 2000). Ankrd2 
expression is not easily induced, with upregulation only 
seen under eccentric contractions, while most other mus-
cle proteins such as MyoD, Myogenin, Muscle LIM pro-
tein and CARP are sensitive to mechanical strain under 
both isometric and eccentric contractions (Barash et al., 
2004; Hentzen et al., 2006). Thus, Ankrd2 induction seems 
to be a protection mechanism of last resort. Ankrd2 shows 
a distinctive preference for expression in slow skeletal fib-
ers and cardiac atria (Pallavicini et al., 2001; Kojic et al., 
2004). Ankrd2 interacts with transcription factors YB-1, 
PML and p53 (Pallavicini et al., 2001; Kojic et al., 2004), 
and is localized to PML bodies in proliferating myoblasts 
where it modulates their transcriptional activity. Ankrd2 
accumulates in the nuclei of myofibers located adjacent 
to severely damaged myofibers after muscle injury. It 
translocates from the I-band to the nucleus after muscle 
injury, and may participate in regulation of gene expres-
sion (Tsukamoto et al., 2008). Hence, unlike CARP, it only 
acts on the transcriptional level and thus does not serve 
as a structural component, maybe because other ankyrin 
repeat containing proteins are induced at lower levels of 
muscle stress and occupy the available binding sites for 
such proteins in the contractile machinery.

The least studied MARP is DARP, which is expressed 
in both heart (low expression) and skeletal muscle (high 
expression). It was identified by its upregulation in Type 
2 diabetes and insulin-resistant animals. Thus, DARP has 
been implicated with a potential role in energy metabo-
lism (Ikeda et al., 2003). Similar to CARP, DARP interacts 
with Titin-N2A and Myopalladin (Miller et al., 2003).

Application of ankyrin repeat proteins in 
 muscle disease

As evident from the above, the different stages of muscle 
development and their phenotypic reaction to strain 
and exercise are under the control of different ankyrin 
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repeat domain containing proteins, and accordingly 
their expression at different stages of muscle develop-
ment seems to be tightly regulated. This offers the obvi-
ous possibility that manipulating such expressions may 
be useful for dealing with muscle diseases. These hopes 
are especially fostered now that adeno-associated virus 
gene therapy introduced in human muscle has proven 
both safe and useful for the treatment of lipoprotein 
lipase (LPL) deficiency (Mingozzi et al., 2009) and thus 
introduction of specific ankyrin repeat containing pro-
teins into patients is  certainly technically and ethically 
feasible.

Muscle diseases such as muscular dystrophies or 
inherited myopathies have a general characteristic of 
progressive muscle weakness and degeneration. In the 
past decade, great advances have been made in clinical 
studies of muscle disease. The most recent advances in 
clinical and experimental studies of muscle diseases, 
such as muscular dystrophies and related myopathies, 
as well as the state of our present knowledge on these 
diseases have been recently reviewed in Cardamone 
et al. (2008) and Willmann et al. (2009). In a recent gene 
expression profiling of patients in the pre-symptomatic 
phase of Duchenne muscular dystrophy (DMD), altered 
expression of more than 30 ankyrin repeat proteins was 
identified (Pescatori et al., 2007), which makes sense in 
view of the importance this family of proteins has in deal-
ing with stress and damage to muscle tissue. Of special 
interest is the recent discovery that ankyrin proteins 
(ankyrinB and ankyrinG) bind to dystrophin and dystro-
glycan respectively, and are required for the retention 
of these proteins at the costameres (Ayalon et al., 2008), 
further highlighting the importance of the ankyrin repeat 
domain in the context of the demands muscle physiology 
makes on protein–protein interactions. This point is espe-
cially vividly illustrated by a Becker muscular dystrophy 
mutation, which reduces ankyrinB binding and impairs 
sarcolemmal localization of dystrophin-Dp71 (Aartsma-
Rus et al., 2006; Ayalon et al., 2008), causing disease; thus 
demonstrating the deleterious muscle-specific conse-
quences of ankyrin bonding failing to occur. In line with 
the role of ankyrin repeat domain proteins as a last line 
of defense against excessive muscle load is the increase 
in CARP expression with an array of muscle pathologies: 
DMD, spinal muscular atrophy, facio-scapulo-humeral 
muscular dystrophy, amyotrophic lateral sclerosis, and 
peroxisome proliferator-activated receptor induced 
myopathy (Nakada et al., 2003a; Casey et al., 2008), 
as well as the mdx, Swiss Jim Lambert (SJL) and mus-
cular dystrophy with myotitis (MDM) animal models, 
deficient respectively in dystrophin, dysferlin and titin 
(Bakay et al., 2002; Nakamura et al., 2002; Porter et al., 
2002; Nakada et al., 2003a; 2003b; Witt et al., 2004; Suzuki 
et al., 2005). Expression of MARP is reduced in dystrophic 
muscle (Pallavicini et al., 2001) but increased following 

denervation (Tsukamoto et al., 2002), in a mouse model 
of muscular dystrophy with myositis due to titin N2A 
 deletion and in heart failure (Zolk et al., 2002). Thus, 
human muscle diseases highlight the special importance 
of the ankyrin bond for muscle physiology.

In apparent agreement with such a role, the func-
tional deficiency of ankyrin repeat containing protein 
in skeletal muscle is not limited to muscle degenerative 
diseases. Ankrd2 was detected in approximately 90% of 
rhabdomyosarcoma tissues but only when accompanied 
by morphological evidence of skeletal muscle differentia-
tion of tumor cells (Ishiguro et al., 2005), suggesting that 
in the context of neoplastic dedifferentiation, expression 
of ankyrin repeat proteins correlates with functionality. 
It would be interesting to investigate the extent to which 
expression of such protein is sufficient to counteract 
dedifferentiation. In any case, the fact that all these 
muscle abnormalities are associated with expression of 
specific ankyrin repeat domain proteins fits well with 
the notion that developmental programs are control-
led (and structural elements also partially affected) by 
expression of specific ankyrin repeat domain proteins. 
On a related note, the high binding affinity of ankyrins 
in strengthening and maintaining the skeletal muscle 
structure suggests that the induction of ankyrin repeat 
containing proteins in skeletal myopathies may play a 
role in the survival of the diseased muscle fibers. Many 
clinical conditions such as heart failure, inflammatory 
myopathies, chronic arthritis, and aging are associated 
with muscle wasting and weakness. Furthermore, elderly 
or bed-ridden patients and space travelers undergoing 
long periods of muscle disuse often show signs of muscle 
weakness and atrophy. While myostatin (Sharma et al., 
2001; Zimmers et al., 2002) and glucocorticoids (Tischler, 
1994) have been studied for a role in atrophy, and both 
can induce atrophy in normal muscle, neither is required 
for disuse atrophy in vivo (Tischler, 1994; McMahon et al., 
2003). Kadarian and Hunter recently showed in vivo 
that inhibition of the ankyrin repeat containing proteins 
Bcl-3 and NF-κB1 prevents muscle atrophy (Hunter and 
Kandarian, 2004). Now that the clinical tools that allow 
temporary expression of proteins in humans are becom-
ing available, it can be envisioned that patients after long 
bed rest and muscle disuse might be treated by expres-
sion of muscle strengthening ankyrin repeat domain 
proteins in the most important skeletal muscles to aid 
rehabilitation.

Concluding remarks

Although the ankyrin bond has a general importance for 
vertebrate cellular biochemistry and physiology, its spe-
cific properties have led to it acquiring specific functions 
in muscle biology (Figure 3). The specific expression of 
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different ankyrin repeat domain containing proteins dur-
ing the various phases of muscle development allows this 
module to mediate specialized functions during muscle 
development. Obviously this allows for a high level of 
regulation, but also offers the opportunity for clinical use 
during muscle specific disease. We predict that further 
research will further reveal unique functions for ankyrin 
repeat domain containing superfamily members in 
 muscle cell physiology.
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