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Underdamped scaled Brownian 
motion: (non-)existence of the 
overdamped limit in anomalous 
diffusion
Anna S. Bodrova1,2, Aleksei V. Chechkin3,4,5, Andrey G. Cherstvy4, Hadiseh Safdari4,6, 
Igor M. Sokolov1 & Ralf Metzler4

It is quite generally assumed that the overdamped Langevin equation provides a quantitative 
description of the dynamics of a classical Brownian particle in the long time limit. We establish and 
investigate a paradigm anomalous diffusion process governed by an underdamped Langevin equation 
with an explicit time dependence of the system temperature and thus the diffusion and damping 
coefficients. We show that for this underdamped scaled Brownian motion (UDSBM) the overdamped 
limit fails to describe the long time behaviour of the system and may practically even not exist at all for 
a certain range of the parameter values. Thus persistent inertial effects play a non-negligible role even 
at significantly long times. From this study a general questions on the applicability of the overdamped 
limit to describe the long time motion of an anomalously diffusing particle arises, with profound 
consequences for the relevance of overdamped anomalous diffusion models. We elucidate our results 
in view of analytical and simulations results for the anomalous diffusion of particles in free cooling 
granular gases.

The mean squared displacement (MSD) of a Brownian particle at sufficiently long times follows the linear time 
dependence 

x t K t( )2
1 , as predicted by the second Fick’s law1 and physically explained by Einstein2 and 

Smoluchowski3. However, already in 1926 Richardson reported the distinct non-Fickian behaviour of tracer par-
ticles in atmospheric turbulence4. Today, such anomalous diffusion is typically associated with the power-law 
form

α
x t t( ) (1)2

of the MSD, where subdiffusion corresponds to values of the anomalous diffusion exponent α in the range 
0 <​ α <​ 1 and superdiffusion to α >​ 15–8. Classical examples for subdiffusion include the charge carrier motion in 
amorphous semiconductors9, the spreading of tracer chemicals in subsurface aquifers10 or in convection rolls11, as 
well as the motion of a tracer particle in a single file of interacting particles12. Superdiffusion is known from tracer 
motion in turbulent flows4 and weakly chaotic systems13, or for randomly searching, actively moving creatures 
such as microorganisms and bacteria14, albatrosses15, or humans16.

Modern microscopic techniques, in particular, superresolution microscopy, have led to the discovery of a mul-
titude of anomalous diffusion processes in living biological cells and complex fluids8,17–19. Thus subdiffusion was 
observed in live cells for RNA molecules20, chromosomal telomeres21, or submicron lipid22 and insulin granules23. 
Even small proteins such as GFP were demonstrated to subdiffuse24. In artificially crowded systems, subdiffu-
sion is also routinely observed25–28. Superdiffusion of injected as well as endogenous submicron particles, due 
to active processes such as molecular motor driven transport was reported in the cellular context29–31. Following 
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the progress of supercomputing capabilities, subdiffusion was also reported for complex molecular systems such 
as relative diffusion in single proteins32, and for constituent molecules in pure33,34 and crowded35,36 lipid bilayer 
membranes37.

Apart from the power-law anomalous diffusion (1) ultraslow processes with a logarithmic time dependence

x t t( ) log (2)2

of the MSD exist in a variety of systems8. Such logarithmic time dependencies occur in Sinai diffusion in quenched 
random energy landscapes38,39, periodically iterated maps40, colloidal hard sphere systems at the liquid-glass tran-
sition41, random walks on bundled structures42, or in single file diffusion with power-law trapping time distri-
butions for individual particles43. A particular system in which ultraslow diffusion occurs are granular gases in 
the homogeneous cooling stage, in which each particle-particle collision reduces the kinetic energy of the two 
particles by a constant factor, the so called restitution coefficient44.

The nature of anomalous diffusion of the forms (1) or (2) is non-universal and may originate from numer-
ous physical processes. Power-law anomalous diffusion, for instance, emerges for continuous time random walk 
processes with scale-free distributions of waiting times or jump lengths9,45, generalised Langevin equations of 
fractional Brownian motion with power-law correlated, Gaussian noise input46, or diffusion processes with deter-
ministic47 or random48 position dependence of the diffusivity. Ultraslow diffusion can be described in terms of 
continuous time random walks with super heavy-tailed waiting times39,49 or heterogeneous diffusion processes 
with exponential space dependence of the diffusivity50.

The motion of a particle of mass m in a thermal bath is typically described by a Langevin equation51,52. While 
the short time motion of this particle is ballistic, once collision events become relevant, a crossover to normal 
Brownian motion with MSD (1) and α =​ 1 occurs. The corresponding crossover time scale is given by the inverse 
friction coefficient. For Brownian motion at sufficiently long times it is sufficient to use the overdamped Langevin 
equation without the inertia term, to quantitatively describe the particle motion. In other words, the long time 
limit of the full Langevin equation including the Newton term ̈mx t( ) coincides with the solution of the over-
damped Langevin equation52,53.

Here we study a simple anomalous diffusion process based on the full Langevin equation with inertial term 
and a time dependent diffusion coefficient. For this underdamped scaled Brownian motion (UDSBM) we 
demonstrate that the long time limit may be distinctly disparate from the analogous overdamped process due to 
extremely persistent inertial effects, that dominate the particle motion on intermediate-asymptotic time scales. 
This a priori surprising finding breaks with a commonly accepted dogma for stochastic processes and demon-
strates that the correct mathematical description for particles with a mass in the long time limit for anomalous 
diffusion processes may be a delicate issue, that requires special care. Our findings are based on analytical calcu-
lations and confirmed by extensive stochastic simulations. Comparison to event driven simulations of granular 
gases confirm the results of our UDSBM model for a physical model based on first principles.

To proceed, we first provide a concise summary of the properties of the regular underdamped Langevin equa-
tion for Brownian motion and its overdamped limit. The following Section then briefly introduces the over-
damped Langevin description for scaled Brownian motion (SBM) corresponding to the UDSBM process without 
the inertia term. The subsequent section then introduces the full Langevin equation for UDSBM including the 
mass term. We unravel the ensemble and time averaged characteristics of this UDSBM process analytically and 
show the agreement with stochastic simulations. Both cases of power-law anomalous diffusion (1) as well as 
ultraslow diffusion (2) are considered. In particular, we also present a comparison of the UDSBM process with 
event driven simulations of a cooling granular gas. Mathematical details of the derivations are presented in the 
Methods section.

Langevin Equation with Constant Coefficients
In this section we briefly recall the basic properties of the stochastic description of Brownian motion, in particu-
lar, the transitions from the under- to the overdamped regimes. We consider both the more traditional ensemble 
averages of moments and the corresponding time averages, important for the analysis of time series obtained 
from particle tracking experiment and simulations8,18.

Overdamped Langevin equation.  Let us start with the overdamped Langevin equation with the constant 
diffusion coefficient D0

52,53,

ζ= = ×
dx t

dt
v t D t( ) ( ) 2 ( ), (3)0

fuelled by the Gaussian noise ζ(t) with δ-correlation

ζ ζ δ= −t t t t( ) ( ) ( ) (4)1 2 2 1

and zero mean 〈​ζ(t)〉​ =​ 0. The corresponding MSD has the linear time dependence

=x t D t( ) 2 (5)2
0

expected for overdamped Brownian motion of a test particle in a thermal bath. The noise strength is given by the 
diffusion constant D0.
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In the single particle tracking experiments and massive computer simulations often only few but long traces 
are available for the analysis. In this case one typically analyses the particle motion encoded in the time series x(t) 
via the time averaged MSD8,18

∫δ ∆ =
− ∆

′ + ∆ − ′ ′.
−∆

t
x t x t dt( ) 1 [ ( ) ( )] (6)

t2

0

2

Here Δ​ is the lag time and t denotes the total length of the trajectory (measurement time). An additional average 
over N time traces xi(t)

∑δ δ∆ = ∆
=N

( ) 1 ( )
(7)i

N

i
2

1

2

then produces a smooth variation of the time averaged MSD with the lag time. For Brownian motion we observe 
the equality 〈​[x(t′​ +​ Δ​) −​ x(t′​)]2〉​ ~ 〈​δx2〉​ ×​ Δ​/τ, where 〈​δx2〉​ is the variance of the underlying jump length distri-
bution, and τ is the typical time for a single jump8,18. We therefore obtain the equality

δ ∆ = ∆ = ∆x D( ) ( ) 2 ,
(8)

2 2
0

so that the system is ergodic in the Boltzmann-Khinchin sense, that is, time and ensemble averages coincide. In 
particular, we see that the time averaged MSD δ ∆( )2  is independent of the observation time t, reflecting the 
stationarity of the process.

Underdamped Langevin equation.  Now consider the underdamped Langevin equation with inertial term52,53,

γ γ ζ+ = × .
d x t

dt
dx t

dt
D t( ) ( ) 2 ( )

(9)

2

2 0 0 0

The constant damping coefficient γ0 and the diffusion coefficient D0 are connected via the Einstein-Smoluchowski- 
Sutherland fluctuation dissipation relation

γ
=D T

m
,

(10)0
0

0

where we use the convention to set the Boltzmann constant kB to unity. The two point velocity correlation func-
tion encoded by the underdamped Langevin equation (9) decays exponentially in the time difference,

γ= − − .v t v t T
m

t t( ) ( ) exp( ) (11)1 2
0

0 2 1

The associated characteristic time is defined by the inverse of the friction coefficient, 1/γ0. The MSD follows from 
the velocity correlation function via

∫ ∫

γ

= ∆ + ∆

= + − .γ

−

−

x t dt d t v t v t t

D t D e

( ) 2 ( ) ( )

2 2 ( 1)
(12)

t t t

t

2

0
1

0
1 1

0
0

0

1

0

At short times t ≪​ 1/γ0 the MSD scales ballistically, γx t D t( )2
0 0

2 while at long times t ≫​ 1/γ0 the MSD is 
given by the linear time dependence (5) of the overdamped Langevin equation. Thus the inertial effects indeed 
cancel out rapidly and are important only at times smaller than or comparable to the characteristic time scale 1/γ0.

For the underdamped Langevin equation the time averaged MSD is calculated using Eqs (6) and (7). It has the 
same time dependence as the ensemble averaged MSD, namely,

δ
γ

∆ = ∆ = ∆ + − .γ− ∆x D D e( ) ( ) 2 2 ( 1)
(13)

2 2
0

0

0

0

In addition to this ergodic behaviour, we have thus corroborated that the dynamic encoded in the overdamped 
Langevin equation (3) exactly equals the long time limit of the underdamped Langevin equation (9).

Scaled Brownian Motion
Scaled Brownian motion (SBM) designates an anomalous diffusion process based on an overdamped Langevin equa-
tion fuelled by white Gaussian noise, see below. SBM involves a power law time dependent diffusion coefficient 

α−
D t t( ) 1 54–58, stemming from a time dependence of the system temperature, see below. SBM is a quite simple 

process, as it is Markovian. Concurrently, it is strongly non-stationary. For this reason the process stays time depend-
ent even in a confining external potential and is weakly non-ergodic as well as ageing in the sense defined below55–58.

SBM should not be confused with fractional Langevin equation motion or fractional Brownian motion which 
are non-Markovian yet Gaussian processes with stationary increments whose probability density in the over-
damped limit coincides with that of SBM but have a completely different physical origin8,46,59. The underdamped 
Langevin equation for fractional Langevin equation motion was analysed in refs 27 and 60–62 and shown to 
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exhibit interesting effects such as oscillatory behaviour of the velocity correlations as well as transient ageing and 
non-ergodic behaviour. However, these decay rather quickly to make way for the expected overdamped behav-
iour. Here we show that the behaviour of UDSBM is significantly different from the fractional Langevin equation 
motion and involves persistent inertial terms.

Before starting the discussion of SBM we note that anomalous diffusion with time dependent diffusion coeffi-
cient α−

D t t( ) 1 occurs, for instance, in the famed Batchelor model for turbulent diffusion63. SBM was used to 
model the water diffusion in brain measured by magnetic resonance imaging64, the mobility of proteins in cell 
membranes65, or the motion of molecules in porous environments66. As effective subdiffusion model it was also 
used to describe biological systems67–69. Physically time dependent diffusion coefficients arise naturally in systems 
with a time dependent temperature such as melting snow70,71 or free cooling granular gases, in which the temper-
ature is given by the kinetic energy, which dissipates progressively into internal degrees of freedom of the gas 
particles44,72,73.

Scaled Brownian motion with α > 0.  The overdamped SBM Langevin equation with time dependent 
diffusion coefficient α−

D t t( ) 1 and α >​ 0 is typically used as the definition of SBM54–58,

ζ= × .
dx t

dt
D t t( ) 2 ( ) ( ) (14)

Here we consider the time dependent diffusion coefficient in the more general form

τ= + α−D t D t( ) (1 / ) , (15)0 0
1

which avoids a singular behaviour at t =​ 0, and τ0 represents a characteristic time for the mobility variation. For 
this choice D0 =​ D(0) is the initial diffusion coefficient. The specific form (15) of D(t) is primarily motivated by 
the corresponding expression derived in the theory of cooling granular gases74. In addition Eq. (15) represents a 
simple smooth function allowing us to reproduce all three regimes in the evolution of the MSD we are interested 
in in what follows, namely, ballistic, normal, and anomalous.

Given definition (15) the mean squared displacement follows in the form

∫
τ
α τ

= ′ ′ =










+





−





.

α

x t D t dt D t( ) 2 ( ) 2 1 1
(16)

t2

0
0 0

0

Thus the MSD grows linearly, 〈​x2(t)〉​ ~ 2D0t at short times t ≪​ τ0. At long times t ≫​ τ0 it scales according to Eq. (1) 
and thus covers both sub- and superdiffusive processes54–58.

The full expression for the time averaged MSD is given by Eq. (42) in the Methods section. At short times 
Δ​ ≪​ t ≪​ τ0 the diffusion coefficient is almost unchanged, D(t) ≈​ D0 and normal ergodic behaviour is observed, 
δ ∆ ∆ ∆ x D( ) ( ) 20

2 2
0 . At longer lag times τ0 ≪​ Δ​ ≪​ t we get that

δ
α τ

∆
∆

.α−

D
t

( ) 2
( / ) (17)

0
2 0

0
1

Thus the MSD and the time averaged MSD exhibit a fundamentally different (lag) time dependence, a weak 
breaking of ergodicity. In contrast to the Langevin equation with constant coefficients the time averaged MSD 
now also depends on the measurement time t, a phenomenon called ageing8.

Ultraslow SBM with α = 0.  Ultraslow SBM corresponds to the limiting case α =​ 0 for the diffusion coeffi-
cient (Equation 15)75,

τ= + .−D t D t( ) (1 / ) (18)0 0
1

In this case the MSD has the logarithmic time dependence

τ
τ

=




+





.x t D t( ) 2 log 1

(19)
2

0 0
0

At long times the MSD 〈​x2(t)〉​ converges to Eq. (2). The full expression for the time averaged MSD is given by Eq. (61) 
in Methods. For τ0 ≪​ Δ​ ≪​ t the time averaged MSD has the following mixed power-law-logarithmic scaling75

δ τ∆
∆ 


∆


 D

t
t( ) 2 log ,

(20)0
2

0 0

which again features an ageing behaviour57,58. At short times Δ​ ≪​ τ0, t ≪​ τ0 normal diffusion is observed, 
δ ∆ ∆ ∆ x D( ) ( ) 20

2 2
0 .

Results
Underdamped scaled Brownian motion.  Let us now turn to the UDSBM case and consider the under-
damped version of the Langevin equation (14) with time dependent diffusion and damping coefficients, D(t) and 
γ(t), respectively,
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γ γ ζ+ = .
d x t

dt
t dx t

dt
D t t t( ) ( ) ( ) 2 ( ) ( ) ( )

(21)

2

2

In that sense it is a straightforward extension of the Brownian Langevin equation (9) with additional multi-
plicative coefficients. We assume that the particle moves in a bath with temperature T(t) with power law time 
dependence

τ= + α−T t T t( ) (1 / ) , (22)0 0
2 2

where α ≥​ 0 and the value T0 =​ T(0) is the initial temperature. The time scale τ0 corresponds to the characteristic 
time of the temperature decay. Larger τ0 values imply a slower temperature decrease. In the limit τ0 =​ ∞​ the tem-
perature of the system remains constant, which corresponds to the case of normal diffusion. We assume that the 
bath is in local equilibrium, and the time dependent damping coefficient scales as γ t T t( ) ( )  or

γ γ τ= + α−t t( ) (1 / ) (23)0 0
1

with the initial value γ0 =​ γ(0). Thus 1/γ(t) defines the characteristic decay time of the velocity correlation func-
tion, which is now also time dependent. The choice of the damping coefficient in the form (23) appears natural 
since it is in accordance with the two paradigmatic models. The first one corresponds to a massive Brownian 
particle in a gas with continuous heating or cooling, consisting of elastically colliding particles: in this case the 
damping coefficient may be derived as a Stokes friction coefficient and is proportional to the dynamical viscosity 
which in turn scales as T 76. The second model corresponds to the self-diffusion in granular gases. In that case the 
damping coefficient is equal to the inverse velocity autocorrelation time, γ τ= −t t( ) ( )v

1 , where τ −
t T( )v

1/2 44.
The time dependent diffusion coefficient may then be related to the damping coefficient according to the (time 

local) fluctuation dissipation theorem55,77,

γ
= .D t T t

t m
( ) ( )

( ) (24)

This way we recover the diffusion coefficient (15) introduced above with the initial value D0 =​ T0/(γ0m). In 
the picture of the cooling granular gas the decrease of the granular temperature due to dissipative collisions of 
particles according to Eq. (22) was indeed observed44. Here the case α =​ 0 considered in subsection B corresponds 
to particles colliding with constant restitution coefficient78, and α =​ 1/6 to granular gases of viscoelastic particles 
colliding with relative velocity dependent restitution coefficient44. The diffusion coefficient in the granular gases 
decays according to Eq. (15)44,77,79–83 and the motion of granular particles slows down continuously while the 
inter-collision times become longer on average. The underdamped Langevin equation (21) is thus valid for both 
the description of an underdamped Brownian particle in a bath with time dependent temperature and for the 
self-diffusion in free cooling granular gases, as will be elaborated further below. The Langevin approach is justified 
if the typical temperature variation time scale τ0 is sufficiently larger than the inverse initial damping coefficient, 
τ0γ0 ≫​ 1. This time scale separation allows us to introduce the local fluctuation dissipation theorem (24). We stop 
to note that there is an alternative version of the Langevin equation with time dependent temperature derived for 
a different system of a Brownian particle interacting with a bath of harmonic oscillators84.

Introducing the power-law time dependent diffusion coefficient (15) and damping coefficient (23) into the 
Langevin equation (21) we obtain

γ
γ

τ
ζ+

+
= ×





+






.

τ

α

α

−

−

( )
d x t

dt
dx t

dt
D t t( )

1

( ) 2 1 ( )

(25)
t

2
0

1 0 0
0

3( 1)/2

0

We may expect that the first inertial term in this equation for pronounced subdiffusion (α ≪​ 1) will behave as v/t 
at long times, while the second term scales as v/t1−α. For α >​ 1 at long measurement times t the overdamped limit 
always dominates. However, as we will show there exists a long lasting intermediate regime in which the motion 
of the particles may not be described in terms of the overdamped approximation since both terms have compara-
ble contributions as long as α is sufficiently small. This means that particularly for pronounced subdiffusion as in 
the viscoelastic granular gas with α =​ 1/6 inertial effects play a significant role and thus delay the crossover to the 
true overdamped limit. In contrast, for superdiffusion this effect is negligible. In the limit of ultraslow under-
damped Langevin equation discussed below even for long times both inertial and frictional terms have the same 
order of magnitude v t/ , so the underdamped behaviour practically dominates the entire evolution of the system. 
Such effects will be clarified in detail when we consider the behaviour of MSD and time averaged MSD below.

Before proceeding we note that the bivariate Fokker-Planck equation (Klein-Kramers equation) corresponding  
to the Langevin equation (25) reads

γ
γ∂

∂
=




−
∂
∂
+
∂
∂

+
∂
∂





 .

t
P x v t

x
v

v
t v t k T t

m v
P x v t( , , ) ( ( ) ) ( ) ( ) ( , , )

(26)
B

2

2

Here P(x, v, t) is the probability density function to find the text particle with velocity v at time t. While this equa-
tion could be solved for P(x, v, t) after dual Fourier transformation in x and v as well as Laplace transformation 
with respect to time t, our strategy here is based on the Langevin equation formulation of UDSBM, as the latter 
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allows us to immediately obtain the two-point correlations to calculate the time averaged MSD. We also note that 
from the formulation (26) we could read off the formal relation γ= α−

D t T t m t t( ) ( )/[ ( )] 1 between the 
time-dependent diffusion coefficient and the time-dependent temperature and friction coefficients, correspond-
ing to the above local fluctuation dissipation relation (24). However, we stress again that UDSBM is an intrinsi-
cally non-stationary process off thermal equilibrium55.

Underdamped scaled Brownian motion with α > 0.  We first concentrate on the details of the case α >​ 0. Both 
MSD and time averaged MSD may be derived from the velocity correlation function, which has the following 
form

τ
τ γ
α τ τ

=




+
























+





−




+



















.

α α α−

v t v t T
m

t t t( ) ( ) 1 exp 1 1
(27)

1 2
0 1

0

2 2
0 0 1

0

2

0

The full expression for the MSD then reads

τ
α τ γ

τ γ
α τ

=



















+





−





+












−













+





−













−















α α

x t D t t( ) 2 1 1 1 exp 1 1 1 ,
(28)

2
0

0

0 0

0 0

0

which is valid as long as τ0γ0 ≫​ 1, which in turn is essential for the validity of our Langevin equation approach. At 
short times corresponding to τt 0 when the temperature has not changed significantly the MSD scales accord-
ing to Eq. (12). At times t ≪​ 1/γ0 compared to the scale set by the damping coefficient the MSD has the ballistic 
time dependence 〈​x2(t)〉​ ~ (T0/m)t2, which cannot be observed for the overdamped version, SBM. At intermediate 
times 1/γ0 ≪​ t ≪​ τ0 the MSD scales according to the normal diffusion law 

x t D t( ) 22
0 . At long times t ≫​ τ0 the 

MSD follows the power-law scaling for overdamped SBM, τ αα α−~x t D t( ) 2 /2
0 0

1 . All evolution regimes are 
depicted in Fig. 1 for α =​ 3/2 (blue line) and α =​ 1/2 (red line). The ultraslow case α =​ 0, shown with the black 
line, is considered below. It may be seen that at times t ≪​ τ0 the behaviour of the MSD is independent of α while 
the α dependence becomes apparent at long times.

For the derivation of the time averaged MSD we follow the same approach as described in ref. 74. It may be 
written as a sum of two terms,

δ δ∆ = ∆ + Ξ ∆( ) ( ) ( ),
(29)

2
0
2

where the first term δ ∆( )0
2  corresponds to the time averaged MSD (17) obtained in the framework of the over-

damped equation (14) for SBM. The second term specified in Eq. (43) accounts for the inertial effects. This term 
is negative and reduces the amplitude of the time averaged MSD as compared to the overdamped case. For short 
lag times Δ​ ≪​ 1/γ0 the ballistic regime δ ∆ ∆( )2 2 is obtained, as expected. For long lag times 

γ τ τ∆ α− −
 t( / )0

1
0

1
0 the inertial effects become negligible and the time averaged MSD converges to the time 

averaged MSD (17) for overdamped SBM. For superdiffusion with α >​ 1 and subdiffusion with values of α close 
to unity the result obtained in the overdamped limit, Eq. (17), holds true for almost the entire range of lag times 
Δ​ ≫​ τ0.

This behaviour changes drastically for more pronounced subdiffusion. Namely, we find that for intermediate 
lag times ∆ γ τ α− −

 t t( / )0
1

0
1  the inertial term Ξ​(Δ​) becomes comparable to the overdamped term δ ∆( )0

2 , 

Figure 1.  MSD 〈x2(t)〉 according to Eq. (28) for α > 0 and Eq. (32) for α = 0 for the parameters 
τ0 = 100000, γ0 = 1 with α = 3/2 (blue line), α = 1/2 (red line), and α = 0 (black line). At short times t ≪​ 1/γ0 
the MSD scales ballistically, 

x t t( )2 2, at intermediate times 1/γ0 ≪​ t ≪​ τ0 a linear scaling 〈​x2(t)〉​ ~ t is 
observed, while at long times t ≫​ 1/γ0 the asymptotic regime 〈​x2(t)〉​ ~ tα is reached for α >​ 0, in the case α =​ 0 we 
observe 

x t t( ) log2 .
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as demonstrated in Methods. The time averaged MSD exhibits an intermediate scaling that is not very distinctive 
in the case of superdiffusion, and even in the case of subdiffusion as long as α is close to unity. A significant cor-
rection occurs only for sufficiently small values of α, that is, for pronounced subdiffusion. This remarkable appear-
ance of significant corrections, due to persistent ballistic contributions, of the underdamped motion with respect 
to the overdamped SBM description for subdiffusion is our first main result. It demonstrates that in a simple yet 
non-stationary process the naive description of a system in terms of the overdamped theory may lead to wrong 
conclusions. To our knowledge this is the first time that such an observation for diffusive systems is made.

In Fig. 2 the results of numerical integration of Eqs (29), (42) and (43) for longer trace length t =​ 109 are pre-
sented. While for α =​ 1/2 in panel 2a) the ballistic regime for δ ∆( )2  directly crosses over to the asymptotic linear 
behaviour, for the smaller value α =​ 1/6 the additional intermediate regime is distinct, Fig. 2b). In contrast, the 
overdamped values of the time averaged MSD have a linear dependence on the lag time during the whole observa-
tion time and do therefore fail to adequately describe the behaviour of the system in the case of subdiffusion, if only 
the anomalous diffusion exponent α is sufficiently small. We note that the value α =​ 1/6 characterises the subdiffu-
sion in a granular gas with relative velocity dependent restitution coefficient, see section IVB. Also, lipid molecules 
in a gel phase bilayer display α ≈​ 0.1634. Small α values, inter alia, can also be tuned for the motion of submicron 
beads in actin meshes85 or for the generic motion in glassy systems as described by the quenched trap model86.

Ultraslow underdamped scaled Brownian motion with α = 0.  We now turn to the special case of ultraslow 
UDSBM governed by the Langevin equation (25) with α =​ 0,

γ
τ τ

γ
τ
ζ+

+
=

+
×

+
.

d x t
dt t

dx t
dt

D
t t

t( )
(1 / )

( ) 2
1 / (1 / )

( )
(30)

2

2
0

0

0

0

0

0

In this case the velocity correlation function attains the power law time dependence

τ γ
τ γ

τ
τ

=
−

+
+

.
τ γ

τ γ

−

v t v t T
m

t
t

( ) ( ) (0)
( 1)

(1 / )
(1 / ) (31)1 2

0 0

0 0

1 0
2

2 0

0 0

0 0

The MSD can be easily calculated from this velocity correlation function, yielding

τ
τ τ γ τ

=












+





+











+






−













.

τ γ−

x t D t t( ) 2 log 1 1 1 1
(32)

2
0 0

0 0 0 0

0 0

At times t ≪​ τ0 the temperature of the system does not significantly change and the MSD behaves as if the temper-
ature were constant, the case captured by Eq. (12). Namely, for t ≪​ 1/γ0 the MSD has the ballistic time dependence 
〈​x2(t)〉​ =​ (T0/m)t2 and at intermediate times 1/γ0 ≪​ t ≪​ τ0 normal diffusion of the form 〈​x2(t)〉​ =​ 2D0t is obtained. 
In the long time limit it scales logarithmically as in the case of ultraslow SBM is given by Eq. (19)75. The behaviour 
of the MSD in the ultraslow limit α =​ 0 is depicted in Fig. 1 by the black line.

The time averaged MSD for ultraslow UDSBM may also be presented as a sum of two terms according to 
Eq. (29). At short lag times Δ​ ≪​ 1/γ0 the time averaged MSD scales ballistically, δ ∆ ∆~ T m t( ) ( / ) /2

0
2 . At  

Figure 2.  Time averaged MSD in the overdamped limit, δ ∆( )0
2  from numerical integration of Eq. (42) 

(black line) and in the full underdamped case, δ ∆( )2  from Eqs (29), (42) and (43) (red line). Here the 
trace length is t =​ 109 and we show the cases α =​ 1/2 (a) and α =​ 1/6 (b). Dashed lines show the asymptotics at 
short and long lag times. For α =​ 1/2 the transition between ballistic behaviour at short times, δ ∆ ∆( )2 2, 
and the linear regime at long times, δ ∆ ∆( )2 , is observed. For α =​ 1/6 an additional transient regime 
becomes obvious due to long ranging effects of the underdamped motion. The overdamped time averaged MSD 
is linear with respect to Δ​ in both cases, δ ∆ ∆( )0

2 . The other parameters are the same as in Fig. 1. The 
shape of δ ∆( )0

2  at Δ​ ≈​ t is dominated by the pole in definition at which δ ∆ =∆→ x tlim ( ) ( )t 0
2 2 , see also 

below in Fig. 4.
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intermediate lag times τ0 ≪​ Δ​ ≪​ t/(τ0γ0) the overdamped time averaged MSD given by Eq. (20) is cancelled out 
and the underdamped time averaged MSD has the precise linear dependence on the lag time Δ​

δ τ∆
∆
.~ D

t
( ) 2

(33)
2

0 0

At longer lag times t/(γ0τ0) ≪​ Δ​ ≪​ t the main term δ0(Δ​) ≫​ Ξ​(Δ​) starts to dominate and the overdamped regime 
according to Eq. (20) is observed.

This analytical result is corroborated by Fig. 3 showing the comparison between the under- and overdamped 
behaviours of the time averaged MSD for ultraslow UDSBM. In the underdamped case the time averaged MSD 
δ ∆ ∆ t( ) /2  has the linear slope (33) while in the overdamped case it has the additional logarithmic correction 

according to Eq. (20). For the parameter values used in Fig. 3 the overdamped limit is even not visible during the 
entire evolution of the system. For all practical purposes, this means that the inertial corrections influence the 
system’s behaviour during the entire measurable time evolution. This observation accounts for the relatively small 
but apparent discrepancy between the granular gas simulations and the SBM description in ref. 74.

The persistent dominance of ballistic contributions for ultraslow UDSBM and thus the failure of the corre-
sponding overdamped ultraslow SBM description is our second main result.

Computer simulations.  Here we demonstrate that our analytical results for UDSBM obtained above are 
indeed confirmed by computer simulations of the corresponding finite-difference analogues of the Langevin 
equations (Fig. 4) and by event driven simulations of granular gases (Fig. 5).

Figure 3.  Time averaged MSD in the underdamped limit, δ ∆( )2  according to Eqs (29), (61) and (62) (red 
line), and in the overdamped limit, δ ∆( )0

2  according to Eq. (61) (black line), for ultraslow UDSBM. The 
measurement time is t =​ 109, and we chose γ0 =​ 1, τ0 =​ 30, D0 =​ 1, m =​ 1, and T0 =​ 1. For the underdamped time 
averaged MSD the crossover between the ballistic behaviour at short times δ ∆ ∆( )2 2 and the linear regime 
at long times δ ∆ ∆( )2  is observed. The overdamped time averaged MSD scales as δ ∆ ∆

∆
( ) log

t
t

0
2  

according to Eq. (20).

Figure 4.  MSD 〈x2(t)〉 and time averaged MSD δ ∆( )2  obtained from computer simulations of the 
corresponding finite difference analogue of the Langevin equation for γ0 = 1, τ0 = 30, D0 = 1, m = 1, T0 = 1. 
We show the cases of subdiffusion with α =​ 1/2 (panel a) and of ultraslow diffusion with α =​ 0 (panel b). The 
symbols depict the simulations results of the Langevin equations (25) (a) and (30) (b). The lines represent the 
analytical results (28) and (32), respectively.
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Finite difference analogue of the Langevin equation.  The finite-difference analogue of the Langevin equation may 
be implemented in the following way,

γ γ ζ= − + ×+v v t v dt D t t dt( ) 2 ( ) ( ) , (34a)i i i i i i i1

= + .+x x v dt (34b)i i i1

Here dt =​ ti+1 −​ ti is the time step, vi =​ v(ti) and xi =​ x(ti) are the velocity and coordinate of a Brownian particle at 
the time ti, respectively. ζi is a random number distributed according to a standard normal distribution generated 
using the Box-Muller transform.

The comparison of the simulations of the finite difference analogue of the Langevin equation with the theory 
for α =​ 1/2 and α =​ 0 are shown in Fig. 4a,b, respectively. The symbols denote the results of the computer simula-
tion and the lines represent the analytical results. The simulations results are in excellent agreement with our 
analytical results. At short times both MSD and time averaged MSD exhibit the expected ballistic behaviour. At 
long times the MSD scales as 

x t t( )2 1/2 for α =​ 1/2 and as  tlog( ) for α =​ 0. The time averaged MSD scales 
linearly at long lag times in both cases. For the ultraslow case with α =​ 0 this fact underlines the remarkable and 
non-negligible persistence of the ballistic effects.

Event driven simulations of granular gases.  In the event driven Molecular Dynamics simulations shown in Fig. 5 
we study a gas of hard sphere granular particles of unit mass and radius, colliding respectively with constant and 
viscoelastic restitution coefficients. Our simulations code is based on the algorithm suggested in ref. 87. The par-
ticles move freely between pairwise collisions, during the collisions the particle velocities are updated according 
to certain collisional rules. The duration time of the collisions is equal to zero, that is, the velocities of particles 
are updated instantaneously. Other details of the event driven simulations are provided in ref. 74. As a three 
dimensional granular gas is simulated, in order to compare with our theory all results for the moments should be 
divided by the factor 3.

At short times both the MSD and the time averaged MSD show a ballistic (lag) time dependence. At long times 
the ensemble averaged MSD 〈​x2(t)〉​ scales according as t1/6 for α =​ 1/6 and as  tlog( ) for α =​ 0 (see the two 
panels of Fig. 5). The time averaged MSD δ ∆( )2  scales linearly for the granular gas with constant restitution 
coefficient, as in the case of ultraslow UDSBM (Fig. 5a). The time averaged MSD shows a distinct crossover 
behaviour for a granular gas with velocity dependent restitution coefficient, as well as SBM with α =​ 1/6 (Fig. 5b). 
These observations demonstrate that both qualitatively and quantitatively the behaviour of granular gases with 
constant and velocity dependent restitution coefficients is fully captured by our UDSBM model. The intermediate 
time deviations observed in our earlier study74 are thus remedied by the inclusion of explicit long-ranging under-
damped effects. The full agreement of the UDSBM model with the granular gas dynamics is our third main result 
and thus provides an interesting and easy to analytically implement model for granular gas dynamics in the 
homogeneous cooling state for both constant and velocity dependent restitution coefficients.

Discussion
We established and studied UDSBM in terms of an underdamped Langevin equation with time dependent tem-
perature and consequently time dependent diffusion and damping coefficients. We derived the MSD and its time 
averaged analogue. As the main findings we demonstrated that the overdamped analogue of UDSBM, the well 
known SBM process, fails to adequately capture the behaviour of an UDSBM particle even in the long time limit. 
Instead for pronounced subdiffusion there exists a persistent intermediate regime for the time averaged MSD 
which leads to deviations from the overdamped solution. In the ultraslow case these corrections persist practically 
forever. For both cases with α >​ 0 and α =​ 0 the corrections to the behaviour captured by the overdamped SBM 
Langevin equation were corroborated by simulations of the finite difference UDSBM Langevin equation and 

Figure 5.  MSD 〈​x2(t)〉​ and time averaged MSD δ ∆( )2  from event driven computer simulations of granular 
gases with constant restitution coefficient (a) and relative velocity dependent restitution coefficient with α =​ 1/6 
(b). Symbols correspond to simulation results, the lines represent the analytical results of our UDSBM model, 
Eqs (28), (42) and (43) for panel (a), and Eqs (32), (61) and (62) for panel (b). Excellent agreement is observed.
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event driven Molecular Dynamics simulations of cooling granular gases. In other words, effects of inertia play a 
significant role even at relatively long times and neglecting the inertial term in the Langevin equation may lead 
to an incorrect description of the physical properties of the system. Given the high accuracy achieved by modern 
experimental tools tracing diffusing particles in complex environments or the possibility to run simulations over 
large time windows a proper description in terms of the full underdamped dynamics is thus highly important. 
This fact was demonstrated here by comparison to simulations of granular gases with time dependent tempera-
ture (kinetic energy).

SBM can readily be extended to include an inertial term, as shown here. It can therefore be directly compared 
to fractional Langevin equation motion. These two families of anomalous stochastic processes are in some sense 
opposites: fractional Langevin equation motion has stationary increments but is highly non-Markovian, whereas 
UDSBM is Markovian yet fully non-stationary. For fractional Langevin equation motion effects of ballistic contri-
butions were observed for the fractional Langevin equation, leading to oscillations in the velocity correlations60,88. 
Moreover, transient ageing and weak ergodicity breaking were observed in these systems27,61,62. However, these 
effects decay relatively quickly. For UDSBM, in particular for small or vanishing values of the anomalous diffu-
sion exponent α, these ballistic correlations turn out to be very persistent and were shown here to be necessary 
to explain the full behaviour of physical systems such as granular gases. How generic such features are for other 
non-stationary anomalous diffusion processes such as heterogeneous diffusion processes with position depend-
ent diffusion coefficient or continuous time random walks will therefore be an important question.

Our results demonstrate that good care is needed for the physically correct description of anomalous diffusion 
processes: the naive assumption of the equivalence of the long time behaviour and the overdamped description is 
not always correct and may lead to false conclusions.

Methods
Underdamped scaled brownian motion with α > 0.  The solution of the Langevin equation (25) has 
the form
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Here γ ζ=f t m D t t t( ) 2 ( ) ( ) ( ), the right hand side of Eq. (25). The velocity correlation function then yields as 
(t2 >​ t1)
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Here ν =​ τ0γ0. Changing the variables in the integral,
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Taking into account that ex is a fast growing function, we approximate the integral in the following way,
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From the ensuing velocity correlation function with =v T m(0) /0
2

0  we arrive at Eq. (27).
The time averaged MSD is defined as
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The integrand in Eq. (39) attains with the velocity correlation function (36) the following form
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α τ τ

γ
ν
α τ

ν
α τ

′ + ∆ − ′ − ′ ∆ =
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


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
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


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×



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−





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



+
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
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−











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−

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
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.

α α

α

α

x t x t A t D t t

D t

t

( ) ( ) 2 ( , ) 2 1 1

2 exp 1 1

exp 1 1 1
(41)

2 2 0 0

0 0

0

0 0

0

The time averaged MSD may be presented as the sum of two terms according to Eq. (29). The first term corre-
sponds to the time averaged MSD in the overdamped (SBM) limit,

∫δ
τ

α τ τ

τ
α α τ τ τ
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−
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
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(42)

t
0
2 0 0

0 0 0

0 0
2

0

1

0

1

0

1

The second part in the time averaged MSD reads

∫γ
ν
α τ τ

Ξ ∆ =
− ∆

′













−







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+
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−







.

α α
−∆D

t
dt t t( ) 2 1 exp 1 1 1

(43)

t
0

0 0 0 0

Short lag times: γ0,Δ  ≪  t  ≪  τ0.   From Eqs  (42) and (43) we f ind that δ ∆ ∆ D( ) 20
2

0  and 
γΞ ∆ −γ− ∆

 D e( ) 2 ( 1)/0 00 , their combination yielding the total time averaged MSD

δ γ∆ ∆ ∆ − − γ− ∆
 x D D e( ) ( ) 2 2 (1 )/

(44)
2 2

0 0 00

Long lag times: τ0 ≪ Δ ≪  t.  For the δ ∆( )0
2  term we obtain Eq. (17) from the main text, namely

δ
α τ

∆
∆

.α−

D
t

( ) 2
( / ) (45)

0
2 0

0
1

Let us now consider the additional contribution coming from Eq. (43). We can rewrite this equation via 
change of variables,

γ
λΞ ∆ = −





−

∆
− ∆



 ∆









D
t

J t( ) 2 1 , ,
(46)

0

0
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where the functions are defined as

∫λ λ

 ∆



 = τ

τ

∆

∆− + ∆
J t dx S x, exp[ ( )],

(47)

t

/

/ 1 /

0

0

as well as

= − +α αS x x x( ) ( 1) (48)

and

λ λ ν
α τ

= ∆ =




∆ 




.
α

( ) 1
(49)0

We have to consider superdiffusive and subdiffusive situations separately.

Superdiffusion, α > 1.  For superdiffusion the maximum of S(x) is achieved at the lower limit of the integral (47), 
namely

τ τ τ= ∆ − ∆ ≤ ≤ ∆ − + ∆.S x S x tmax { ( )} ( / ) 1, / / 1 / (50)0 0 0

We estimate the integral (47) with the method of steepest descent,

λ τ
λ τ

τ τ α−
∆

′ ∆
∆ − ′ ∆ − .  J S

S
S Sexp[ ( / )]

( / )
, ( / ) 1, ( / )

(51)
0

0
0 0

Therefore, we find that J gives an exponentially small contribution to Ξ​(Δ​) and

γΞ ∆ = − D( ) 2 / , (52)0 0

that is

δ

α
γ ∆

τΞ ∆

∆






 .
α−

� �
t

( )

( )
1

(53)0
2

0

0
1

Thus, the overdamped result for the time averaged MSD provides the correct result in the superdiffusive case.

Subdiffusion, 0 < α < 1.  In the subdiffusive case the maximum of S(x) is achieved at the upper limit of the inte-
gral (47),

α
∆ − −

∆
− ∆

.
α

α

−

− S x S t
t

max{ ( )} ( / 1)
( ) (54)

1

1

For longer lag times, such that

λ γ τ∆ − ∆ α−� �S t t( / 1) ( / ) 1, (55)0 0
1

that is γ τ ∆α− −
 t t( / )0

1
0

1 , the contribution of J is again exponentially small and we have—similarly to the 
superdiffusive case—that

γΞ ∆ = − .D( ) 2 / (56)0 0

Thus, due to Eq. (55) we see that

δ

α
γ τ

Ξ ∆

∆ ∆


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




α−

~
t( )

( )
1,

(57)0
2 0 0

1

and the time averaged MSD corresponds to the overdamped approximation. In contrast, for shorter lag times,

τ
γ τ

∆










α−

 

t1 ,
(58)

0
0 0

1

the method of the steepest descent is not valid. We may roughly estimate the lower bound of |Ξ​(Δ​)| as

∫γ
λ

γ
λΞ ∆ =





−

∆
− ∆

⋅




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−
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∆−D
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(59)

t

min
0

0 0

/ 1
0

0

and thus
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δ
α

Ξ ∆

∆
= .

( )

( ) (60)

min

0
2

This estimate shows that in the domain of variables (58) the contributions to the time averaged MSD stem-
ming from the terms δ ∆( )0

2  and Ξ​(Δ​) are of comparable magnitude, and thus inertial effects cannot be 
neglected in the consideration.

Ultraslow underdamped scaled brownian motion with α = 0.  Ultraslow UDSBM corresponds to the 
case α =​ 0 in which the velocity correlation function (31) and the MSD (32) may be obtained from the results of 
the previous section in the limit α →​ 0 taking into account that =α α→

−α clim logc
0

1 .
The first term of the time averaged MSD corresponds to the time averaged MSD for ultraslow SBM,
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2 1 log 1

1 log 1 1 log 1
(61)
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0 0
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0 0

0 0 0 0

The second term may be derived analogously to the previous section,
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− ∆
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(62)

t
t

t
0

0 0

0

0

where we took into account that ν =​ τ0γ0 ≫​ 1. In what follows we consider separately the limits of short and long 
lag times.

Short lag times, Δ ≪ t ≪ τ0.  From Eqs (61) and (62) we find

δ ∆ ∆ D( ) 2 ,
(63)0

2
0

and

γ
Ξ ∆ − − .γ− ∆



D e( ) 2 [1 ]
(64)

0

0

0

By combining expressions (63) and (64) we get the time averaged MSD

δ
γ

∆ ∆ ∆ − − γ− ∆
 x D D e( ) ( ) 2 2 [1 ],

(65)
2 2

0
0

0

0

as expected for short lag times, see Eq. (13) of the main text. Note the approximate sign in Eq. (65) because it is 
valid up to terms that are smaller by the factor t/τ0.

Long lag times, τ0 ≪ Δ ≪ t.  The contribution given by relation (61) can be calculated directly,

δ τ∆
∆ 

 + ∆



. D

t
t( ) 2 1 log

(66)0
2

0 0

Changing variables in the integrand of Eq. (62) we rewrite it as

γ
Ξ ∆ −






−

∆
− ∆

∆








D
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I t( ) 2 1 ( , ) ,
(67)

0

0

where we define

∫∆ =
+

.
τ

τ
ν∆

−∆+

∆

I t dy
y y

( , )
(1 ) (68)t

2
0

0

Since the integrand is decaying fast at y →​ ∞​, we can safely replace the upper limit of the integral by ∞​. Moreover 
we can neglect the term τ0 at the lower integration limit. Then we integrate by parts twice in order to extract the 
main terms such that
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∫
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2
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1

2

The integrand in the last term of the right hand side has an integrable divergence at zero, thus we can safely 
put the lower limit to zero and use89

∫ ν
γ
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ψ ν
+

= −
+
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


+ +





ν

∞

+dy y
y

log
(1 )

1
1

1 ( ) ,
(70)0 2

where γ =​ 0.5772…​ is Euler’s constant and ψ = Γz( ) d z
dz

log [ ( ) ]  is the digamma function. After plugging (70) into 
(69) and then (69) into (67) we get

γ
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

ν νD
t t t t t
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(71)

0

0

where the following definition is introduced

ν γ
ν

ψ ν= + + .C ( ) 1 ( ) (72)

Equation (71) exhibits two different behaviours in the long time limit considered here. Thus, for τ0 ≪​ Δ​ ≪​ t/ν we 
find

τ νΞ ∆ −
∆ 




+



∆


 −







 D
t

t C( ) 2 1 log ( ) ,
(73)0 0

and by combining (68) and (75) we observe the cancellation of the main terms in δ ∆( )0
2  and Ξ​(Δ​), resulting for 

the time averaged MSD in

δ τ β∆ ≈
∆
.D C

t
( ) 2 ( )

(74)
2

0 0

For longer lag times τ0 ≪​ t/ν ≪​ Δ​ ≪​ t Eq. (71) yields

τ β δ τΞ ∆
∆

∆
∆ 


∆


.� � �D C

t
D

t
t( ) 2 ( ) ( ) 2 log

(75)0 0 0
2

0 0

Thus, in this case the main term of δ ∆( )0
2  is not cancelled out, and the overdamped regime (19) of the main 

text is observed.
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