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Purpose: To investigate the biomechanical response of the cornea, lamina cribrosa (LC), and 

prelaminar tissue (PT) to an acute intraocular pressure (IOP) increase in patients with markedly 

asymmetrical glaucoma and in healthy controls.

Patients and methods: A total of 24 eyes of 12 patients with markedly asymmetrical primary 

open-angle glaucoma (POAG) and 12 eyes of 12 healthy patients were examined with spectral-

domain optical coherence tomography (SD-OCT) and ocular response analyzer (ORA) at baseline 

and during acute IOP elevation by means of an ophthalmodynamometer. The displacement of 

the LC and PT and the change in corneal hysteresis (CH) and corneal resistance factor (CRF) 

were evaluated.

Results: Following a mean IOP increase of 12.3±2.4 mmHg, eyes with severe glaucoma 

demonstrated an overall mean anterior displacement of the LC (-6.58±26.09 µm) as opposed 

to the posterior laminar displacement in eyes with mild glaucoma (29.08±19.28 µm) and in 

healthy eyes (30.3±10.9; p#0.001 and p=0.001, respectively). The PT displaced posteriorly 

during IOP elevation in all eyes. The CH decreased in eyes with severe glaucoma during IOP 

elevation (from 9.30±3.65 to 6.92±3.04 mmHg; p=0.012), whereas the CRF increased markedly 

in eyes with mild glaucoma (from 8.61±2.30 to 12.38±3.64; p=0.002) and in eyes with severe 

glaucoma (from 9.02±1.48 to 15.20±2.06; p=0.002). The increase in CRF correlated with the 

anterior displacement of the LC in eyes with severe glaucoma.

Conclusion: Eyes with severe glaucoma exhibited a mean overall anterior displacement of the 

anterior laminar surface, while eyes with mild glaucoma and healthy eyes showed a posterior 

displacement of the LC during IOP elevation. The CH decreased significantly from baseline only in 

eyes with severe glaucoma, but the CRF increased significantly in all glaucomatous eyes. The CRF 

increase correlated with the anterior displacement of the LC in eyes with severe glaucoma.

Keywords: glaucoma, lamina cribrosa, cornea, hysteresis, ophthalmodynamometer, biome-

chanics, asymmetry

Introduction
Increased intraocular pressure (IOP) is a well-known risk factor for the onset and 

progression of glaucomatous optic neuropathy (GON).1–3 It is widely accepted that 

an increase in IOP may lead to strain at the level of the lamina cribrosa (LC) and to 

a subsequent variable degree of deformation of the laminar tissue. This, in turn, may 

result in both mechanical and metabolic damage to the optic nerve fibers exiting the 

intraocular space via the laminar pores.4–6
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The biomechanical properties of the LC have been 

thoroughly investigated,7–14 with a particular focus on the 

effect of raised IOP on the deformation of the LC. Studies 

conducted in this respect have employed ex vivo models,15,16 

histomorphometric analysis of the LC in animal models,17 

and mathematical models based on human eyes.18–20

In recent years, the increased availability of high-resolution 

imaging devices, such as spectral-domain optical coherence 

tomography (SD-OCT), allowed in vivo analysis of the LC 

and prelaminar tissue (PT) in static and dynamic conditions, 

such as in human eyes with decreased IOP following filtering 

surgery21 or during an acute increase in IOP.22–24

Central corneal thickness (CCT) is also thought to be 

involved in glaucoma onset and progression, yet its role as 

an independent risk factor is still a matter of debate, as it 

could be just a surrogate for IOP. Nonetheless, other corneal 

features may prove useful to obtain more information on the 

overall biomechanical quality of the eye. The corneal proper-

ties might be linked to those of the LC and, therefore, provide 

insight into the individual response to mechanical stress at 

the level of the LC.25–30 More specifically, corneal features 

might be a surrogate for extracellular matrix (ECM) quality. 

In support of this hypothesis, it has been shown that 2 corneal 

biomechanical parameters, namely, corneal hysteresis (CH) 

and corneal resistance factor (CRF), are both reduced in 

Marfan syndrome, which is characterized by a systemic 

alteration of the ECM.31 Given that ECM components of 

the cornea, peripapillary scleral ring, and LC are coded by 

the same gene, it is plausible that they also share a similar 

biomechanical behavior.32

It is well known that primary open-angle glaucoma 

(POAG), the most common form of glaucoma worldwide, is 

often a bilateral disease. However, there are a considerable 

number of cases where the stage of the GON is markedly 

asymmetrical or even altogether unilateral. This disparity 

might reflect the presence of asymmetrical biomechanical 

properties in the contralateral fellow eye.

The aim of this study was to investigate the behavior of 

LC and PT following an induced increase in IOP via SD-OCT 

with enhanced depth imaging (EDI) in patients with mark-

edly asymmetrical glaucoma damage and in control subjects. 

A protocol similar to the one previously described by Agoumi 

et al24 was implemented.

Two corneal biomechanical properties (CH and CRF) 

were also assessed at baseline and during IOP elevation in 

all the patients enrolled.

Patients and methods
The current study was approved by the local ethics commit-

tee of the University of Bologna and adhered to the tenets 

of the Declaration of Helsinki. Written informed consent 

was obtained from all participants before any procedure. 

Mauro Cellini, MD, received from the person in Figure 1 the 

informed written consent to have the image published.

A total of 12 consecutive patients attending the Glaucoma 

Unit of the Sant’Orsola-Malpighi Hospital (Bologna, Italy) 

Figure 1 application of the ophthalmodynamometer on the infratemporal eyelid during an sD-OCT examination.
Abbreviation: sD-OCT, spectral-domain optimal coherence tomography.
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with a diagnosis of POAG and a marked asymmetry in the 

GON stage between fellow eyes were recruited in the study. 

A total of 12 control subjects were enrolled among patients 

attending the eye clinic of the same hospital for a routine 

review without any specific ocular condition.

Inclusion criteria for glaucoma patients were the fol-

lowing: clinical diagnosis of glaucoma based on visual 

field (VF) testing, optic disc and retinal nerve fiber layer 

(RNFL) clinical appearance, open angle at gonioscopy, 

asymmetrical VF damage with 1 eye presenting a mean 

deviation (MD) greater than or equal to -6 dB and the fel-

low eye presenting an MD less than or equal to -12 dB, 

a satisfactory IOP control (#21 mmHg) on medications, 

and a history of IOP .21 mmHg prior to commencement 

of treatment.

Exclusion criteria for glaucoma patients were the 

following: threat to fixation, past ocular history of any 

laser or surgical procedure, non-glaucomatous optic neu-

ropathies, suboptimal IOP control on current medications 

(IOP .21 mmHg) and/or recent evidence of disease pro-

gression, poor fixation due to ocular (eg, low vision and 

nystagmus) or cognitive conditions (eg, dementia, poor 

cooperation), or age ,18 years. Patients with a connective 

tissue disease (such as Marfan syndrome) or diabetes mellitus 

were also excluded from the study.

Inclusion criteria for control subjects were unremark-

able ocular condition with a healthy optic disc and RNFL 

appearance, IOP within 21 mmHg, and normal VF. Exclusion 

criteria for normal subjects were past ocular history of any 

laser or surgical procedure, poor fixation, age ,18 years, 

connective tissue diseases, or diabetes mellitus.

All the patients underwent a complete eye examination, 

including visual acuity assessment, Goldmann applanation 

tonometry (GAT), gonioscopy, and anterior and poste-

rior segment biomicroscopy. At least 2 previous reliable 

VF tests (with fixation losses, false positives, and false 

negatives #20%) were required for each glaucoma patient. 

One additional VF test was performed with the same 

perimeter and strategy (Humphrey 24-2 SITA Standard; 

Carl Zeiss Meditec, Dublin, CA, USA) in every partecipant 

to the study to collect MD and pattern standard deviation 

(PSD) data. 

Based on the perimetric indices, glaucomatous fellow 

eyes were divided into 2 groups: mild glaucoma when the 

MD ranged from -2 to -6 dB or severe glaucoma when the 

MD was equal or lower than -12 dB. The control group had 

an MD greater than or equal to -2 dB.

spectral-domain optimal coherence 
tomography
SD-OCT has greatly enhanced diagnostic capabilities in 

ophthalmology. The low-coherence interferometer integrated 

into the device allows the acquisition of in vivo detailed 

cross-sectional images of the ocular structures. The refer-

ence and the reflected beams are simultaneously recorded by 

a spectrometer to generate A-scans from Fourier-transform 

time-delay signals.

A Heidelberg Spectralis OCT (Heidelberg Engineering, 

Heidelberg, Germany) was employed in this study. During 

the scan, the EDI mode was turned on to obtain enhanced 

details of deep ocular tissues and, therefore, facilitate the 

subsequent analysis. A radial scanning pattern (12 high-

resolution 15° spaced radial scans each averaged from 

30 B-scans with 768 A-scans per B-scan) was centered on 

the optic nerve of each eye included in the study. Glaucoma 

patients had both eyes imaged, whereas a randomly selected 

eye was scanned in each control subject.

The eye tracker function available in the Spectralis OCT 

was capable of obtaining a baseline image for each eye and 

to repeat the scan at the same position during the applica-

tion of an ophthalmodynamometer on the temporal side of 

the inferior eyelid. Images with insufficient details were 

discarded, and the scans were repeated to obtain a quality 

level appropriate for further analysis.

Ocular response analyzer (Ora)
Corneal biomechanics data were collected with the ORA 

(Reichert Ophthalmic Instruments Inc, Depew, NY, USA). 

The device, which is similar to a noncontact tonometer, 

detects the change of shape of the corneal surface, while an 

air jet is delivered by the instrument. During the examina-

tion, the cornea is first deflected inward by the air puff, and 

then it regains its prolate configuration when the air stimulus 

terminates. An integrated infrared beam allows the recording 

of the forces required to applanate the cornea during the 

inward and outward movements of the corneal surface. The 

data collected on the force-in and force-out applanations are 

then used to calculate 2 biomechanical parameters, CH and 

CRF. The CH value provides a better characterization of the 

corneal contribution to IOP measurement than CCT alone. 

The CRF is a measure of corneal resistance, which is rela-

tively independent of IOP.33

An ORA examination was performed at baseline and 

during IOP elevation by means of an ophthalmodyna-

mometer applied to the temporal side of the lower eyelid. 
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Four measurements were collected for each eye, and the one 

with the highest quality score was selected for analysis.

Each patient underwent the ORA examination following 

the SD-OCT scan, with an interval of at least 1 hour between 

the 2 examinations. This was considered a sufficient time to 

allow each eye to recover from the previous ophthalmody-

namometer compression.

iOP elevation
An ophthalmodynamometer (Inami, Tokyo, Japan) was used 

to increase the IOP during the SD-OCT and ORA examina-

tions. The procedure was similar to the one employed by 

Agoumi et al.24

The device was applied at the temporal side of the lower 

eyelid and pressure was exerted to reach a reading of ~30 

Pa (Figure 1). An IOP check was performed with a Tono-

Pen tonometer (Innova Medical Ophthalmics, Toronto, 

ON, Canada) at baseline and during the application of the 

ophthalmodynamometer. The device was held in place during 

collection of the second set of OCT scans and the second set 

of ORA measurements. Both the tests took ~,1 min each. 

No patient experienced pain during the application of the 

ophthalmodynamometer; only a sensation of pressure on 

the globe was reported. No patient experienced changes in 

the quality or comfort of vision after the pressure elevation.

sD-OCT scan processing and analysis
Among the 12 radial scans obtained during each examina-

tion, 2 corresponding sets of 4 images that provided the best 

anatomical details at baseline and during IOP elevation were 

selected for each eye.

The images were processed with open-source vector 

graphics software (Inkscape, http://www.inkscape.org). 

A reference line connecting both sides of the termination of 

the retinal pigment epithelium–Bruch’s membrane interface 

was drawn. A set of equidistant lines perpendicular to the 

reference line were traced to intersect the anterior edge of 

the PT, and the image was saved. Then the same lines were 

drawn further down to intersect the anterior edge of the LC, 

which is seen as a highly reflective tissue beneath the PT, and 

a second image was saved. The same process was repeated 

for all the set of images acquired at baseline and during IOP 

elevation (Figures 2–4).

The vertical distances from the reference line to both 

the anterior limit of the PT and the LC were measured with 

ImageJ (National Institutes of Health, Bethesda, MD, USA), 

Figure 2 Vertical distances from the line connecting the Bruch’s membrane ends to the anterior surface of the lamina cribrosa and the prelaminar tissue at baseline (A and C) 
and during iOP elevation (B and D) in an eye with mild glaucoma.
Abbreviation: iOP, intraocular pressure.
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Figure 3 Vertical distances from the line connecting the Bruch’s membrane ends to the anterior surface of the lamina cribrosa and the prelaminar tissue at baseline (A and C) 
and during iOP elevation (B and D) in an eye with severe glaucoma.
Abbreviation: iOP, intraocular pressure.

Figure 4 Vertical distances from the line connecting the Bruch’s membrane ends to the anterior surface of the lamina cribrosa and the prelaminar tissue at baseline (A and C) 
and during iOP elevation (B and D) in a control eye.
Abbreviation: iOP, intraocular pressure.
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after calibrating the software with the scale bar included in 

each image.

The prelaminar and laminar tissue displacements were 

calculated as the mean difference between the corresponding 

vertical distances from the reference line in the baseline and 

elevated IOP conditions. Positive values were suggestive of 

an overall posterior movement of the tissues, whereas nega-

tive values were interpreted as an overall anterior displace-

ment of the tissues examined. All the images were analyzed 

by the same trained examiner (CG) who was masked on the 

source of the images.

statistical analysis
The Mann–Whitney U-test, Wilcoxon signed-rank test, and 

Friedman test were employed as appropriate for statistical 

analysis. Correlations were evaluated using Spearman corre-

lation coefficients. The statistical analysis was performed 

with R (R software; provided in the public domain by the 

R Foundation for Statistical Computing, Vienna, Austria; 

available at www.r-project.org), and a p-value ,0.05 was 

considered statistically significant.

Results
A total of 24 eyes of 12 patients with POAG and a significant 

degree of asymmetry in the stage of the disease between 

fellow eyes and 12 eyes of 12 healthy subjects were recruited 

for the study. The demographic data of the 3 groups are 

represented in Table 1.

Baseline ocular data (VF, CCT, IOP, CH and CRF) are 

shown in Table 2. As expected, at baseline there was a signifi-

cant difference in the VF indices among the groups. Moreover 

the b-CRF (baseline CRF) was significantly lower in eyes 

with mild glaucoma (8.61±2.3 mmHg) and severe glaucoma 

(9.02±1.48 mmHg) compared with controls (p=0.039 and 

p=0.034, respectively).

Table 3 provides the details on IOP measured with GAT, 

Tonopen, and ORA.

The increase in IOP and the forces exerted following the 

application of the ophthalmodynamometer during both the 

OCT scans and the ORA measurements were not statistically 

different among the 3 groups (Table 4). The ophthalmody-

namometer-induced CH (i-CH) was significantly lower in 

eyes with mild glaucoma (7.23±2.29 mmHg; p=0.011) and 

in eyes with severe glaucoma (6.92±3.04 mmHg; p=0.003) 

compared to controls (10.59±1.78 mmHg; Table 5). The 

i-CH was also significantly lower than baseline CH (b-CH) in 

eyes with severe glaucoma (6.92±3.04 vs 9.30±3.65 mmHg; 

p=0.012), whereas no significant changes were detected in 

the other groups (Table 6).

The ophthalmodynamometer-induced CRF (i-CRF) 

was significantly higher in eyes with severe glaucoma 

(15.2±2.06 mmHg) than in eyes with mild glaucoma and in 

controls (12.38±3.65 and 11.27±1.46 mmHg; p=0.027 and 

p=0.019, respectively). The i-CRF was also significantly 

higher than the b-CRF in both eyes with mild and severe 

glaucoma (12.38±3.64 vs 8.61±2.30 mmHg and 15.20±2.06 

vs 9.02±1.48 mmHg; p=0.002 and p=0.002, respectively), 

whereas no significant change was observed in the control 

group (11.27±1.46 vs 10.64±1.28, p=0.275).

In terms of the anterior laminar surface response to 

the ophthalmodynamometer compression, we found that 

the laminar displacement (LD) was not statistically dif-

ferent between eyes with mild glaucoma and control eyes 

(29.08±19.28 and 30.3±10.9 µm, respectively; p=0.833). On 

the other hand, eyes with severe glaucoma exhibited an over-

all mean anterior displacement of the LC (-6.58±26.09 µm), 

which was significant when compared with both the con-

trol and mild glaucoma groups (p=0.001 and p,0.001, 

respectively).

It was also observed that the PT displacement (PTD) was 

reduced in eyes with severe glaucoma (13.08±17.06 µm) 

when compared with the control group (36.0±17.9 µm; 

p=0.001). On the other hand, the PTD in eyes with mild 

glaucoma (22.33±33.14 µm) was not significantly different 

to the PTD in eyes with severe glaucoma and in controls 

( p=0.518 and p=0.131, respectively). The data are sum-

marized in Table 3.

Finally, we found a correlation (r=-658; p=0.019) 

between the anterior LD and an increase in CRF in the severe 

glaucoma group (Figure 5).

Discussion
The biomechanical properties of the LC have attracted the 

interest of many researchers in recent years as they might 

lead to a better understanding of glaucoma pathophysiology.34 

An increase in the IOP is thought to induce a strain on the 

laminar tissue that may put the integrity of the optic nerve 

fibers at risk. The damage induced on the axons might be 

the result of a mechanical stress,35 a vascular impairment,36 

an increase in the translaminar pressure gradient,12,37–40 or a 

combination of all these mechanisms.

Table 1 Demographic data of the participants to the study

MG–SG patients Controls p-valuea

age, years 59.5±4.6 (53 to 67) 58.8±6.4 (50 to 73) 0.298
gender, M:F 10:2 10:2 –
ethnicity 100% caucasian 100% caucasian –

Note: aMann–Whitney U-test.
Abbreviations: F, female; M, male; Mg, mild glaucoma; sg, severe glaucoma.
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The importance of IOP on the dynamics of the optic 

nerve structures has been highlighted by the observation of 

an anterior displacement of the optic nerve surface after IOP 

reduction both surgically and with medical treatment.41–43 

On the other hand, it has been demonstrated that an increase 

in the IOP may result in a posterior displacement of the optic 

nerve head (ONH).22,23 Similar outcomes have been achieved 

in experimental studies on animals.44

The availability in recent years of SD-OCT with EDI 

allowed the study of the LC and PT with unprecedented 

accuracy. This advanced technology provides consid-

erable details even when the globe is compressed and 

deformed by the application of an external force via an 

ophthalmodynamometer.24

We observed that an average IOP increase of 12.3±2.4 

mmHg determined a mean posterior displacement of the LC 

both in healthy controls and in eyes with mild glaucoma. 

However, in eyes with advanced glaucoma, we detected a 

mean anterior displacement of the LC.

All the groups demonstrated a mean posterior displace-

ment of the PT, although it was significantly lower in 

the advanced glaucoma group compared with the control 

group.

Anterior laminar surface response to mechanical strain 

has been investigated in different study cohorts and with 

different protocols. This, together with the high degree of 

biomechanical complexity of the LC and scleral canal, might 

explain the dissimilar and sometimes contradictory results 

obtained.

Agoumi et al24 did not find any significant displacement 

of the LC with SD-OCT following an induced IOP increase 

with an ophthalmodynamometer in both glaucoma and 

control subjects. Differences in the baseline characteristics of 

the patients investigated, including the glaucoma stage (the 

average MD was -2.8 dB in the study by Agoumi et al), might 

at least partially explain the inconsistency of our results.

Fazio et al45 found that a biphasic behavior of the LC was 

dependent on the IOP level in healthy subjects of European 

descent. The LC displaced posteriorly until the IOP elevation 

from baseline was within 12 mmHg; after that value, the LC 

displaced anteriorly.

Previous studies on healthy enucleated human eyes15,16 

and primate eyes with 3D histomorphometric analysis46 

demonstrated a variable response of the lamina to an 

increased IOP, ranging from a posterior displacement to a 

nonsignificant displacement.

On the basis of mathematical models, some authors 

described the behavior of the laminar tissue as the result of the 

biomechanical and anatomical properties not only of the LC 

itself but also of the adjacent scleral tissue.19,20 Recent studies 

supported the hypothesis of a high degree of complexity in 

the interaction between the laminar tissue and the peripapil-

lary scleral tissue, which may cause a variable response to 

the mechanical strain exerted by IOP.47–54

We found that eyes with advanced glaucoma had an 

overall mean anterior displacement of the LC during acute 

IOP elevation, which is contrary to the posterior displacement 

observed in mild glaucoma and healthy eyes. We speculate 

Table 2 Values at baseline and comparison among groups

MG patients SG patients Controls p-valuea 
(MG–SG)

p-valueb 
(MG–
controls)

p-valueb 
(SG–
controls)

VF MD, dB -4.21±1.51 (-2.32 to -5.96) -16.56±5.76 (-12.13 to -21.67) -1.60±0.65 (-0.68 to -1.98) 0.024 0.006 0.002
VF PsD, dB 3.54±0.87 (2.52 to 5.11) 10.95±3.51 (6.62 to 15.31) 1.35±0.24 (1.12 to 1.64) 0.019 0.002 0.001
CCT, µm 517.4±10.16 (510.1 to 539.7) 514.9±12.6 (496.8 to 540.2) 517.8±11.41 (500.6 to 540.9) 0.695 0.910 0.492
b-iOP, mmhg 15.4±5.4 (8.3 to 20.8) 16.6±5.4 (9.8 to 20.7) 13.7±2.5 (11.4 to 18.6) 0.425 0.425 0.250
b-Ch, mmhg 8.62±2.16 (7.2 to 10.4) 9.30±3.66 (7.1 to 11.6) 10.96±1.79 (9.7 to 12.2) 0.970 0.095 0.596
b-CrF, mmhg 8.61±2.3 (7.1 to 10.1) 9.02±1.48 (8.1 to 10.0) 10.64±1.28 (9.2 to 10.1) 0.769 0.039 0.034

Notes: aWilcoxon signed-rank test; bMann–Whitney U-test.
Abbreviations: b-Ch, baseline corneal hysteresis; b-CrF, baseline corneal resistance factor; b-iOP, baseline intraocular pressure; CCT, central corneal thickness; MD, mean 
deviation; MG, mild glaucoma; PSD, pattern standard deviation; SG, severe glaucoma; VF, visual field.

Table 3 Baseline iOP with gaT, Tonopen, and Ora

GAT IOP, 
mmHg

Tonopen IOP (b-IOP), 
mmHg

ORA IOPcc, 
mmHg

p-valuea

Mg patients 15.4±3.9 (12 to 19) 15.4±5.4 (8.3 to 20.8) 16.8±4.9 (10 to 23) 0.293
sg patients 16.5±4.8 (10 to 19) 16.6±5.4 (9.8 to 20.7) 18.2±5.2 (14 to 23) 0.187
Controls 13.3±2.5 (11 to 18) 13.7±2.5 (11.4 to 18.6) 14.7±2.9 (10 to 19) 0.293

Note: aFriedman test.
Abbreviations: b-iOP, baseline intraocular pressure; gaT, goldmann applanation tonometer; Mg, mild glaucoma; Ora, ocular response analyzer; sg, severe glaucoma.
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that the different behavior reflected progressive changes 

at the level of the laminar and peripapillary scleral tissue. 

An increasing stiffening of the laminar tissue relative to 

the surrounding sclera might explain the trend toward an 

anterior bowing of the anterior laminar surface in eyes with 

advanced glaucoma during IOP elevation as opposed to that 

noted in eyes with mild glaucoma and in healthy eyes. The 

opposite direction of displacement observed in fellow eyes 

might reflect the progressive anatomical and biomechanical 

changes occurring within the ocular tissues as the glaucoma 

stage progresses.

The CCT was previously found to be correlated with 

optic disc features and the likelihood of VF progression in 

glaucoma.25–29 However, CCT is not considered a reliable 

reflection of the rigiditiy of the ocular structures and may 

not provide a significant description of the biomechanics 

of the eye.55 Hence, CCT values, which were found to be 

not significantly different among the groups, have probably 

a marginal role in the interpretation of our results. Corneal 

biomechanical parameters, such as CH and CRF, are much 

more closely related to ocular biomechanics and have been 

correlated to glaucoma onset and progression.30 While CH is a 

measure of the viscoelastic dampening features of the cornea, 

CRF indicates the whole viscoelastic resistance. These indices 

might also be linked to the overall quality of the ECM.31

We performed an ORA examination at baseline and 

during an ophthalmodynamometer-induced increase in IOP. 

We found that b-CH was not significantly different among 

the groups. On the other hand, the CRF was significantly 

lower in eyes with glaucoma than in control eyes, but no 

significant difference was found between the eyes with mild 

and severe glaucoma.

During the ophthalmodynamometer-induced increase 

in the IOP, mean CH was significantly lower in eyes with 

mild and advanced glaucoma than in the controls. However, 

compared with baseline, only eyes with advanced glaucoma 

exhibited a significant decrease in CH.

The CRF during IOP elevation was significantly higher in 

eyes with severe glaucoma compared with the other groups. 

The mean CRF value was also significantly higher than 

baseline in eyes with mild and severe glaucoma. We also 

observed a correlation between the increase in CRF during 

IOP increase and the anterior displacement of the LC in the 

severe glaucoma group.

The corneal behavior observed in our experiment is in 

line with a previously described viscoelastic model of the 

cornea, where a stiffening of the corneal structure (CRF 

increase) is accompanied by the parallel reduction of the 

viscous component (CH reduction).56 A CH reduction and a 

CRF increase, such as the one observed in eyes with glau-

coma during IOP elevation, might be linked to an LC with 

an impaired capacity to dampen IOP changes. This might 

increase the susceptibility to glaucoma damage.

A reduction in the CH was previously noted in glaucoma-

tous subjects57–59 and was thought to be related to deteriora-

tion in VF.28,60–64 The potential role of CH in glaucoma as 

Table 4 iOP during ophthalmodynamometer application and forces applied

MG patients SG patients Controls p-valuea 
(MG–SG)

p-valueb 
(MG–controls)

p-valueb 
(SG–controls)

i-iOP (OCT), mmhg 28.3±5.7 (22.2 to 35.1) 29.2±5.4 (21.8 to 32.4) 27.4±5.2 (19.7 to 33.1) 0.402 0.387 0.429
i-OCT (Ora), mmhg 27.9±6.5 (19.8 to 38.1) 28.7±6.4 (18.9 to 32.0) 25.3±6.7 (17.9 to 31.3) 0.337 0.214 0.465
Ophthalmodyn (OCT), Pa 31.6±2.4 (29 to 36) 31.2±1.7 (29 to 34) 30.7±1.1 (28 to 33) 0.311 0.472 0.396
Ophthalmodyn (Ora), Pa 30.3±1.5 (27 to 32) 30.6±1.5 (28 to 34) 30.8±1.0 (29 to 32) 0.347 0.294 0.286

Notes: aWilcoxon signed-rank test; bMann–Whitney U-test.
Abbreviations: iOP, intraocular pressure; i-iOP (OCT), iOP on ophthalmodynamometer application during OCT scan; i-iOP (Ora), iOP on ophthalmodynamometer 
application during Ora measurement; Mg, mild glaucoma; Ora, ocular response analyser; OCT, optimal coherence tomography; Ophthalmodyn (OCT), force applied 
during OCT scan; Ophthalmodyn (Ora), force applied during Ora measurement; sg, severe glaucoma.

Table 5 Values during iOP elevation and comparison among groups

MG patients SG patients Controls p-valuea 
(MG–SG)

p-valueb 
(MG–controls)

p-valueb 
(SG–controls)

i-Ch, mmhg 7.23±2.29 (5.8 to 8.7) 6.92±3.04 (5.1 to 8.9) 10.59±1.78 (9.3 to 11.8) 0.519 0.011 0.003
i-CrF, mmhg 12.38±3.65 (10.1 to 14.7) 15.2±2.06 (13.7 to 16.7) 11.27±1.46 (10.2 to 12.3) 0.027 0.922 0.019
lD, µm 29.08±19.28 (16.8 to 41.3) -6.58±26.09 (-23.2 to 26.1) 30.3±10.9 (22.5 to 38.1) ,0.001 0.833 0.001
PTD, µm 22.33±33.14 (1.3 to 43.4) 13.08±17.06 (2.2 to 23.9) 36.0±17.9 (23.2 to 48.8) 0.518 0.131 0.001

Notes: aWilcoxon signed-rank test; bMann–Whitney U-test.
Abbreviations: i-Ch, induced corneal hysteresis; i-CrF, induced corneal resistance factor; i-iOP, induced intraocular pressure; lD, laminar displacement; Mg, mild 
glaucoma; PTD, prelaminar tissue displacement; sg, severe glaucoma.
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a surrogate for ONH biomechanics is also suggested by the 

observation that in glaucomatous eyes, CH is correlated to 

optic nerve surface deformation.23,65 Corneal biomechanical 

properties might therefore give indirect information on the 

structural features and vulnerability of the ONH. However, 

other authors reported a lack of correlation between ORA 

parameters (both CH and CRF), MD, and the severity of 

glaucoma.66

Although we observed a lower CH in the glaucoma 

groups compared with the control group, the difference 

among the groups failed to reach statistical significance.

In summary, we found that in patients with markedly 

asymmetrical glaucoma, eyes with advanced glaucoma 

responded to an acute IOP elevation with an overall mean 

anterior displacement of the LC as opposed to the posterior 

displacement observed in eyes with mild glaucoma and 

healthy eyes.

The CH baseline value was lower (but not significantly) 

in eyes with glaucoma compared with the controls. During 

acute IOP elevation, the CH decreased markedly in both the 

advanced and mild glaucoma eyes to a mean value signifi-

cantly lower than the one found in healthy eyes.

The CRF value at baseline was lower in glaucoma eyes 

compared with healthy eyes. However, CRF increased sig-

nificantly during acute IOP elevation in all the groups, and 

the increase was significantly higher in eyes with advanced 

glaucoma.

We also found that in patients with markedly asym-

metrical glaucoma damage, the eye with advanced glaucoma 

shows a positive correlation between the CRF increase and 

the anterior displacement of the LC during IOP elevation.T
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Figure 5 scatterplot illustrating the inverse correlation by spearman’s test between 
CrF and lD in eyes with severe glaucoma.
Abbreviations: CrF, corneal resistance factor; lD, laminar displacement.
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In light of our findings, we may formulate a hypothesis 

to interpret our results despite the complexity of the matter. 

Raised IOP in POAG patients causes progressive anatomical 

and biomechanical changes at the level of the LC and adjacent 

scleral tissue. These alterations might be reflected by the 

biomechanical response of the cornea and LC to an induced 

increase in the IOP, which might, in turn, correlate to the 

stage of glaucoma.

There are several limitations in this study. The groups 

were small, and the laminar features were manually analyzed 

instead of being automatically detected and measured by the 

software. The measurements obtained on the laminar and PTs 

were limited to 4 scans per eye, which might be insufficient to 

estimate the actual response of these tissues to biomechanical 

strain. However, despite these limitations, the inclusion 

of patients with markedly asymmetrical disease between 

fellow eyes offered the chance to investigate differences in 

biomechanical response in different stages of the disease. 

Further studies with larger groups are necessary to validate 

our preliminary results.
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