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Abstract.
Background: In Alzheimer’s disease (AD), oscillatory activity of the human brain slows down. However, oscillatory slowing
varies between individuals, particularly in prodromal AD. Cortical oscillatory changes have shown suboptimal accuracy
as diagnostic markers. We speculated that focusing on the hippocampus might prove more successful, particularly using
magnetoencephalography (MEG) for capturing subcortical oscillatory activity.
Objective: We explored MEG-based detection of hippocampal oscillatory abnormalities in prodromal AD patients.
Methods: We acquired resting-state MEG data of 18 AD dementia patients, 18 amyloid-�-positive amnestic mild cognitive
impairment (MCI, prodromal AD) patients, and 18 amyloid-�-negative persons with subjective cognitive decline (SCD).
Oscillatory activity in 78 cortical regions and both hippocampi was reconstructed using beamforming. Between-group and
hippocampal-cortical differences in spectral power were assessed. Classification accuracy was explored using ROC curves.
Results: The MCI group showed intermediate power values between SCD and AD, except for the alpha range, where it was
higher than both (p < 0.05 and p < 0.001). The largest differences between MCI and SCD were in the theta band, with higher
power in MCI (p < 0.01). The hippocampi showed several unique group differences, such as higher power in the higher alpha
band in MCI compared to SCD (p < 0.05). Classification accuracy (MCI versus SCD) was best for absolute theta band power
in the right hippocampus (AUC = 0.87).
Conclusion: In this MEG study, we detected oscillatory abnormalities of the hippocampi in prodromal AD patients. Moreover,
hippocampus-based classification performed better than cortex-based classification. We conclude that a focus on hippocampal
MEG may improve early detection of AD-related neuronal dysfunction.

Keywords: Alzheimer’s disease, dementia, hippocampus, magnetoencephalography, mild cognitive impairment, spectral
analysis

∗Correspondence to: Janne Luppi, Alzheimer Center and De-
partment of Neurology, Neuroscience Campus Amsterdam, VU
University Medical Center, PO Box 7057, 1007 MB Amster-
dam, The Netherlands. Tel.: +31 0 614733661; E-mail: j.j.luppi@
amsterdamumc.nl.

INTRODUCTION

Human neuronal activity in Alzheimer’s disease
(AD) is characterized by a gradual, diffuse slow-
ing of cortical oscillatory activity as the disease
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progresses, as can be assessed with scalp electroen-
cephalography (EEG). There is an early increase in
slow activity in the theta band (4–8 Hz), followed
by decreases in the faster beta (13–30 Hz) and alpha
(8–13 Hz) bands, and ultimately an increase in slow
delta activity (0.5–4 Hz). The dominant posterior
rhythm, often referred as “alpha rhythm”, which is
centered around ± 10 Hz in healthy adults, can slow
down to below 8 Hz [1, 2]. While these changes in
the resting-state background pattern have been known
for decades and correlate with cognitive impairment
in AD, measures that quantify oscillatory slowing
(e.g., based on power spectral density), have so far
produced suboptimal diagnostic markers of AD [3].
A main reason for this is individual variability: in
early AD, the background pattern can still remain
relatively intact, complicating reliable early detection
through EEG. Recently developed advanced machine
learning-based classification methods are improving
neurophysiological marker performance, but at this
point the role of EEG markers in AD diagnosis is
still supportive and context dependent [4, 5]. How
can we further improve the early neurophysiological
detection of AD?

The hippocampus is one of the archetypical early
sites of AD pathophysiology. Structural pathology
(e.g., tau phosphorylation and atrophy) is prominent
in this region, correlating with the typical episodic
memory impairment in AD patients. Hippocampal
neuronal and synaptic activity and function is also
heavily disrupted in AD. In fact, in vitro and in
vivo research in AD animal models describes marked
early changes in AD pathophysiology: one of the
most striking abnormalities being neuronal hyper-
excitability and hyperactivity, presumably mediated
through amyloid-�-induced mechanisms of gluta-
mate excitotoxicity of pyramidal neurons, as well
as interneuron dysfunction [6, 7]. Relating informa-
tion from animal models to knowledge from human
studies can be challenging, for example due to many
human studies being done on sporadic instead of
familial AD, but doing so may give us a more
complete picture of the present pathological pro-
cesses, as there appears to be a general consensus
that neuronal hyperexcitability plays a role [8]. Even
before extensive synapse and neuron loss occurs,
these pathological processes lead to altered behav-
ioral repertoires of those neurons, and their combined
effects are presumed to trigger a further detrimental
cascade of neuronal excitation/inhibition imbalance
with excitotoxic neurodegeneration, neuronal circuit
malfunction, synchronization failure between larger

neuronal assemblies, oscillatory changes, and ulti-
mately long-distance functional and structural brain
network disruption, resulting in cognitive decline
[8–14]. So, while neuronal dysfunction is not con-
fined to the hippocampus, it is recognized as an early
AD hotspot.

A relevant clinical question is therefore whether
quantitative analysis of hippocampal dysfunction
might produce more powerful biomarkers in early AD
stages. However, investigating hippocampal activity
non-invasively in humans is a considerable techni-
cal challenge. Functional MRI (fMRI) studies have
reported abnormal hippocampal activation in prodro-
mal AD patients, and even in asymptomatic persons
at risk to develop AD such as APOE4 and PSEN1
carriers [15–20]. However, the BOLD signal used
for fMRI is a rather indirect measure of neuronal
activity, with a low temporal resolution compared
to neurophysiological techniques such as EEG and
magnetoencephalography (MEG). On the other hand,
with the traditional scalp EEG, accurately captur-
ing subcortical, hippocampus-specific oscillations is
difficult because of the relatively low spatial reso-
lution, and predilection for cortical activity. Of all
current non-invasive methods, MEG has the high-
est spatiotemporal resolution to record brain activity
[21]. Using source reconstruction methods, MEG can
reliably reconstruct activity in subcortical regions,
including the hippocampus [22–26]. Furthermore,
detection of activity in higher frequency bands such
as gamma (> 30 Hz) is more reliable in MEG than in
EEG, because of the reduced interference of underly-
ing scalp tissue (e.g., muscle artefacts) on the MEG
signal [27]. Since gamma activity is directly tied to
hippocampal interneuron function and memory pro-
cesses in AD, this is a potentially relevant technical
advantage.

So far, only a few studies have examined resting-
state source-space MEG of the hippocampus in
AD. In mild-to-moderate AD patients, a previous
source-space MEG study from our group showed hip-
pocampal slowing, in line with the well-established
cortical slowing in AD [28]. However, for clinical
purposes, the earlier, pre-dementia phase is partic-
ularly relevant because this is the stage where the
diagnosis of AD is preferably reached, and where
new treatment options are likely to be more suc-
cessful [29]. In so-called ‘prodromal AD’ (i.e., mild
cognitive impairment (MCI) with positive amyloid-�
biomarkers), several recent source-space MEG stud-
ies have reported changes in subcortical regions,
including the hippocampus [30–33]. However, these
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studies had a different focus (e.g., functional connec-
tivity analysis), as will be reviewed in more detail in
the discussion section.

A source-space MEG study in prodromal AD
patients with a specific focus on spectral analysis
of the hippocampus compared to other regions has
not yet been performed. Hippocampal activity may
either show similar, yet more pronounced changes,
or different behavior than in healthy persons as well
as AD patients. For this purpose, we also performed
within-subject comparisons between hippocampal
and cortical power.

We hypothesized that the hippocampus in MCI
patients would show intermediate levels of oscilla-
tory slowing compared to persons with subjective
cognitive complaints (SCD) and AD patients, but
that for the MCI group the proportional change in
the hippocampus versus cortical regions would be
higher (i.e., more pronounced abnormalities in the
hippocampus) than in the SCD and AD groups,
potentially signifying pathology specific to the ear-
lier stages of the AD continuum. Therefore, we set
out to explore hippocampal and global cortical oscil-
latory patterns in MEG data in healthy controls with
SCD, persons with prodromal AD (MCI) and mild-
to-moderate AD dementia patients. Besides relative
spectral power, we also included absolute power anal-
ysis to have a broad view of the oscillatory profile of
hippocampal dysfunction. This decision was inspired
by the tendency of studies relating spiking with local
field potentials to report absolute power levels [34,
35] and our interest in assessing whether absolute
and relative power contain complementary informa-
tion in our study population. Moreover, underlying
pathophysiological changes may independently alter
oscillatory content of a signal in a general or more
frequency range-bound way. Therefore, measuring
both absolute and relative power can give us infor-
mation we might miss by limiting ourselves to one or
the other. Starting with global cortical group differ-
ences in spectral power measures, we then focus on
hippocampal differences and their differences from
the global cortical measures, and lastly explore their
discriminatory value at the individual level.

MATERIALS AND METHODS

Subjects

The study involved three age- and gender-matched
groups totaling 54 subjects: 18 AD dementia patients,

18 patients with amnestic MCI, and 18 persons
with SCD. All were recruited from the Amsterdam
Dementia Cohort (ADC) of the Alzheimer Center
of the VU University Medical Center in the period
of spring 2015–2018. All subjects were assessed
according to a standard clinical protocol, which
involved history taking, physical and neurological
examination, an interview with a spouse or close
family member, blood tests, 3T MRI of the brain
according to a standard protocol, routine MEG [36],
and a thorough neuropsychological assessment bat-
tery [37]. The diagnosis was made in a consensus
meeting in which all the available clinical data were
considered by a multidisciplinary team. For this ret-
rospective study, subjects with a clinical diagnosis
of (amnestic) MCI according to National Institute on
Aging–Alzheimer’s Association (NIA-AA) 2011 cri-
teria who received a baseline MEG registration, and
with positive amyloid-� biomarkers (cerebrospinal
fluid (CSF) ptau/amyloid-� ratio > 0.020 and/or
abnormal amyloid-� PET) were recruited [38]. Mem-
ory was the only objectively impaired cognitive
domain in the neuropsychological battery results of
the MCI group. AD patients likewise fulfilled diag-
nostic NIA-AA 2011 criteria for probable AD, with
similar biomarker evidence for AD pathology [39].
In addition, patients who after extensive examina-
tion received the diagnosis SCD with a baseline
MEG were recruited as healthy controls, and all
groups were age- and gender-matched for further
analysis [40]. The biomarker status was amyloid-�-
negative for 15 of the SCD subjects, and unknown
for the remaining three. MCI and AD patients had
(semi-)annual clinical follow-up visits combined
with repeated neuropsychological testing. Since the
MCI subjects all had amnestic MCI with positive
biomarkers, we considered them to be on a trajectory
towards AD, sometimes alternatively labelled with
‘MCI due to AD’ or ‘prodromal AD’. For sake of clar-
ity, in the results section we shall refer to this group as
‘MCI’. Follow-up cognitive status after 3 years was
known for all MCI patients: at that point, 67% of the
MCI subjects had indeed converted to the dementia
stage (see Supplementary Figures 3 and 4). The local
Research Ethics Committee approved the study, and
all participants gave written informed consent.

MEG data acquisition and pre-processing

MEG recordings were obtained on the same day as
the clinical evaluation, and in the same week in which
the clinical diagnosis was made. MEG recordings
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were performed in a magnetically shielded room
(VacuumSchmelze GmbH, Hanua, Germany) using
a 306-channel whole-head system (Elekta Neuro-
mag Oy, Helsinki, Finland). The recording protocol
consisted of at least two five-minute blocks of eyes-
closed resting-state condition. During the eyes-closed
condition, patients were instructed to close their eyes,
stay awake, and to reduce eye movements. Only data
from the first eyes-closed session were analyzed here.
The recordings were sampled at 1250 Hz, with an
online anti-aliasing filter (410 Hz) and high-pass fil-
ter (0.1 Hz). Offline, a spatial filter, the temporal
extension of Signal Space Separation (tSSS) [41,
42], as implemented in MaxFilter software (Elekta
Neuromag Oy, version 2.2.12), was applied with
a sliding window of 10 s and correlation limit of
0.9, respectively. After visual inspection, channels
containing excessive artefacts were manually dis-
carded before estimation of the SSS coefficients. The
number of excluded channels varied between 1 and
12. The head position relative to the MEG sensors
was recorded continuously using the signals from
five head-localization coils. The head-localization
coil positions were digitized, as well as the out-
line of the participant’s scalp (500 points), using
a 3D digitizer (Fastrak, Polhemus, Colchester, VT,
USA). This scalp surface was used for co-registration
with the structural (MRI) template that produced the
best fit.

MEG source reconstruction

In order to obtain source-localized activity for
all regions, we applied an atlas-based beamform-
ing approach [43]: Sensor signals were projected
to an anatomical framework such that source-recon-
structed neuronal activity for 78 cortical regions-of-
interest (ROIs) plus both hippocampi, identified by
means of automated anatomical labeling (AAL) [44]
(Supplementary Table 1), was obtained. To obtain a
single time series for an ROI, we used each ROIs
centroid as representative for that ROI [45]. For the
computation of the beamformer weights we used the
sphere that best fitted the scalp surface as a volume
conductor model and an equivalent current dipole as
source model. The orientation of the dipole was cho-
sen to maximize the beamformer output [46]. Once
the broadband (0.5–70 Hz) normalized [47] beam-
former weights for the selected voxel were computed,
then the broadband (0.5–70 Hz) time-series for this
voxel, i.e., a virtual electrode, was reconstructed [43].

Data selection and processing

For the subsequent offline processing the source-
reconstructed time-series were converted to ASCII
files. For each subject five artefact-free, down-
sampled epochs (sample frequency 312 Hz, 4,096
samples per epoch of 13.2 s) of the first eyes-
closed resting-state recording were used for further
analysis. All quantitative spectral analyses were
performed with in-house developed software (Brain-
Wave version 0.9.152.8.5). Both absolute and relative
power were calculated using the Fast Fourier Trans-
form for the following frequency bands: broadband
(0.5–45 Hz), delta (0.5–4 Hz), theta (4–8 Hz), lower
alpha (8–10 Hz), upper alpha (10–13 Hz), beta
(13–30 Hz), and gamma (30–48 Hz). Peak frequency
of the posterior dominant rhythm was designated as
the frequency at which spectral power was maxi-
mal within the 4–13 Hz range in 6 posterior AAL
regions (Superior, middle and inferior occipital gyri,
calcarine region, cuneus and lingual gyrus). All anal-
yses were first performed for each epoch separately,
and prior to group statistics the measures obtained
from the five epochs per person were averaged.

For this study, we included both absolute and rel-
ative spectral power analysis, as they may provide
complimentary information in terms of reflecting
the underlying pathophysiology. Furthermore, to
examine the specificity of hippocampal changes,
its oscillatory profile was compared to global (i.e.,
mean cortical) activity. Finally, we aimed to explore
classification accuracy of hippocampal findings for
individual patients. While this study was not powered
to draw firm conclusions about biomarker accuracy,
here we were primarily interested in testing how hip-
pocampal measures performed against global cortical
measures, particularly in the MCI group versus SCD,
as this is the clinically most relevant contrast.

Statistical analysis

Statistical analysis was performed with SPSS for
Mac (version 25.0). Subject characteristics were
compared with two-tailed independent sample t-tests.
To reduce multiple comparison issues, an analysis of
variance (ANOVA) for repeated measures was per-
formed for the spectral outcome measures, with group
as between-subject factor (n = 3) and region (mean of
all cortical ROIs versus hippocampus left and right
separately, n = 3) as within-subject factor (for each
frequency band separately; Greenhouse-Geisser cor-
rected) and spectral measures as dependent variable.
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Table 1
Subject characteristics

SCD MCI AD

n 18 18 18
Age (y) 64.2 (± 6.1) 64.1 (± 6.2) 63.8 (± 6.5) ns
M/F (n) 8/10 9/9 9/9 ns
Mean MMSE

score (points)
27.8 (± 2.1) 25.8 (± 1.9) 17.9 (± 4.7) ∗∗

SCD, subjective cognitive decline; MCI, amnestic mild cogni-
tive impairment with positive amyloid-� biomarkers for AD; AD,
Alzheimer’s disease dementia with positive amyloid-� biomark-
ers; MMSE, Mini-Mental State Examination; ns, no significant
differences. ∗∗significance level of p < 0.001 (MCI versus SCD
and AD versus MCI. Numbers between brackets represent standard
deviations.

Spectral measures showed Gaussian distributions. As
a post-hoc test, pairwise group differences (SCD ver-
sus MCI; MCI versus AD; SCD versus AD) were
tested parametrically with two-tailed independent
sample t-tests (not assuming equal variance) when the
ANOVA showed significant group or group∗region
effects. Receiver operating characteristic (ROC)
curves were plotted to quantify between-subject dis-
crimination accuracy for the spectral measures in all
frequency bands for cortical areas (averaged over all
78 cortical regions) and both hippocampi separately.
Values of p < 0.05 were considered significant.

RESULTS

Subject characteristics

Table 1 shows the main characteristics of the sub-
ject groups. The study population features a relatively
young AD cohort with age- and gender-matched
healthy controls (SCD) and amnestic MCI (due to
AD) patients. Average Mini-Mental State Examina-
tion (MMSE) scores were significantly lower in MCI
versus SCD, and in AD versus MCI. Psychoactive
medication use was incidental in all groups and did
not differ significantly (not shown here).

Group comparisons

Power spectra
We first examined the averaged power spectra for

the different groups in order to obtain a visual impres-
sion of any differences in spectral power, with a focus
on the clinically relevant differences between SCD
and MCI. Cortical power in MCI is higher across the
upper theta-lower beta frequency range (± 7–20 Hz)
compared to both SCD and AD, albeit with a large
variability (Fig. 1A). Significant differences between

MCI and SCD were found in the upper theta and
lower alpha ranges (p < 0.01 around 7 Hz). In the hip-
pocampi (Fig. 1B), the differences were similar, yet
slightly more pronounced, with significantly higher
power in the theta and higher alpha ranges for MCI
compared to SCD (p < 0.01).

Next, we investigated quantitative group differ-
ences in spectral power for different frequency bands,
both for absolute and relative power. The complete
results of the repeated measures ANOVA analyses
are described in Supplementary Tables 1 and 2, here
we provide a summary and relevant post-hoc t-test
results.

Absolute power
For the absolute power ANOVA (Supplementary

Table 2), we found a significant group effect in
the theta (F[2,50] = 6.563, p < 0.01) and lower alpha
(F[2,50] = 3.652, p < 0.05) band.

Absolute theta power was higher in MCI compared
to SCD (t(34) = –3.3, p < 0.01), and in AD compared
to SCD (t(34) = 3.7, p < 0.001). Absolute power in
the lower alpha band for the MCI group was higher
compared to both SCD (t(34) = 2.0, p < 0.05) and to
AD (t(34) = 2.9, p < 0.01) (Fig. 2A).

Relative power
For the relative power ANOVA (Supplementary

Table 2), we found a significant group effect in
the delta ([2,50] = 3.203, p < 0.05), theta (F[2,50] =
15.042, p < 0.001), lower alpha (F[2,50] = 6.739,
p < 0.01), beta (F[2,50] = 5.785, p < 0.01), and gamma
(F[2,50] = 3.370, p < 0.05) band. Relative delta power
was higher in AD compared to MCI (t(34) = 2.65,
p < 0.05). Relative theta power was higher in MCI
compared to SCD (t(34) = 3.95, p < 0.001), higher
in AD compared to MCI (t(34) = 2.24, p < 0.05),
and higher in AD compared to SCD (t(34) =
5.10, p < 0.001). Relative power in the lower alpha
band was higher in MCI compared to SCD (t(34) =
2.13, p < 0.05), and compared to AD (t(34) = 4.11,
p < 0.001). Relative beta power was lower in MCI
compared to SCD (t(34) = –2.04, p < 0.05) and lower
in AD compared to SCD (t(34) = –2.97, p < 0.01).
Relative gamma power was lower in MCI compared
to SCD (t(34) = –2.87, p < 0.01) (Fig. 2B).

Posterior dominant peak frequency
The SCD (mean 9.75 ± 0.66 Hz) and MCI (mean

9.58 ± 0.53 Hz) groups did not differ significantly in
their posterior peak frequency. The AD group (mean
8.47 ± 1.38 Hz) had a lower posterior peak frequency
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Fig. 1A. Hippocampal power spectra. SCD, subjective cognitive decline; MCI, mild cognitive impairment; AD, Alzheimer’s disease; Hz,
Hertz; The 95% confidence interval of the MCI group is drawn using solid black lines, for the SCD and AD groups color clouds are used.
Gamma frequency range (30–45 Hz) not shown. a.u., arbitrary units. ∗indicates significance level p < 0.05 (MCI versus SCD). ∗∗indicates
significance level p < 0.01 (MCI versus SCD).

Fig. 1B. Hippocampal power spectra. SCD, subjective cognitive decline; MCI, mild cognitive impairment; AD, Alzheimer’s disease; Hz,
Hertz; The 95% confidence interval of the MCI group is drawn using solid black lines, for the SCD and AD groups color clouds are used, for
visual clarity. Gamma frequency range (30–45 Hz) not shown. a.u., arbitrary units. ∗indicates significance level p < 0.05 (MCI versus SCD).
∗∗indicates significance level p < 0.01 (MCI versus SCD).
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Fig. 2A. Normalized absolute power results per group, averaged over the regions. a.u., arbitrary units. ∗∗∗indicates significance level p < 0.001.
∗∗indicates significance level p < 0.01. ∗indicates significance level p < 0.05. Error bars indicate 95% confidence interval.

Fig. 2B. Normalized relative power results per group, averaged over the regions. a.u., arbitrary units. ∗∗∗indicates significance level p < 0.001.
∗∗indicates significance level p < 0.01. ∗indicates significance level p < 0.05. Error bars indicate 95% confidence interval.

compared to both SCD (t(34) = –3.5, p < 0.01) and
MCI (t(34) = –3.2, p < 0.01).

Overall, both absolute and relative power anal-
ysis showed similar group differences, confirming
the well-established slowing in AD, with interme-
diate values for the MCI group. However, in the
lower alpha band, relative power levels were higher
for MCI than for both SCD and AD, while relative
gamma power levels were lower than in both other
groups. This could indicate a phase of deviating oscil-
latory behavior in prodromal AD, so next we focused

on the hippocampus as a potential site of stronger
abnormalities.

Hippocampal oscillatory activity

To ascertain whether the hippocampus actually
showed stronger AD-related oscillatory changes
than the cortical regions, we directly made this
comparison for the different groups. In the abso-
lute power ANOVA, a significant region effect
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Fig. 3. 3D headplots of spectral analysis results across groups. The hippocampus has been projected on the medial surface and is outlined
in white. Panels A-C display relative theta power, while panels D-F display total power results. The virtual electrodes were scaled by a
factor of one hundred when converting from ∗.fif to ∗.asc format. SCD, subjective cognitive decline; MCI, mild cognitive impairment; AD,
Alzheimer’s disease. The values shown are in arbitrary units.

was found for broadband and all individual fre-
quency bands (p < 0.001, except for gamma, where:
p < 0.05). A significant group*region interaction was
found in the upper alpha band (F[4,102] = 3.197, p <
0.05). In the relative power ANOVA, a significant
effect was observed in the theta (F[2,50] = 14.404,
p < 0.001), lower alpha (F[2,50] = 18.627, p < 0.001),
beta (F[2,50] = 39.593, p < 0.001), and gamma
(F[2,50] = 111.395, p < 0.001) band. A significant
group*region interaction was found in the higher

alpha (F[4,102] = 3.197, p < 0.05) and gamma (F[4,
102] = 3.363, p < 0.05) band.

A visual impression of regional spectral power dif-
ferences can be seen in Fig. 3. In the theta band,
relative power is overall higher in MCI compared to
SCD, and in AD compared to MCI, showing a gradual
increase along the disease progression. The highest
values for relative theta power are found in the tem-
poral cortex and the hippocampus, which stand out
clearly from the rest of the cortex. In comparison,
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Fig. 4. Total power ranking for top 25 AAL regions. Hippocampus (red) rises in rank over the disease course. Precuneal regions (light blue)
and lingual gyrus, on the other hand, drop in rank. Y-axis values indicate absolute total power values. SCD, subjective cognitive decline;
MCI, mild cognitive impairment; AD, Alzheimer’s disease. Hippocampal regions are colored red, precuneus region is colored light blue. L,
left; R, right. The values shown are in arbitrary units.

the visualization of the total power in the three sub-
ject groups shows that the highest values are found in
the MCI group, demonstrating a non-gradual change
along the AD continuum. The highest total power
values were found in the posterior cingulum, but hip-
pocampal values were also elevated compared to most
of the cortex.

When ranking the top 25 regions based on their
total power level for the different groups, diverg-
ing trends appear: both hippocampi rise to the top
10 along the AD disease course, with an increase
in total power (Fig. 4). In contrast, other regions
decreased in ranking, including areas that are known

to be affected in AD such as the precuneus and lin-
gual gyrus. Next, we performed quantitative analyses
more directly comparing the global cortex and the
hippocampi.

When comparing absolute broadband (0.5–48 Hz)
power (“total power”) between the cortex and the
hippocampi within groups, hippocampal power was
consistently higher than average cortical power in all
groups (p < 0.01), except for the right hippocampus
in the SCD group (Fig. 5A).

The upper alpha band showed a significant region*
group interaction (Fig. 5B): the MCI group had a
higher absolute power in the right hippocampus in
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Fig. 5A. Total power comparison between cortex and hippocampi,
for the different groups. Co, cortical regions; LH, left hippocam-
pus; RH, right hippocampus; SCD, subjective cognitive decline;
MCI, mild cognitive impairment; AD, Alzheimer’s disease. Sig-
nificance levels indicate t-test results comparing the means of
hippocampal values with the cortical means within groups. a.u.,
arbitrary units. ∗∗indicates significance level p < 0.01. Error bars
indicate 95% confidence interval.

Fig. 5B. Normalized absolute power results in the higher alpha
frequency band (10–13 Hz) per group, for different regions. a.u.,
arbitrary units. ∗indicates significance level p < 0.05. Error bars
indicate 95% confidence interval.

MCI compared to SCD (t(34) = 2.4, p < 0.05), as well
as higher average cortical power in MCI compared to
AD (t(34) = 2.1, p < 0.05).

For relative power, two frequency bands show a
significant group*region interaction (Fig. 6A, B):
in the higher alpha band, the MCI group showed
higher relative power in the cortical regions com-
pared to AD (t(34) = 2.60, p < 0.05). In the gamma
band, MCI showed lower relative power compared to
SCD in the cortical regions (t(34) = –2.43, p < 0.05),
left hippocampus (t(34) = –2.68, p < 0.05), and right
hippocampus (t(34) = –3.06, p < 0.01).

Summarizing, these regional analyses indicate that
the hippocampi have relatively high spectral power
levels, that they show more pronounced changes than

Fig. 6A. A Normalized relative power results in the higher alpha
frequency band (10–13 Hz) per group, for different regions. a.u.,
arbitrary units. ∗indicates significance level p < 0.05. Error bars
indicate 95% confidence interval.

Fig. 6B. Normalized relative power results in the gamma fre-
quency band (30–45 Hz) per group, for different regions. a.u.,
arbitrary units. ∗∗indicates significance level p < 0.01. ∗indicates
significance level p < 0.05. Error bars indicate 95% confidence
interval.

the cortical regions, and that in the MCI phase, they
do not follow the trend of demonstrating intermediate
power values between SCD and AD, most evident on
the right side. These findings led us to subsequently
investigate the discriminatory power of global corti-
cal and hippocampal power values at an individual
level.

Classification accuracy

Classification accuracy was tested for the global
cortical and hippocampal (left and right separately)
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Fig. 7A. ROC curves for discrimination between MCI and SCD,
based on absolute power in the theta band (4–8 Hz).

absolute and relative power results. Here we show
the best scoring measures for discrimination between
MCI and SCD. Absolute right hippocampal theta
power produced the best classification (Fig. 7A), with
a substantially better score (AUC = 0.87) than for the
cortical regions (AUC = 0.77) or the left hippocam-
pus (AUC = 0.74). Absolute power in the lower alpha
band (Fig. 7B) also showed superior classification for
the right hippocampus (AUC = 0.83) compared to the
cortical regions (AUC = 0.67) and left hippocampus
(AUC = 0.70).

In the Supplementary Material, we show two
more ROC curves (Supplementary Figures 1 and
2): relative theta power classification of MCI versus
SCD, where cortical regions (AUC = 0.83) performed
slightly better than the hippocampi (AUC = 0.80),
and relative power in the lower alpha band for MCI
versus AD, where cortical regions and hippocampi
performed equally well in terms of classification
accuracy (AUC 0.81). In all other frequency bands
for both relative and absolute power (both MCI ver-
sus SCD and MCI versus AD), AUC scores were
below 0.80, but the right hippocampus consistently
outperformed the global cortical average and left hip-
pocampus (not shown).

In summary, classification results suggest that tak-
ing into account hippocampal power can enhance the
discriminatory accuracy of resting-state MEG data in
early AD.

Fig. 7B. ROC curves for classification between MCI and SCD,
based on absolute power in the lower alpha band (8–10 Hz).

DISCUSSION

In this study, we were able to detect signs of
altered hippocampal oscillatory activity in source-
space resting-state MEG data of amyloid-�-positive
amnestic MCI patients (also known as prodromal AD
or ‘MCI due to AD’). Our main finding is that hip-
pocampal activity in this phase largely follows the
well-established pattern of oscillatory slowing, but
that there are notable high spectral power levels in the
alpha range, particularly in the hippocampus. Below,
we discuss the relevance of these observations.

Abnormal hippocampal activity in prodromal AD

Relative and absolute power differences between
MCI and SCD were found in all frequency bands,
largely in line with neurophysiological literature in
AD. As expected, in the cortical and hippocampal
power spectra (Fig. 1A, B), we see higher levels of
low frequency (delta and theta) power in AD, with
MCI showing intermediate values. This is confirmed
in the frequency-band specific analysis, with both
absolute and relative theta power increases in MCI,
and relative beta and gamma power decreases as well
(Figs. 2 and 3), leading to an overall picture of gen-
eralized slowing.

A reduction in the peak frequency of the posterior
dominant rhythm is a well-known characteristic of
AD, and this was reproduced in our study, with the
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posterior peak frequency being lower in AD com-
pared to SCD and MCI. The MCI group, however,
did not exhibit a significantly lower posterior peak
frequency compared to SCD. This indicates that these
prodromal AD patients were likely in a relatively
early phase of the trajectory towards dementia.

Besides expected changes, a deviating pattern
could also be discerned: that of spectral power
enhancement in the MCI group in the alpha range
(8–13 Hz). The higher alpha power (relative and
absolute) values in MCI compared to SCD and AD
were seen in many cortical regions but were most
pronounced in the hippocampus. This unexpected
phenomenon is unlikely to result from oscillatory
slowing alone: in that case, MCI would have lower
absolute and relative alpha power values than SCD,
similar to the AD group. Another argument for
hippocampus-specific change in MCI comes from
the comparison between hippocampus and cortical
regions within subjects, where total power was higher
in both hippocampi compared to cortical levels in
MCI, but only in the left hippocampus in SCD.
We also ranked the regions with the highest total
power for the different groups, which indicated that
cortical regions surrounding the hippocampus are
not necessarily the ones with high—or substantially
changing—power levels (Figs. 3 and 4). The highest-
ranking regions in all groups were the left and right
posterior cingulum, which is in line with precious lit-
erature and their status as high degree hub regions
[48]. A second observation is that the hippocam-
pal rank rises over the disease course, while most
other regions (including the early affected precuneus)
show a drop—both in absolute power and in rank.
This raises the question whether a ‘spatial ratio’
between for instance the precuneus and hippocam-
pus power levels could be an indication of disease
severity.

A deviating pattern for the hippocampus was
not reported in previous source-space MEG stud-
ies. Engels et al. [28] found oscillatory slowing in
in all subregions of the hippocampus, but their study
investigated AD patients in the later dementia stage.
Lopez-Sanz et al. described a decrease in hippocam-
pal peak frequency in the MCI group [30]. However,
the study had several methodological differences
compared to ours: MCI patients were not necessar-
ily of the amnestic type, and amyloid-� biomarkers
were not considered, making underlying AD pathol-
ogy less certain. Also, there was no direct comparison
of the hippocampi with other regions, and as MCI
patients were on average ± 10 years older than in

our group, age-related oscillatory slowing might have
played a larger role. Hughes et al. reported relative
power increases of slower frequencies and decreases
of faster frequencies in many regions including the
hippocampal areas in MCI [31]. While group size was
larger (n = 165), no biomarker or neuropsychological
profiles for MCI patients were reported, and no direct
comparison between hippocampus and other regions
was performed. In the study of Nakamura et al.,
MCI patients were on average ± 10 years older, but
did have PiB-PET amyloid-� biomarker confirmation
[32]. Interestingly, the amyloid-�-positive individ-
uals (both cognitively normal and MCI) showed
an alpha power increase compared to amyloid-
�-negative individuals, suggesting a link between
AD-pathology and alpha increase. This was however
not specific for the hippocampi, but rather medial
prefrontal areas. An added value of this study, that
might also explain a few of the discrepancies with the
studies above, is the strict inclusion of amnestic MCI
patients, who were amyloid-� biomarker-confirmed,
and underwent long term-clinical follow-up in a
tertiary memory clinic, obtaining as much cer-
tainty as possible about them being on a trajectory
towards AD dementia. Furthermore, the younger
age-range and our specific source-space recon-
struction methodology might explain the observed
differences.

Group classification accuracy

Given our relatively modest cohort size, it is note-
worthy that we were still able to find changes in
(hippocampal) oscillatory activity capable of dis-
tinguishing MCI from SCD on an individual level.
We achieved a fair accuracy for classifying between
MCI and SCD using the absolute theta power of
the right hippocampus (Fig. 7A). The solid perfor-
mance of the theta band in our classification was
not surprising, given that an increased power in the
theta band is a well-documented early feature of AD
[36, 49]. For the right hippocampus, good AUC val-
ues (> 0.8) were also obtained for other frequency
bands, such as the absolute power in the lower alpha
band (Fig. 7B), and relative power in the theta band
(Supplementary Figure 1). The high accuracy for
the right hippocampus compared to other regions is
notable. When discriminating between MCI and AD,
the relative lower alpha band produced best results
for all regions equally (AUC = 0.81) (Supplemen-
tary Figure 2), adding more weight to the notion of
a spectral profile deviation in MCI patients on the
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path from SCD towards AD. Although not our pri-
mary objective, these results indicate hippocampal
MEG biomarker potential. Note that any reliable non-
invasive marker of early AD can have considerable
clinical value, for example for patient-friendly early
diagnosis and efficient trial recruitment. The speci-
ficity of our findings for AD continuum remains to be
tested, for example by comparing MCI with dementia
with Lewy bodies.

High spectral power: a sign of underlying
neuronal hyperactivity?

What could be the significance of the elevated
hippocampal spectral power in the amyloid-� pos-
itive MCI/prodromal AD group? We speculated
whether the abnormal hippocampal power profile
might be a representation of the underlying patho-
logical hyperactivity, as reported in recent literature.
In the past years, hippocampal neuronal hyperactiv-
ity has emerged as a consistent early feature of AD in
animal models (AD) [7, 50, 51]. Amyloid-�-related
toxicity is the main driver of hippocampal hyperac-
tivity, acting through various mechanisms of synaptic
and cellular damage such as glutamate dysregula-
tion [6, 52] and interneuron dysfunction [53–55],
while other aspects such as APOE4 carrier status may
also play a role [56]. Intriguingly, both in AD ani-
mal models and humans in the prodromal stage of
AD, reduction of hippocampal hyperactivity with low
dose levetiracetam, an antiepileptic drug, has been
associated with memory improvement [57, 58]. This
finding supports the suggested pathologic nature of
hyperactivity and its relationship with cognitive per-
formance, and also implicates reversibility, relevant
for therapeutic strategies. In addition, neuronal hyper-
activity has been shown to regulate both amyloid-�
and tau deposition rates in animal studies, adding
weight to the notion that it might not just be a down-
stream effect, but in fact a more central component of
the disease mechanism [59–61]. Given these findings,
early detection of hippocampal neuronal hyperactiv-
ity may be of substantial interest for diagnostic and
therapeutic purposes.

Currently, however, a practical, non-invasive me-
thod to directly detect neuronal hyperactivity at the
cellular level in patients is lacking. It is impor-
tant to realize that the considerable scale difference
between neuronal spiking and oscillatory behav-
ior of macroscale neural regions renders a simple
one-to-one relationship between cellular recordings

and the EEG/MEG signal unlikely [35]. Therefore,
the macroscale signature of (hippocampal) neuronal
hyperactivity is hard to predict or validate without
some kind of translational approach. Unfortunately,
simultaneous, multiscale data acquisition in early AD
in humans is technically and ethically very chal-
lenging. Here, computational modeling may provide
a powerful ‘next-best’ alternative [8, 62]. Recent
multiscale modeling studies suggest that various sce-
narios of AD-induced neuronal hyperexcitability in
fact demonstrate higher neuronal firing rates along
with both large-scale oscillatory slowing and increase
in total power [63–65]. For this reason, we have opted
to also include absolute power analysis in this study,
and our MCI findings seem compatible with the mod-
eled neuronal hyperactivity scenarios.

In recent literature, increases in oscillatory activity
have also frequently been interpreted as a compen-
satory mechanism with a possible link to cognitive
and neural reserve [66, 67]. Although a functional
reconfiguration in response to damage is certainly
expected from the brain, in our opinion there is no
specific reason why an increase would be more likely
to represent compensation. In fact, there are several
reasons to expect otherwise: first, from the cellu-
lar perspective, neuronal disinhibition is a common
reaction to pathology since maintaining the mem-
brane potential requires energy, and when this breaks
down depolarization (and hyperexcitability) follows
[68]. In other words, hyperactivity/-excitability is
likely to be pathological, not compensatory, at the
cellular level. Second, in neuronal circuits where
excitation/inhibition balance is important to main-
tain the required flexibility to respond to inputs, and
where adaptive phase synchronization is needed for
neuronal communication, an increase in firing rate
is not necessarily a good thing [8]. The hypothesis
of recruitment of silent synapses/neurons is made
less likely by the tendency of the energy-hungry
brain to discard unused synapses/neurons. Moreover,
recruitment of more cells does not automatically
lead to higher oscillatory power. There are, however,
additional possibilities, such as the potential of com-
pensatory activity to rewire the synaptic connections
between neurons in order to account for lost connec-
tions. Finally, as increases in oscillatory activity have
been related to both cognitive improvement and dete-
rioration, it is not simply a matter of “the more power,
the better” [32, 58, 69, 70]. Therefore, the question
whether macroscopic increases in oscillatory power
are beneficial or pathological, or both, remains as of
yet unresolved.
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Benefits of hippocampal MEG

EEG-related changes are increasingly being used
as outcome measure in clinical trials in AD, primarily
focusing on the well-established slowing by means of
cortical theta power increase [49]. This focus on EEG
is certainly logical, since EEG systems are far more
widely accessible than the sizable and expensive
MEG systems. However, it is likely that the technical
advantages of MEG are relevant for the detection of
the early-stage changes in AD. Source-space MEG
is relatively well-suited for capturing abnormal hip-
pocampal oscillatory activity compared to EEG [36].
First, its higher spatiotemporal resolution enables
more reliable source reconstruction, and description
of deeper structures such as the hippocampus. Sec-
ondly, absolute power and gamma frequency band
investigation may be more meaningful in MEG than
EEG due to its cleaner signal [27]. With these con-
siderations and our present findings in mind, further
development of hippocampal MEG-based early AD
markers is warranted.

Study limitations and future directions

Some of the choices regarding how the study was
conducted may have had unintended influences on
the research. One of these factors is the relatively
modest sample size (n = 18 per group). Regardless,
we believe that this limitation is alleviated by the fact
that our groups were well-defined and matched for
age and gender. Not only did we have CSF (and often
PET) amyloid-� and tau biomarkers for the MCI and
AD groups, but we also had at least 3-year clinical
follow-up records for the patients.

In the current study, our resolution of the hip-
pocampus itself was limited to a single virtual
electrode. As such, we were unable to investigate any
possible subregional differences in the hippocampi
themselves. In a previous source-space MEG study by
Engels et al. [28] of hippocampal oscillatory patterns
in 27 AD patients, hippocampal activity was assessed
in three sub-regions, but the oscillatory slowing that
was found was similar for all of them. It could, how-
ever, be the case that in our MCI group we may have
missed a potential difference in oscillatory behavior
among sub-regions, since antero-posterior gradients
in hippocampal AD pathophysiology over time have
been previously described [71]

Additionally, we mainly compared hippocampal
to average cortical activity, and not to surround-
ing mesiotemporal subcortical regions. The evidence

for early neurophysiological involvement of the hip-
pocampal regions in AD is, however, very well
characterized in recent literature, and our main inter-
est was the contrast with the traditional cortical
changes. Activity of surrounding cortical regions was
included in the global activity, from which the hip-
pocampal activity differed significantly. Although
activity of parahippocampal regions could have aver-
aged out with this approach, that does not diminish
the potential value of the hippocampal observations.

Our results have also led to new questions, some
of which could provide aims for future research. For
example, comparisons between amyloid-�-positive
and -negative MCI or SCD patients might enable
further identification of AD-specific disturbances
of oscillatory activity. Likewise, a comparison of
healthy controls and SCD patients at risk for
AD (amyloid-�-positive or genetically predisposed)
could provide an even earlier look into the neu-
ronal dynamics of dementia, for example confirming
that the hippocampal alterations precede the corti-
cal changes. Connectivity analysis might be another
worthwhile instrument to detect early hippocam-
pal differences, since it is likely that hippocampal
dysfunction will have an effect on the interaction
with connected regions. In MCI, various studies
have reported altered functional connectivity pat-
terns, notably hypersynchrony, but these studies did
not focus on the hippocampus specifically [3, 30,
72–74]. A recent source-space MEG study did show
hippocampal decrease in functional connectivity in
AD [74]. Besides augmenting our understanding of
AD pathophysiology, new measures of altered hip-
pocampal activity could aid in developing stronger
prognostic and/or diagnostic markers, since current
EEG/MEG-based markers lack specificity [3]. How-
ever, larger groups, longitudinal data, multimodal
data, and machine-learning based approaches may be
required [75]. So far, relatively straightforward mea-
sures such as spectral power perform best, so using
them to look at specific regions or conditions may be
an equally valid approach.

Conclusion

Resting-state MEG is capable of detecting abnor-
mal hippocampal activity in amyloid-�-positive
amnestic MCI patients. In this early AD stage there is,
against a background development of -expected- dif-
fuse oscillatory slowing, an increase of spectral power
in the alpha frequency range compared to healthy
controls, which is not confined to, yet remarkably
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pronounced in the hippocampi. Since hippocampal
changes are stronger and more discriminative than
cortical changes, further follow-up in adequately
powered studies could improve diagnostic marker
strength.
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