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This work provides an overview of the present state-of-the-art in the development of deep
brain Deep Brain Stimulation (DBS) and how such devices alleviate motor and cognitive
disorders for a successful aging. This work reviews chronic diseases that are addressable
via DBS, reporting also the treatment efficacies. The underlying mechanism for DBS is also
reported. A discussion on hardware developments focusing on DBS control paradigms is
included specifically the open- and closed-loop “smart” control implementations.
Furthermore, developments towards a “smart” DBS, while considering the design
challenges, current state of the art, and constraints, are also presented. This work also
showcased different methods, using ambient energy scavenging, that offer alternative
solutions to prolong the battery life of the DBS device. These are geared towards a low
maintenance, semi-autonomous, and less disruptive device to be used by the elderly
patient suffering from motor and cognitive disorders.
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control, closed-loop DBS control, smart DBS

CLINICAL APPLICATIONS OF DEEP BRAIN STIMULATION FOR
CHRONIC DISEASES

Deep brain stimulation (DBS) has developed during the past decades as a remarkable treatment
option for several different disorders replacing ablative procedures (Lyons, 2011). There is a
continuous expansion of the range of applications for deep brain stimulation (DBS) surgery
since the initial observation of controlling or suppressing tremor with high frequency (130 Hz)
thalamic ventralis intermedius (Vim) stimulation (Benabid, et al., 1996). With FDA approval, DBS
has then been used for the therapy and management of certain chronic diseases such as Parkinson’s
disease (PD) (Schupbach, et al., 2005; Koller, et al., 2000; Tani, et al., 2014), refractory or drug-
resistant epilepsy (Salanova et al., 2015), dystonia (Hu & Stead, 2014), refractory essential tremors
(ET) (Lyons & Pahwa, 2008), and dementia in Alzheimer’s disease (AD) and PD (Lv, et al., 2018).

Parkinson’s disease is an idiopathic, chronic, progressive and degenerative movement disorder
that primarily affects the elderly caused by the progressive loss of striatal dopaminergic neurons in
the substantia nigra (SNr) (DeMaagd and Philip, 2015). This upsets the balance between the direct
and the indirect cortico-basal ganglia-thalamo-cortical (CBGTC) loop leading to its characteristic
motor symptoms such as bradykinesia, resting tremors in several parts of the body, rigidity, and
postural instability. Parkinson’s disease was uncommon before 50 years of age after which a notable
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increase in its prevalence with age was observed and peaked
between 85 and 89 years (1·7% for men; 1·2% for women) and
decreased after that age (GBD 2016 Parkinson’s Disease
Collaborators, 2018). Up to 76–94% of PD patients appear
levodopa-induced motor complications such as dyskinesia
were considered for DBS therapy (Tran, et al., 2018).

Chronic epilepsy is a prevalent disorder that may be associated
with significant abnormalities in cognition, brain structure, and
psychiatric health that progress in some patients by middle age. It
is associated with an increased prevalence of lifestyle factors
associated with abnormal cognitive aging and dementia
(Herman et al., 2008) and is characterized by spontaneous
recurrent seizures and affects around 60 million patients
worldwide, with 40% having drug-resistant epilepsy (DRE)
(Engel, 2016). Prevalence of active epilepsy of idiopathic or
secondary nature, for both genders, increased with age, with
peaks at ages 5–9 years and at ages older than 80. The global age-
standardized rate of disability adjusted life years (DALY) for
idiopathic epilepsy was 182.6 for a population of 100,000 (GBD
2016 Epilepsy Collaborators, 2019). DALY is a summary measure
of health loss defined by the sum of years of life lost (YLL). YLL
peaked at age under 5 years and at ages of 15–19 years which then
decreased progressively with age (GBD 2016 Epilepsy
Collaborators, 2019). The years of living with disease (YLD)
peaked at 5–9 years of age, decreased until 40–49 years, and
increased progressively to the oldest age group (GBD 2016
Epilepsy Collaborators, 2019).

Dystonia is generally defined as a type of movement disorder
with manifestations such as sustained or intermittent muscle
contractions causing abnormal, often repetitive, movements,
postures, or both. Dystonic movements are typically patterned
and twisting, and may be tremulous. Dystonia is often initiated or
worsened by voluntary action and associated with overflow
muscle activation. This disorder was later classified by a
consensus on movement disorders along two axes: clinical
characteristics, including age at onset, body distribution,
temporal pattern and associated features (additional movement
disorders or neurological features); and etiology, which includes
nervous system pathology and inheritance (Albanese, et al.,
2013). Dystonia is poorly controlled solely by medication
using anticholinergic drugs, dopamine modulators,
pharmacologic agents, etc. Deep brain stimulation
revolutionized its symptomatic treatment (Jankovic, 2013).

Tremor is generally defined as an involuntary, rhythmic,
oscillatory movement of a body part. The original consensus
criteria for classifying tremor disorders were published by the
International Parkinson andMovement Disorder Society in 1998.
A more updated criteria was later developed by Bhatia and others
(Bhatia, et al., 2018) to account for subsequent advances in ET,
tremor associated with dystonia, and other monosymptomatic
and indeterminate tremors. The revised consensus statement
classifies tremors along axes: clinical characteristics which
includes historical features (age at onset, family history, and
temporal evolution), tremor characteristics (body distribution,
activation condition), associated signs (systemic, neurological),
and laboratory tests (electrophysiology, imaging); and etiology
(acquired, genetic, or idiopathic). Action tremors are classified as

neurodegenerative (Aging-related tremors), and non-
neurodegenerative (Essential tremors). Essential tremors
constitute minor neurological findings such as mild cerebellar
abnormalities which may either be hereditary (60–80%) and
sporadic (20–40%) (Deuschl et al., 2015). Meanwhile, ARTs
manifest as decline of aging parameters, including a change of
cognition, activities of daily living, and reduction of strength and
thereby a faster aging (Deuschl et al., 2015).

Dementia is the loss of cognitive functioning—thinking,
remembering, and reasoning. One form of dementia is
Alzheimer’s disease (AD) which is caused by changes in the
brain, including abnormal buildups of proteins, known as
amyloid plaques and tau tangle that aggravate with age.
(https://www.nia.nih.gov/health/what-is-dementia). Table 1
summarizes these including the target section of the brain.

EFFICACY OF DEEP BRAIN STIMULATION
FOR THE MANAGEMENT AND
TREATMENT OF CHRONIC DISEASES
Parkinson’s Disease
For the past several years, DBS has been established as a highly-
effective therapy for advanced PD (Groiss et al., 2009), with
options for treating PD symptoms continually expanding (Fox,
et al., 2018). Based on an extensive evidence-based review
conducted by the International Parkinson and movement
disorder society, it was concluded that bilateral STN and GPi
DBS are clinically useful for motor fluctuations and for dyskinesia
when administered in tandem with the standard medications
(Fox, et al., 2018).

On one retrospective analysis of the medical records of 400
consecutive patients who underwent DBS implantation, a 10-years
survival rate of 51% for patients with PD has been reported using
Kaplan-Meier estimation and multivariate regression utilizing Cox
proportional hazards modeling (Hitti et al., 2019). The study
results suggest that DBS provides durable symptomatic relief
and allows many PD individuals to maintain activities of daily
living (ADLs) over long-term follow-up exceeding 10 years.
Meanwhile, a review paper and meta-analysis of eight eligible
randomized control trials (RCTs) (n = 1,189) by Bratsos, et al.
(2018), comparing the efficacy of DBS and best medical therapy
(BMT) has shown that DBS provided more significant
improvements based on the following outcome measures:
Unified Parkinson’s disease Rating Scale (UPDRS), quality of
life (QoL) using the Parkinson’s disease Questionnaire (PDQ-
39), levodopa equivalent dose (LED) reduction, and rates of
serious adverse events (SAE).

Epilepsy
Deep brain stimulation has shown significant seizure frequency
reduction on patients with drug-resistant epilepsy (DRE) across
different age groups based from several independent studies as
summarized in one review (Zangiabadi et al., 2019). In one follow
up study investigating the long term efficacy of the clinical trial
that involved the Stimulation of the Anterior Nucleus of the
Thalamus for Epilepsy (SANTE), a median percent seizure
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reduction from the baseline for year one and year five was
reported to be 41 and 69%, respectively (Salanova et al., 2015).
Wille et al. (2011) reported 30—100% seizure reduction on five
adult patients with progressive myoclonic epilepsy (PME) upon
application of chronic high-frequency deep-brain stimulation.

Dystonia
In one study comparingDBSwith sham stimulation in a randomized,
controlled clinical trial of 40 patients with primary segmental or
generalized dystonia, it was shown that DBS has resulted in a higher
movement score from baseline using the Burke–Fahn–Marsden
Dystonia Rating Scale (Kupsch et al., 2006). The efficacy of
continuous bilateral GPi-DBS was assessed on a prospective,
controlled, multi-center study of 22 patients with primary
generalized dystonia (Vidailhet et al., 2005). It was shown that
after 3, 6, and 12months of continuous bilateral GPi-DBS,
dystonia motor symptoms were ameliorated by 47, 51, and 55%,
respectively. Motor function has improved by 34, 42, and 44% at 3, 6,
and 12months, respectively based on the Burke-Fahn-Marsden
Dystonia Rating Scale (BFMDRS). It was further shown that
chronic bilateral pallidal stimulation is an efficient treatment
option for patients with cervical dystonia who do not benefit from
conservative treatment (e.g. local botulinum toxin injections) (Krauss,
2007); furthermore, there were significant improvements in dystonic
posture and movements, reduced pain caused by dystonia and lesser
related disabilities. Ostreem and Starr (2008) collated the different
clinical trials on the application of DBS for dystonia treatment and
has shown that, in general, significant improvement is manifested on
patients with primary dystonia using BFMDRS.

Alzheimer’s Disease
A review paper by Luo, et al. (2021), summarized 30 recent
studies on the application of DBS to AD, 16 of which included
actual clinical trials. On two independent studies, the memory of
AD patients improved with the rate of cognitive decline decreased
accompanied by an increase in cerebral glucose metabolism
(Laxton et al., 2010; Smith et al., 2012). Other studies have
also shown that the nutritional status of AD patients remained
stable, and the rate of hippocampal atrophy slowed down after
1 year of DBS (Noreik et al., 2015; Sankar et al., 2015).

Tremors
It was found that thalamic DBS is a safe and effective therapy in
patients with essential tremor followed for up to 13 years based on
the assessment done by Baizbal-Carvallo (2014). Here, 13 male
patients (Age: 47 – 88 years) treated with DBS for essential tremor

for at least 8 years were evaluated in the ‘on’ and ‘off’ state using the
Fahn–Tolosa–Marin tremor rating scale, and their medical records
were reviewed to assess complications related to this therapy. DBS
provided a functional improvement of 31.7% in the ‘on’ state;
furthermore, a total non-blinded improvement in the tremor rating
scale of 39% was observed in the ‘on’ state. Meanwhile, on an
observer blinded study of 20 patients with ET by Paschen et al.,
2019, ventralis intermedius (ViM) DBS showed significant
improvement over the non-stimulated condition based on the
Tremor Rating Scale. However, it was further observed that
Vim DBS loses efficacy over the long term (e.g. 10 years) for
cases with medically refractory severe ET.

Side Effects of DBS
Most DBS side effects can be understood as a result of current
spreading into brain regions adjacent to the target area. Some of
its common side effects include spastic muscle contractions, uni-
or bilateral gaze deviation, autonomic side effects, paresthesia,
speech impairment, dyskinesia, gait impairment and postural
instability, acute neuropsychiatric side effects, depression,
Impulse Control Disorders (ICD), and cognitive side effects
(Koeglsperger et al., 2019).

MECHANISMS OF DEEP BRAIN
STIMULATION

Although DBS significantly reduces motor symptoms, limits
drug-induced side effects, improves performance of activities
of daily living, and enhances quality of life (Halpern et al.,
2007), the corresponding physiological mechanisms are not
fully explained (Montgomery and Gale, 2008). Several
hypotheses offer an explanation on its mechanism namely:
blockade depolarization, synaptic inhibition, desynchronization
of abnormal oscillatory neuronal activity and antidromic
activation (Li et al., 2014).

The blockade depolarization mechanism has been verified on
an in vitro setup where high frequency stimulation can cause
sustained depolarization of neural membranes by inactivating
sodium channels and increasing potassium currents preventing
the initiation or propagation of action potentials (Beurrier et al.,
2001; Magariños-Ascone et al., 2002).

DBS is said to inhibit neuronal activity by reducing the firing
rate of the neurons at the stimulated site similar to that of
reversible lesion in ablative surgery (Herrington et al., 2016).
This inhibitory activity was observed in normal awake monkeys

TABLE 1 | Chronic diseases and corresponding DBS target sites.

disease Target References

Parkinson’s disease GPi, STN, (PPN) Deuschl et al., 2013; Deep Brain Stimulation for Parkinson’s Disease Study Group, 2001
Chronic Epilepsy Cerebellum, CN, STN, hippocampus, CM, CC, LoC, MB) Bergey et al., 2015; Fisher et al., 2010
Primary Dystonia GPi, (STN) Ostrem et al., 2011; Vidailhet et al., 2007
Essential Tremor Vim, (STN) Zhang et al., 2010; Blomstedt et al., 2010
Alzheimer’s disease NBM, fornix Laxton et al. (2010)

Abbreviations: GPi, globus pallidus internus; STN, subthalamic nucleus; PPN, pedunculopontine nucleus; CN, caudate nucleus; CM, centromedian nucleus of the thalamus; CC, corpus
callosum; LoC, locus coeruleus; MB, mammillary bodies; Vim, ventral intermediate nucleus of the thalamus; NBM, nucleus basalis of Meynert.
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where single-pulse stimulation of the GPi evoked brief inhibition
in neighboring globus pallidus internus (GPi) neurons, mediated
by the gamma-aminobutyric acid type A (GABA-A) receptors,
while high-frequency stimulation of the GPi completely inhibited
spontaneous firings of GPi neurons by activation of GABA-A and
GABA-B receptors (Chiken and Nambu, 2013). This inhibitory
activity was also observed intraoperatively on actual PD patients
administered with STN-DBS (Filali et al., 2004; Welter et al.,
2004), GPi-DBS (Dostrovsky et al., 2000; Lafreniere-Roula et al.,
2010) and SNr-DBS (Lafreniere-Roula et al., 2010).

DBS is also said to be disrupting the abnormal flow of
information in the cortico-basal ganglia-thalamocortical
circuits (CBGTCs) during pathological conditions (Chiken
and Nambu, 2016). Here, DBS activates axon terminals in the
stimulated nucleus thereby inducing the release of inhibitory
(GABA) and excitatory glutamate (Glu) neurotransmitters
that dissociates the inputs and outputs in the stimulated
nucleus. GABA is an amino acid released into the post-
synaptic terminals of neurons that functions as the primary
inhibitory neurotransmitter for the central nervous system
(CNS). GABA causes hyperpolarization and inhibits neuronal
activity. Glu, on the other hand, is an excitatory
neurotransmitter. The neurotransmitter dopamine in the
basal ganglia serves as the agent that modulates the
functions of the striatum, the external and internal segment
of the globus pallidus (GPe and GPi, respectively), the
subthalamic nucleus (STN), and the substantia nigra pars
compacta and reticulata (SNc and SNr, respectively)
(Rommelfanger & Wichmann, 2010). The input and output
nuclei of the basal ganglia are connected through two main

pathways, i.e., the monosynaptic GABAergic “direct” pathway
and polysynaptic “indirect” pathway. The latter involves
GABAergic projections from the striatum to GPe and from
GPe to the STN, as well as excitatory glutamatergic
projections from the STN to GPe, GPi, and SNr. It was
shown recently that nigrostriatal dopamine neurons inhibit
striatal projection neurons by releasing a neurotransmitter
that activates GABA-A receptors extending also to the
mesolimbic afferents (Tritsch et al., 2014). Meanwhile,
dopamine released from the striatum is also implicated in
the modulation of learning and neuronal plasticity through
processes such as long-term depression (LTD) or potentiation
(LTP), acting at glutamatergic synapses (Pawlak and Kerr,
2008; Flajolet, et al., 2008). The balance between inhibitory
neuronal transmission via GABA and excitatory neuronal
transmission via glutamate is essential for proper cell
membrane stability and neurologic function (https://www.
ncbi.nlm.nih.gov/books/NBK526124/).

The basal ganglia consist of massive parallel and largely closed
cortical-subcortical circuits, in which information is sent from
different cortical areas to spatially separate domains of the basal
ganglia where they are processed, and then returned to the frontal
cortical area of origin via the thalamus (Wichmann and Delong,
2011). Based from the known functionalities of the cortical
region, different CBGTCs may be classified as “motor,”
“oculomotor,” “prefrontal,” (or “associative”) and “limbic”
circuits. Each CBGTC is understood to consist of so-called
“segregated” sub-circuits where the effect of DBS may be
identified. Wichmann and Delong, 2011 showed an intuitive
diagram of the motor circuit with its corresponding segregated
sub-circuits as well as the DBS targets (Figure 1). Movement

FIGURE 1 | Motor circuit of the CBGTC showing the segregated sub-
circuits. The targets of current DBS treatments are labeled with asterisks (*).
Abbreviations: SMA, supplementary motor area; PMC, premotor cortex;
CMA, cingulate motor area; M1, primary motor cortex; Gpe, globus
pallidus externa; SNr, substantia nigra pars reticulata; Gpi, globus pallidus
internus VLo, ventrolateral nucleus of thalamus, pars oralis; VLm, ventrolateral
nucleus of thalamus, pars medialis; VApc, ventral anterior nucleus of
thalamus, pars parvocellularis. (redrawn from Wichmann and Delong., 2011).

FIGURE 2 | Conventional DBS setup showing the placement of the
stimulation electrodes in the basal ganglia and sub-thalamic nucleus. The
Implantable Pulse Generator (IPG) is placed in the sub-clavicular space, and
extension wires are tunneled subcutaneously to connect the intracranial
electrodes and IPG. The IPG is programmed remotely by the physician. (This
figure indicates only cortical biomarkers and is a simplified diagram).
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disorders, such as PD, dystonia and Tourette’s Syndrome (TS),
are caused by dysfunctions in the motor circuit.

CONVENTIONAL OPEN-LOOP CONTROL
DEEP BRAIN STIMULATION

Harmsen and others (Harmsen, et al., 2020) consolidated the
current state of affairs in the clinical trials for DBS registered in
the Clinical-Trials.org database. The trials spanned 28 different
disorders across 26 distinct brain targets, with almost 40% of
trials being for conditions other than movement disorders. For
addressing movement disorders, DBS is administered by
implanting electrodes into any of the basal ganglia nuclei
namely: GPi and STN (Halpern et al., 2007) and delivering
pulses of preset amplitude, frequency, duration and polarity
from an Implantable Pulse Generator (IPG) (Figure 2). Some
of the typical DBS parameters used in disease management and
therapy are summarized in Table 2.

Successful DBS depends on properly set stimulus
parameters, including pulse width, frequency, and
amplitude alongside with the proper electrode positioning
(Su et al. (2018)). Determination of the optimal stimulation
parameters is vital: to improve clinical efficacy; to minimize
side effects; to maximize the battery life; and to evaluate the
dose-response relationship between stimulation parameters
and clinical effects. In one study by Obeso, et al. (2001), the
final mean stimulus parameter settings that provided the
highest efficacy to treat PD symptoms were 3V, 82 µs, and
152 Hz for STN-DBS, and 3.2 V, 125 µs, and 162 Hz for GPi-
DBS. For the treatment of epilepsy, common DBS parameters
are ≥100 Hz at 1–10 V for ANT stimulation for refractory
temporal lobe epilepsy, ≥ 130 Hz at 1–5 V for hippocampus

and STN stimulation for refractory temporal lobe epilepsy,
tens to high frequency stimulation at 1–10 V for stimulation of
centromedian nucleus (CMN) of the thalamus for generalized
tonic-clonic seizures (Wu et al., 2021).

When finding the optimal DBS settings, the pulse width and
frequency are initially kept constant at 60 μs and 130 Hz,
respectively with gradual increase of stimulation amplitude in
steps of 0.1–0.5 V or 0.1–0.5 mA until the safe treatment margin
is obtained (Volkmann et al., 2006). Once the leads have been
implanted stereotactically or via a surgical robot, each ring
contact is tested in a monopolar configuration with the
electrode as negative (cathode) and the IPG as positive
(anode). Each of the rings or segments of the electrode are set
to have the same stimulation intensity and are fired in unison
(Volkmann et al., 2006). The mode of stimulation, either constant
current (CC) or constant voltage (CV), has its corresponding pros
and cons. CC stimulation provides a more precise control
independent of brain tissue–electrode interface impedance
variations but wastes significant amount of power and
therefore reduces battery life, whereas, CV stimulation
provides the reverse (Lettieri et al., 2015). The interface
impedance tends to reduce post-operatively at an average rate
of 73Ω/year (Satzer et al., 2014). A recommended safe charge
density limit of 30 mC/cm2 is normally considered in the
selection of DBS parameters. Charge density is calculated by
dividing the product of the voltage and the pulse width by the
product of the impedance and the geometric surface area of the
electrode (Kuncel and Gril, 2004).

The lack of understanding on the DBS mechanism makes the
setting of stimulation parameters quite cumbersome. Several
experimental studies, centered on PD, demonstrated that
motor symptoms depend nonlinearly on the frequency and
amplitude of stimulation (Moro et al., 2002; Moreau et al.,

TABLE 2 | Typical DBS parameter settings.

Parameter Value References

Mode • Constant Current (CC) Fleming et al. (2020)
• Constant Voltage (CV) Stanlaski et al. (2012)

Amplitude • CC: 0–3 mA Fleming et al. (2020)
• CV: 1–3.5 V Stanlaski et al. (2012)
• CV: 1–10 V Wu et al. (2021)

Frequency • Low Frequency (LF) Su et al. (2018)
- 60–80 Hz Baizabal-Carvallo and Alonso-Juerez, (2016)
- 20–45 Hz Santaniello et al., 2011
• High Frequency (HF) Su et al. (2018)
- 130–185 Hz

Pulse Width 60–210 ms Moro et al., 2002; O’Suilleabhain et al., 2003; Rizzone et al., 2001; Volkmann et al., 2002

Pattern of Stimulus • Monophasic Parastarfeizabadi and Kouzani, (2017)
- charge imbalanced
• Biphasic
- charge imbalanced
- charge balanced
- passive
- active
- symmetric
- asymmetric
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2008). Verification of DBS effects, i.e. STN-DBS for PD, is
normally done by assessing rigidity, bradykinesia or (rest)
tremor, and axial symptoms (Koeglsperger et al., 2019). Also,
selected items from the Unified Parkinson’s disease Rating Scale
(UPDRS) UPDRS or theMotion Disorder Society UPDRS (MDS-
UPDRS) scale are used to assess the therapeutic effect and to
document effects in a systematic manner.

To optimize therapy, a balance between maximal clinical
improvement and minimal stimulation-induced side effects is
being achieved through the adjustment of active electrode
contacts, stimulus frequency, amplitude, and pulse duration
(Mayo Clinic, 2017). This, however, is largely an ad hoc
process that relies on clinical expertise and does not totally
equate to optimal outcomes (Santaniello et al., 2011).
Furthermore, the selection of parameters has important
implications for power consumption, and thus the battery life
of the implantable pulse generator (Santaniello et al., 2011;
Parastarfeizabadi and Kouzani, 2017).

Conventional open-loop DBS involves the programming of
the stimulation parameters based on the present condition of
the patient. This is an iterative process in which stimulation
parameters are adjusted to maximize therapeutic benefits while
minimizing side effects (Morishita et al., 2013). However, the
efficacy of these therapeutic parameters normally deteriorates
over time due to disease progression, interactions between the
host environment and the electrode, and lead migration (Grahn
et al., 2014). Optimization of its efficacy is commonly achieved
by multiple post-operative visits where the stimulation
parameters are adjusted until the desired therapeutic effects
are achieved with minimal adverse effects (Grahn et al., 2014).
Risk factors abounding this process involve suboptimal
outcomes, infections, device failure, and lead removal or
repositioning (Frizon et al., 2019).

As a resolve, development of closed-loop control systems
that can respond to variative neurochemical environments,

tailoring DBS therapy to individual patients, is paramount
for improving the therapeutic efficacy. This device is
generally called “Smart DBS” because it is able to adapt
dynamically to the condition of the patient and deliver the
optimal electrical stimulation semi-autonomously (with
minimal intervention) or autonomously.

CLOSED-LOOP CONTROLLED DEEP
BRAIN STIMULATION—“SMART” DBS

In a closed-loop DBS control, the clinical state of the patient is
quantified periodically in order to adjust the stimulation
parameters for optimal treatment while reducing stimulation
induced side-effects (Fleming et al., 2020). The corresponding
block diagrams of the DBS with open-loop and closed-loop
controls are shown in Figure 3.

The DBS with closed-loop control consists of the
neurofeedback loop where the stimulation is controlled either
on/off or adaptively depending on the characteristics of a
particularly biomarker. Such biomarker arises in lieu of a
specific pathological condition. This loop is composed of
biomarker sensor, signal processor, IPG controller and IPG
device. Meanwhile, the DBS with open-loop control relies on
the stimulation parameters programmed by the physician.
Adaptive control involves dynamic adjustment of the
stimulation parameters in response to the extent of the
biomarker stimuli. In the presence of extensive pathological
biomarkers, stimulation is prolonged with either its amplitude
or frequency increased to deliver more stimulation energy, and
vice versa. Meanwhile, to save on power, stimulation is
deactivated whenever the preset biomarker threshold is not
reached. Thresholding could either be singular or dual. The
latter tends to be perform better in the presence of noise and
offsets.

FIGURE 3 | Two types of DBS control: open-loop and closed-loop. Abbreviations: IPG–implantable pulse generator; LFP–local field potential; AP–Action Potential;
ECOG–Electrocorticography; EEG - Electroencephalography.

Frontiers in Aging | www.frontiersin.org April 2022 | Volume 3 | Article 8482196

Silverio and Silverio Towards Smart DBS - An Overview

https://www.frontiersin.org/people/u/655600
https://www.frontiersin.org/journals/aging
www.frontiersin.org
https://www.frontiersin.org/journals/aging#articles


CHOICE OF THE BIOMARKER FOR
CLOSED-LOOP DBS CONTROL

To implement an autonomous or Smart DBS, the proper
biomarker has to be identified. Several candidates have been
considered in literature namely: electroencephalographs (EEG)
(Abdelhalim et al., 2013), electrocortigraphs (ECoG) (Thomas
and Jobst, 2015), Local Field Potentials (LFPs) (Abosch et al.,
2012; Stanslaski et al., 2012; Little et al., 2013; Priori et al., 2013)
and action potentials (Rosin et al., 2011) (Figure 4).

By considering the spatial resolution, proximity to the brain,
and localization, LFPs are considered the most potent biomarker
(Abosch et al., 2012; Little et al., 2013; Priori et al., 2013). Another
key advantage is that LFPs can be directly recorded from the
stimulation electrodes also achieving long-term stability at the
electrode-tissue interface (Little and Brown, 2012). Meanwhile,
other closed-loop control for DBS involved wearable sensors for
detecting hand tremor (Sarikhani et al., 2019), and inertial
measurement units (IMUs) for gait freezing (Bikias et al.,
2021). However, for a fully implanted system which reduces
the risk of infection, brain-based signals hold more ground
since such system can be made in proximity with the
stimulation electrodes.

The LFP is a summation signal of excitatory and inhibitory
dendritic potentials from many neurons about the recording site.
These are potentials generated in the extracellular space by
propagation of APs through axons reflecting neuronal
processes occurring within a local region around electrode in
the neuronal extracellular space (Kajikawa and Schroeder, 2011).
These have a spatial resolution of ~0.5–1 mm (Schwartz et al.,
2006), and frequency range covering ~1–500 Hz with an
amplitude of ~200 µV (Einevoll et al., 2013).

It was observed that the energy signature of specific waves in
the LFP signal, particularly the pathological beta waves

(13—35 Hz), are directly related to abnormal brain activity
associated to Parkinson’s disease (Rosin et al., 2011; Hariz,
2014; Hosain et al., 2014; Müller and Robinson, 2018). Hence,
most works explore the energy of these waves as the biomarker for
a potential closed-loop control DBS (Parastarfeizabadi and
Kouzani, 2017; Müller and Robinson, 2018).

CLOSED-LOOP CONTROL SCHEMES

Several controller models have been developed theoretically
(Santaniello et al., 2011; Fleming et al., 2020). The controller
of Santinello et al. (2011), was based on a recursively identified
autoregressive model (ARX) of the relationship between the
stimulation input and LFP output. It resulted to excellent
performances in tracking the reference (tremor free) spectral
features of the LFP through selective changes in the theta
(2–7 Hz), alpha (7–13 Hz), and beta (13–35 Hz) frequency
ranges, which is better than a static controller approach. In
the work of Fleming et al. (2020), various closed-loop control
algorithms in silico have been modeled incorporating
extracellular DBS electric field, antidromic and orthodromic
activation of STN afferent fibers, LFPs at non-stimulating
contacts of the DBS electrode and temporal variation beta-
band activity within the cortico-basal ganglia-thalamo cortical
loop. The performances of various control modes such as on/off,
dual threshold, proportional (P) and proportional-integral (PI)
have been verified computationally, with PI yielding the optimum
output in terms of power consumption and mean error in
modulating the pathological DBS frequency. Meanwhile, the
work of Molina, et al., 2021 demonstrated a closed loop DBS
approach using bilateral GPi DBS implantation to address
levodopa-responsive PD symptoms with open-loop stimulation,
and PPN DBS to serve as feedback for the treatment of medication

FIGURE 4 | Brain biomarkers for closed-loop DBS stimuli (top figure adapted from Parastarfeizabadi and Kouzani, 2017). Abbreviations: LFP–local field potential;
AP–Action Potential; ECOG–Electrocorticography; EEG - Electroencephalography.

Frontiers in Aging | www.frontiersin.org April 2022 | Volume 3 | Article 8482197

Silverio and Silverio Towards Smart DBS - An Overview

https://www.frontiersin.org/journals/aging
www.frontiersin.org
https://www.frontiersin.org/journals/aging#articles


refractory Freezing of Gait (FoG). The primary outcome of the
study was a 40% improvement in medication-refractory FoG in
60% of subjects at 6 months when "on".

HARDWARE IMPLEMENTATIONS OF
SMART DBS

There have been several works that implemented the closed loop
control either on an on-board module (Parastarfeizabadi et al.,
2016; Parastarfeizabadi and Kouzani, 2017) or on a system-on-
chip (Rhew et al., 2014; Wu et al., 2017; Wang et al., 2021). On-
board module implementation involves the use of commercially
available electronic components, microcontroller and digital
signal processing modules. System-on-chip (SoC)
implementations constitute miniaturized version of the DBS
circuit blocks thereby providing a better form factor and less
intrusive deployment than the on-board module.

On-Board Module Smart DBS
A miniature closed loop deep brain stimulation device has been
developed using dual energy thresholding for the on/off control
(Parastarfeizabadi et al., 2016). The device incorporated pre- and
post-amplifiers achieving 113 dB of gain, bandpass filter centered
around 0.7–50 Hz, and a pulse generator, driven by a pico-power
microcontroller unit, that provides on-demand stimulation current
pulses of 90 µs duration, frequency 130 Hz, and amplitude 200 µA.
Another work extended the DBS functionality to accommodate other
diseases into one module (Parastarfeizabadi et al., 2016). This
involved the neural sensor, a controller with a feature extractor, a
4 × 4 disease classifier using fuzzy logic, and a control strategy, and a
neural stimulator. The front-end has a gain range of 50–100 dB, dual
bandwidth of 7–45Hz and 200–1000 Hz for the extraction of five
biomarkers namely: five alpha, beta, sG, HFO, and spikes. The overall
module dissipates 35mW of power.

SoC-Based Smart DBS Developments
System on Chip developments of the closed-loop DBS control have
also proliferated. One work built a viable closed loop DBS SoC that
utilizes logarithmic processing for the control and adaptation of
stimulation currents based on detected low-frequency brain field
signals (Rhew et al., 2014). Suchmethod contributed to power savings
while maintaining a wide dynamic range. Their system records and
processes neural signals using four low-noise neural amplifier (LNA)
channels, amultiplexed logarithmicADC, and two high-pass and two
low-pass digital logarithmic filters. A logarithmic domain digital
signal processor (DSP) and PI-controller controls eight current
stimulator channels and enables closed-loop stimulation. The SoC
also incorporates an RF transceiver, a clock generator, and a power
harvester. The overall SoC, implemented on CMOS 0.18 µm
technology, has an overall area of 4 mm2 while consuming a total
power of 468 µW for recording and processing neural signals, for
stimulation, and for two-way wireless communication. Another SoC
has been developed that incorporates a wireless power supply via an
inductive link, a wireless interface, an adaptive high voltage tolerant
stimulator, a bio-signal processor for seizure detection, and an 8-
channel EEG acquisition unit (Wu et al., 2017). The acquisition unit

consists of auto-reset capacitive-coupled instrumentation amplifiers
(ARCCIA), band-pass filters, V-to-I programmable gain amplifiers, a
multiplexer, a transimpedance amplifier (TIA), and a 10-bit DMSAR
(Delta-Modulated Successive Approximation Register ADC). Its
acquisition unit has achieved a Noise Efficiency Factor (NEF) of
1.77 with an input referred noise of 5.23µVrms, a stimulation current
of 30 μA, and a standby power of 2.8 mW.

An 8-channel closed-loop neuromodulation SoC with 2-level
seizure classification has been developed (Wang et al., 2021). It
consists of a capacitive-coupled instrument amplifier (CCIA) at
the analog front-end with a feedback-based common-mode (CM)
cancellation circuit that suppresses large-scale CM interferences.
Meanwhile, the stimulation artefacts are suppressed by a mixed
signal loop. An auto-zero based pre-charge path boosts the input
impedance, while the electrode DC offset is canceled by a DC
servo loop with very-large and accurate time constant. The analog
front-end chip occupies an area of 2.32 mm2 accompanied by a
DSP with an area of 3.51 mm2. The CCIA can suppress 1.5-Vpp
CM interference, and has achieved an accurate high-pass corner
frequency as low as 0.1 Hz and an input impedance greater than
2.2 GΩ. The overall classifier achieves 97.8% sensitivity and
consumes only 1.16-μW average power.

Another work on closed loop DBS control involved the two
novel control algorithms for stimulator triggering namely:
detection of gait arrhythmicity and logistic-regression model
for the detection of gait freezing. Such controls were validated
on a benchtop model in conjunction with a closed-loop DBS
system by responding to real-time human subject kinematic and
pre-recorded data from leg-worn inertial sensors from a
participant with Parkinson’s disease. A novel control policy
algorithm that changes neurostimulator frequency in response
to the kinematic inputs has also been incorporated (O’Day et al.,
2020). Another non-LFP based DBS control uses the hand
tremors as input stimulus to trigger the implanted DBS
module. Here, two sites of the basal ganglia (BG) namely the
subthalamic nucleus (STN) and globus pallidus internus (GPi)
are simultaneously controlled via stimulation using intelligent
single input interval type-2 fuzzy logic (iSIT2-FL) combined with
non-integer sliding mode control (SMC) (Gheisarnejad et al.,
2020). On another work, neural sensing of movement (using
chronically implanted cortical electrodes) was used to enable or
disable stimulation for tremor. Therapeutic stimulation is
delivered only when the patient is actively using their effected
limb, thereby reducing the total stimulation applied, and
potentially extending the lifetime of surgically implanted
batteries (Herron et al., 2017).

Commercially Available IPG Devices
for DBS
Meanwhile, there exist some commercially available IPG devices
for DBS with closed loop control features that have been
successfully deployed clinically. One of which is the Activa™
RC + S system (Medtronic, Inc.) which records
electrophysiological signals from the implanted DBS electrodes
and offers inertial measurements (Hell et al., 2019). Amore recent
DBS system called the Percept™ PC platform (Medtronic, Inc.)
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TABLE 3 | Commercially available IPG devices.

Device Frequency Pulsewidth Mode Ampltiude
(Joohi,
2021)

Feature Application

Medtronic Activa™ PC
(Paff et al., 2020)

2–250 Hz 60–450 µs CC
or CV

0–25.5 mA
0–10.5 V

conditionally safe with MRI Bilateral STN and Gpi Stimulation for PD,
Unilateral Thalamic Stimulation for
Ets,Unilateral or Bilateral stimulation of the
Gpi or STN for treatment of chronic, drug
refractory segmental or generalized dystonia

Medtronic Activa™ RC
(Paff et al., 2020)

dual channel, rechargeable,
conditionally safe with MRI

Medtronic Activa™ SC
(Paff et al., 2020)

3–250 Hz single channel, conditionally safe
with MRI

Medtronic Percept™
PC (Joohi, 2021)

2–250 Hz 20–450 µs CC 0–25.5 mA closed loop feature (using local field
potential as biomarker)

Abbott Infinity 5 (Paff
et al., 2020)

2–240 Hz 20–500 µs CC 0–12.75 mA dual channel Bilateral STN and GPi stimulation for PD and
for bilateral thalamic stimulation for ETs

AbbottInfinity 7 (Paff
et al., 2020)

Boston Scientific
Vercise PC (Paff et al.,
2020)

2–255 Hz 20–450—µs CC 0.1–20 mA dual channel Bilateral STN stimulation for PD

Boston Scientific
Vercise RC (Paff et al.,
2020)

CC dual channel, rechargeable

Boston Scientific Gevia
(Paff et al., 2020)

dual channel, rechargeable,
conditionally safe with MRI

PINS Medical G102
(Paff et al., 2020)

2–250 Hz 30–450—µs CC
or CV

0–25 mA;
0–10 V

dual channel, remote wireless
programming

PD, tremor, dystonia (Joohi, 2021)

PINS Medical G102R
(Paff et al., 2020)

dual channel, rechargeable, remote
wireless programming

PINS Medical G101A
(Paff et al., 2020)

single channel, remote wireless
programming

SceneRay 1180 1–1600 Hz 60–960 µs — — dual channel remote wireless
programming

—

Neuropace (Joohi,
2021)

1–333 Hz 40–1000 µs CC 0–12.0 mA closed loop feature (responsive
neurostimulation), rechargeable
(Shaikhouni, et al., 2015)

Drug-Resistant Epilepsy (DRE)

TABLE 4 | Efficacy of some commercial IPG devices based on independent clinical studies.

Device Study design Disease Test subjects Efficacy Scoring

Medtronic Activa PC + S
(Molina, et al., 2021)

Interventional (clinical trial),
single group assignment

Medication-refractory
Freezing of Gait (FoG)
in PD

5 40% improvement at 60%
of the subjects after
6 months

FOGQ, PDQ-39 (Peto et al., 1998),
GFQ (Giladi et al., 2000), ABC (Powell
and Myers, 1995, UPDRS) (Fahn and
Elton, 1987)

Boston Scientific™
(Moro, et al., 2010)

Nonrandomized, prospect,
blinded, multi-center

PD 51 45.4% (STN), 20% (GPi) UPDRS III

Boston Scientific™
Vercise System (Follett,
et al., 2010)

Multi-center, randomized,
blinded

PD bilateral STN:
147; bilateral
Gpi: 152

25.3% improvement in
UPDRS III; improvement in
6 of 8 subscales

UPDRS III

Abbot St. Jude Medical
INFINITY™ (Okun, et al.,
2012)

Multi-center, randomized,
blinded

PD 136 39% on the baseline
UPDRS III scores
improvement

UPDRS III

Medtronic Kinetra and
Soletra (Schuepbach,
et al., 2013)

Interventional (clinical trial),
randomized, parallel
assignment

PD 251 QoL improvement by 7.8
points

PDQ-39, UPDRS-II, III and VI

FOGQ, Freezing of Gait Questionnaire; GFQ, Gait and Falls Questionnaire; ABC, Activities Specific Balance Confidence Scale; PDQ, Parkinson’s disease Quality of Life Questionnaire,
Unified Parkinson’s disease Rating Scale (UPDRS).
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incorporates “brainsense” technology utilizing LFP signals for
refining therapeutic stimulation, symptoms tracking and
correlation to neurophysiologic characteristics (Shahed, 2021).
The Neuropace device has demonstrated responsive
neurostimulation (RNS) and has been utilized for the
treatment of drug-resistant epilepsy (DRE) (Shaikhouni, et al.,
2015). A summary of the commercially available IPG devices for
DBS is presented in Table 3 (Paff et al., 2020; Joohi, 2021;
Shaikhouni, et al., 2015). It is noticeable that there are
advancements in the features of IPGs such as rechargeability
of the battery; multiplicity of the channels; wireless
programmability and closed loop feedback. Meanwhile the
efficacy of some of these commercial devices based on
independent clinical studies are summarized in Table 4.

DESIGN CONSIDERATIONS FOR SMART
DBS IMPLEMENTATION

Since the LFP signal is about 50–500 µV (Einevoll et al., 2013), the
analog front-end that extracts the LFP should have low input-referred
noise within the bandwidth of interest. However, solid state devices
tend to generate a lot of noise especially in the frequency range of the
biopotential signal which normally covers 0.5 Hz to 1 kHz (Ha et al.,
2021; Parastarfeizabadi and Kouzani, 2017) The dominant noise in
this spectrum is the flicker (1/f) noise which may be attributed to the
crystal defects within the silicon material and silicon–oxide interface.
The input referred rms noise voltages should be within <10 µVrms
(Parastarfeizabadi and Kouzani, 2017). Corollary to this specification
is the target signal-noise ratio (SNR) at the output of the AFE. An
SNR of >40 dB is necessary to imply an intelligible signal. On the
interface between the AFE and the tissue, several non-idealities exist
namely: parasitic electrode impedance, ambient noise such as
electromagnetic interference and power supply hum. To reduce
these, the AFE should have a high common-mode rejection ratio
(CMRR). This is defined as the ratio of the gain in the intensity of the
intelligent signal (biopotential signal) over the gain of the common-
mode signals resulting from the interface non-idealities and noise. A
differential gain of >80 dB and a CMRR of >100 dB are considered
typically for an AFE (Arlotti et al., 2016). The AFE should be able to
reject large transients at the input and should accommodate a wide
input dynamic range to prevent saturating its inputs. This is very
essential since the DBS leads are shared for delivering the stimulation
pulses and for extracting the LFPs. The AFE should be able to block
the stimulation pulses while it is able to amplify the LFPs.

The stimulator should be programmable in amplitude
(voltage/current), frequency, and in duration and phase.
Different combinations of these parameters have been
extensively used in clinical practice for different cases similar
to PD. Generally, the stimulator should only be activated at
defined intervals either based on demand (as in a closed loop
case) or pre-programmed. This is to save battery life. A potential
alternative or support unit for the embedded battery is an in vivo
or a subcutaneous energy harvester. Several mechanisms for this
have been explored in literature constituting mechanical energy,
radio frequency, ultrasound, and thermal (Shi et al., 2018; Zhao
et al., 2020; Zou et al., 2021). One work demonstrated the potential

of harvesting ambient mechanical energy from pressure
fluctuations in the CSF within the lateral ventricles of the brain
(Beker et al., 2017). In general, the harvester should be designed to
have the maximum efficiency possible and should be positioned
where there are maximum physical stimuli while having minimal
coupling loss. Other key considerations for developing these
harvesters would be material biocompatibility, packaging, form
factor, efficiency, and site practicality. For maximum power
transfer, the harvester’s transducer should also be properly
matched with the impedance of the front-end power scavenging
electronics of the implantable device.

Finally, the overall power dissipation of a neural implant
should be constrained so as not to cause any irreversible
damage due to excessive current density and heating at the
vicinity of the leads. To date, the power consumption of
neural implants is within the range of 30 μW to 25 mW (Zhao
et al., 2020), with most power attributed to the stimulator or to the
wireless transceiver link.

Another aspect to consider in implementing a low
maintenance DBS device is the need for supplemental
energy sources that offer semi-perpetual charging with
lower cost than present rechargeable devices. A typical
rechargeable battery for DBS can support the device for a
period of 9 years with an approximate long-term cost of care
savings of $60,900 by considering lesser replacement surgeries,
lesser number of clinical appointments and hospital visits,
lesser need for preoperative planning, and lesser time off from
work (Hitti et al., 2018). However, despite these advantages, a
study conducted by (Khaleeq et al., 2019) showed that almost
two thirds of patients with DBS, especially those who have a
socially active and independent lifestyle, preferred the non-
rechargeable IPG over the rechargeable ones. The choice is
majorly because of convenience and concern about forgetting
to recharge the battery. Furthermore, rechargeable DBS
devices are more expensive than the non-rechargeable ones.
According to the study of (Qiu et al., 2021), patients with less
financial capabilities tend to choose the non-rechargeable DBS
devices.

CONCLUSION

In this overview paper, we have presented the efficacies of DBS
therapy for diseases that aggravate with age based on
independent clinical trials. We have also presented the
current state of the art in DBS instrumentation, specifically
the additive features of IPGs that cater for ease of use,
monitoring, programmability and closed-loop control.
Meanwhile, while such advancements are already on the
market, innovation towards making the DBS therapy more
stand-alone, semi-autonomous, and having smaller form
factors are still underway. These specifically point to the
developments in system-on-chip (SoC) implementations for
closed loop control or “smart” DBS. This work detailed the
future prospects of SoC-based DBS technology that tend to
provide more freedom of movement and lesser intervention
while highlighting its technical constraints and design
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challenges collated from technical literature. These can serve
as guide for developing low maintenance DBS systems with an
aim of improving the QoL of elderly patients.
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