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Abstract

Companion diagnostic immunohistochemistry (IHC) tests are developed and performed without 

incorporating the tools and principles of laboratory metrology. Basic analytic assay parameters 

such as lower limit of detection (LOD) and dynamic range are unknown to both assay developers 

and end users. We solved this problem by developing completely new tools for IHC - calibrators 

with units of measure traceable to National Institute of Standards & Technology (NIST) Standard 

Reference Material (SRM) 1934. In this study, we demonstrate the clinical impact and opportunity 

for incorporating these changes into PD-L1 testing. Forty-one laboratories in North America 

and Europe were surveyed with newly-developed PD-L1 calibrators. The survey sampled a 

broad representation of commercial and laboratory-developed tests (LDTs). Using the PD-L1 

calibrators, we quantified analytic test parameters that were previously only inferred indirectly 

after large clinical studies. The data show that the four FDA-cleared PD-L1 assays represent three 

different levels of analytic sensitivity. The new analytic sensitivity data explain why some patients’ 

tissue samples were positive by one assay and negative by another. The outcome depends on 

the assay’s lower limit of detection. Also, why previous attempts to harmonize certain PD-L1 

assays were unsuccessful; the assays’ dynamic ranges were too disparate and did not overlap. 

PD-L1 assay calibration also clarifies the exact performance characteristics of LDTs relative to 

FDA-cleared commercial assays. Some LDTs’ analytic response curves are indistinguishable from 

their predicate FDA-cleared assay. IHC assay calibration represents an important transition for 
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companion diagnostic testing. The new tools will improve patient treatment stratification, test 

harmonization, and foster accuracy as tests transition from clinical trials to broad clinical use.

INTRODUCTION

It is an axiom in laboratory science that accurate, reproducible testing requires assay 

calibrators having units of measure traceable to an accepted reference standard. These 

components – calibrators, traceable units of measure, and reference standards – are 

integral features of modern laboratory metrology. Hundreds of clinical laboratory reference 

standards, from amylase to zinc, support a corresponding number of clinical laboratory 

tests. These hundreds of higher order reference standards link to thousands of lower order 

standards - commercial calibrators – for regular use in clinical laboratories. Companion 

diagnostic IHC testing is an exception in not adopting these conventions. Despite their 

importance in cancer patient management, companion diagnostic IHC tests are still treated 

as “stains” rather than assays with metrologic standards.(1) With the recent description of 

NIST SRM 1934 as a universal IHC reference standard (2), we evaluated the impact of 

programmed death-ligand 1 (PD-L1) calibrators on laboratory testing.

PD-L1 IHC testing is a case study of the strengths and limitations of IHC companion 

diagnostic testing. A strength of PD-L1 testing is that all four Food and Drug Administration 

(FDA)-cleared IHC tests were shown to (variably) predict clinical responses to specific 

immune checkpoint inhibitors (ICI’s). For some patients, these ICI’s induce a striking 

augmentation of anti-tumor immunity that sometimes leads to dramatic clinical remissions. 

An important limitation, on the other hand, is that multiple predictive PD-L1 IHC assays 

were developed, each with varied, ill-defined performance characteristics, which are difficult 

to study and compare to each other. The four FDA-cleared companion/complementary 

(CDx) tests use different primary monoclonal antibodies, different automated instruments, 

different detection systems, different allowable pre-analytical conditions, different readout 

methods for assessing PD-L1 expression in tumor and/or inflammatory cells, and often 

different thresholds for positive vs. negative results. Adding as yet another layer of 

complexity, some laboratories develop PD-L1 laboratory-developed tests (LDTs) or use 

FDA-cleared tests for a non-corresponding ICI. Current IHC methods provide little insight 

into analytic sensitivity, as defined by the LOD and dynamic range. PD-L1 readouts provide 

no reference to the actual PD-L1 cellular protein concentration. PD-L1 calibrators offer the 

opportunity to define these variables and characterize the end result in terms of well-defined 

levels of analytic sensitivity.

Previously, a series of studies compared the performance of the various PD-L1 IHC tests 

to better understand how the tests relate to one another.(3–5) In these previously published 

studies comparing the various PD-L1 tests, analytic sensitivity was inferred indirectly by 

comparing staining results on a series of patient tumor samples or cell lines having unknown 

PD-L1 concentrations. In other words, analytic sensitivity was inferred in relative and 

descriptive terms. In this paper, we characterize the various approved PD-L1 tests, as well as 

some LDTs, in terms of the absolute PD-L1 protein concentration using an important new 

analytical tool.
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Terminology.

The new reference materials described in this paper incorporate terminology that, although 

well-established in the field of laboratory medicine, is new to immunohistochemistry. For 

the sake of clarity, we define the terms.

“Analytic sensitivity” refers to the ability of an IHC test to detect a defined number of 

PD-L1 protein molecules. More sensitive tests will detect tumor cells expressing a lower 

number of PD-L1 molecules.

The “LOD” is the relevant measure of analytic sensitivity for qualitative assays like IHC.

(6) The LOD is the lowest PD-L1 concentration that visibly stains, i.e., can be reliably 

distinguished from background. It also defines the lower boundary of the assay’s dynamic 

range.(7) Lower LODs indicate greater analytic sensitivity, in being able to detect fewer 

molecules of PD-L1. LOD is important because it is the threshold of cellular staining, 

directly affecting a pathologist’s readout.

The lower limit of quantification (LOQ) was not incorporated as a measure in this study but 

may be important for future quantitative IHC studies. It was not incorporated as a measure 

in this study because PD-L1 testing is qualitative in nature; each cell is judged as either 

positive or negative for PD-L1. Whereas LOD is the lower bound of the dynamic range, 

LOQ is the lower limit of the linear range. LOQ is often defined as the lowest analyte 

concentration that yields an assay precision with a coefficient of variation ≤ 20%.

The term “descriptive analytic sensitivity” refers to a recent practice of identifying cells/

tissues with a relatively low level of analyte expression. Staining of these cells/tissues offers 

evidence that the assay likely has adequate sensitivity.(8) However, this is no substitute for 

an actual measured LOD and provides no insight into the assay dynamic range.

The “dynamic range” of a PD-L1 assay is the cellular PD-L1 concentration span from the 

LOD to the concentration that produces maximal staining.(7) Dynamic range is broader 

than the “linear range”. Whereas linear range incorporates the analyte concentration span 

that produces a corresponding proportional (linear) assay signal response, dynamic range 

also includes analyte concentrations at the high end showing non-linear increases in signal. 

Dynamic range also incorporates analyte concentrations at the low end where the precision 

is insufficiently poor to produce quantitative results but adequate for positive/negative test 

results. Dynamic range was selected as the relevant parameter in this study because PD-L1 

testing is qualitative. Linear ranges apply to quantitative tests.

Knowing the dynamic range is important because of considerations as to whether the 

differences in analytical sensitivity among the various assays can potentially be compensated 

by adjusting the cutoffs in the readouts (e.g., Tumor Proportion Score (TPS) or Combined 

Positive Score (CPS)). For example, a 20% positive cells cutoff on a highly sensitive stain 

may be equally predictive of patient responses as a 5% positive cells cutoff on a lower 

sensitivity test. This is because analytic sensitivity can have a profound effect on the percent 

positive cells. IHC stains with greater sensitivity result in higher percentages of stained cells. 

The effects of IHC analytic sensitivity on test results can be so profound as to completely 
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change the diagnostic test result, as previously demonstrated for estrogen receptor testing.(2) 

If the dynamic ranges of the tests show significant overlap, then adjusting the threshold of 

positivity may have the potential to stratify patients into treatment groups in an equivalent 

manner.

MATERIALS AND METHODS

Recently, we described the first system of IHC reference materials that provide for 

quantitative characterization of IHC protocol performance.(2, 9–11) The new system 

incorporates units of measure traceable to Standard Reference Material 1934 at the National 

Institute of Standards and Technology (NIST).(2) This new system of measurement permits 

quantitative characterization of IHC assays, with precise measurements of LOD and 

dynamic range, expressed as the number of molecules per cell equivalent detected by an 

IHC assay. In this study, we apply the Boston Cell Standards (BCS) calibrators to PD-L1 

testing, to directly measure and compare the analytic performance of the four FDA-cleared 

CDx assays and various LDTs.

Two types of PD-L1 BCS calibrator slides, for primary antibodies binding to the 

intracellular and extracellular PD-L1 domains, were manufactured and distributed to 41 

laboratories in the U.S., Canada (Canadian Biomarker Quality Assurance (CBQA)), the 

Netherlands, and Belgium. The two PD-L1 BCS calibrators are distinguished by the portion 

of the PD-L1 protein that is attached to the calibrator.

PD-L1 calibrator – intracellular domain.

This BCS calibrator incorporates a peptide spanning most of the intracellular domain of PD-

L1. We have previously described the use of peptides that incorporate an epitope as controls 

or calibrators in lieu of a native protein.(12–14) The PD-L1 intracellular domain peptide 

includes the epitopes of monoclonal antibodies (mAbs) SP142, SP263, E1L3N, ZR3, and 

73–10. The peptide was purchased from CS Bio, Menlo Park, CA and is 93% pure based on 

mass spectroscopy analysis by the manufacturer. The remaining 7% is comprised of similar 

peptides that, due to less than 100% incorporation during synthesis, may randomly lack an 

individual amino acid. Most of these slightly truncated peptides still likely incorporate the 

relevant epitopes.

Figure 1 shows a (single letter amino acid) representation of the PD-L1 intracellular domain. 

With minor modifications, the peptide used for the BCS calibrator is underlined. In addition, 

Fig. 1 shows available epitope mapping information for 3 PD-L1 mAbs – SP142, SP263, 

and E1L3N, with cited references. For each antibody, a span of amino acids is identified 

that, based on epitope mapping data, include the epitope. For SP263 and E1L3N, epitope 

mapping data from multiple sources is shown, each with different but overlapping data. The 

actual linear epitope will be found within the region of overlap.

The intracellular domain BCS calibrator was manufactured by covalently attaching a peptide 

to cell sized (7 – 8 micron diameter) glass microbeads, as previously described.(11, 21, 22) 

This coupling reaction was performed at ten different peptide concentrations, resulting in 

PD-L1 concentrations at regularly spaced intervals. The peptide incorporates a fluorescein 
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molecule to establish traceability of measurement to NIST SRM 1934, as previously 

described.(2) For the intracellular domain PD-L1 BCS calibrators, those concentrations are 

34,000 – 2,200,000 molecules of PD-L1 peptide per microbead.

PD-L1 calibrator – extracellular domain.

PD-L1 tests incorporating monoclonal antibodies 22C3 and 28–8 were evaluated using 

extracellular domain (ECD) BCS calibrators. These two mAbs recognize epitopes in the 

extracellular domain (ECD) of PD-L1 that, in our experience, cannot be represented as 

linear epitopes. Recent data indicate that these two epitopes are at least partly glycosylation-

dependent.(18) Therefore, a recombinant ECD protein is used as the calibrator. Fluorescein-

conjugated, purified recombinant PD-L1 ECD with a C-terminal poly-histidine tail, 

produced in HEK293 (human embryonic kidney) cells, was purchased from GenScript, 

Piscataway, NJ. The PD-L1 ECD protein was covalently coupled to cell sized glass 

microbeads, as described above. The PD-L1 concentration per microbead was measured 

by interpolating the fluorescence intensity against a calibration curve traceable to NIST 

SRM 1934, as previously described.(2) The resulting molecular concentration of fluorescein 

was then divided by the fluorescein:protein ratio, as measured spectrophotometrically. The 

concentration of PD-L1 ECD protein per microbead was 2,200 – 600,000 molecules.

PD-L1 testing survey.

The PD-L1 intracellular and extracellular domain calibrators with the aforementioned range 

of concentrations were applied to microscope slides in a 5 × 3 array as previously described.

(2) Each calibrator spot on the slide in the 5 × 3 array incorporates approximately 5000 

peptide- or protein-coated (test) microbeads. The calibrators, applied to microscope slides, 

were sent by regular mail at ambient temperature. Each participating laboratory stained 

the slides using their own PD-L1 assay protocols and then returned them to a central site, 

either in The Netherlands, Canada, or Boston, MA. Tissue samples were also included in 

the Canadian part of the survey, but on separate slides sent along with the PD-L1 calibrator 

slides.

LOD measurement.

BCS calibrators returned to Boston or Canada were photographed using a Zeiss Axioskop 

microscope fitted with a Spot Imaging Solutions Insight Gigabit CCD camera (Diagnostic 

Instruments Inc., Sterling Heights, MI). For calibrators managed by the Dutch central site, 

calibrators were scanned (Philips UFS, The Netherlands) and the images were sent to 

Boston Cell Standards for analysis. The details of microbead stain intensity quantification 

are described elsewhere.(9, 11) Briefly, stain intensity is quantified in an algorithm running 

in MatLab. Mean stain intensity data after image segmentation are normalized by expressing 

each as a ratio to a smaller color standard microbead that is also present in every image. 

This normalization standardizes the measurements, compensating for any variability in 

microscopy from day-to-day. For each PD-L1 assay, the maximum stain intensity is set at 

100% and the other stain intensity data are expressed as a percentage of that maximum. This 

way, all of the PD-L1 assays are graphed on the same 0 – 100% scale.
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From the stain intensity data associated with each calibrator concentration, we calculated 

the LOD for each of the PD-L1 stains. The method for calculating LOD was previously 

described.(2) Briefly, the LOD is characterized as the PD-L1 concentration associated with 

a stain intensity that is 3SD above the mean of a sample that has an antigenically irrelevant 

analyte. This simplified calculation is appropriate because the standard deviations associated 

with blank calibrators were identical to the standard deviations of low-positive calibrators. 

Assay dynamic ranges were also calculated from the same stain intensity data from image 

analysis and represented as analytic response curves.

PD-L1 LDT (E1L3N) staining methods.

Two laboratories stained for PD-L1 using the E1L3N primary antibody. Both purchased the 

antibody from Cell Signaling Technology (Danvers MA). A first lab used the antibody at a 

1:500 dilution with a high pH antigen retrieval solution for 30 minutes, Leica Biosystems 

Bond III and Leica polymer detection system. A second lab used the antibody at 1:100 with 

a citrate buffered antigen retrieval solution for 20 minutes, on a Dako Autostainer with a 

Roche HRP multimer detection system.

RESULTS

Lower limit of detection (LOD) assay comparisons.

Figure 2 depicts the differences in LOD among the four FDA-cleared commercial PD-L1 

tests and several LDTs. These LODs reflect the analytic sensitivity of the entire assay, not 

just the primary antibody. The data are from 59 PD-L1 assays in 41 different laboratories. 

Each dot is a separate PD-L1 LOD measurement. The LODs are color-coded: blue is an 

FDA-cleared kit, green is an LDT. Our LOD measurements show that the four FDA-cleared 

tests appear to have been developed at three different analytic sensitivity levels. The previous 

Blueprint studies (4, 5) identified two analytic sensitivity levels but our findings agree with a 

large meta-analysis.(3) Among the FDA-cleared PD-L1 kits, the VENTANA PD-L1 (SP263) 

assay was the most sensitive, with an LOD below 200,000 molecules per cell equivalent. 

It was closely followed by PD-L1 IHC 28–8 pharmDx and PD-L1 IHC 22C3 pharmDx, 

both showing LODs in the 200,000 – 400,000 molecules per cell equivalent range. The 

VENTANA PD-L1 (SP142) assay was substantially less sensitive, with LODs in the 800,000 

– 1,000,000 molecules per cell equivalent range.

LOD influences patient test results.

A previous national study of estrogen receptor testing demonstrated that IHC tests with 

lower LODs result in a higher number of positive patient test results.(2) The same is true 

for PD-L1. The FDA-cleared commercial assays with lower LODs (Fig. 2) are the assays 

associated with more PD-L1 positive test results.(3) Figure 3 shows an example. Serial 

sections of the same tumor sample were stained using the four FDA-cleared kits. The images 

in Fig. 3 are from two reference labs whose LODs (x1000) are shown with red diamonds 

in Fig. 2. The images are arranged with the most sensitive assay, the VENTANA PD-L1 

(SP263), in the upper left-hand corner (Fig. 3A) and the least sensitive, the VENTANA 

PD-L1 (SP142) assay, in the lower right (Fig. 3D). An LOD of 90 (x1000, Fig. 3A) resulted 

in the highest stain intensity and highest number of positive cells. LODs of 324 (x1000, 
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Fig. 3B) and 322 (x1000, Fig. 3C) showed similar numbers of positive cells, but the latter is 

slightly obscured by cytoplasmic, non-specific, staining (Fig. 3C). The highest LOD of 974 

(x1000, Fig. 3D) reveals only a single PD-L1+ cell. These findings were expected and, in 

fact, were implicit assumptions in previous studies using patient tissue staining to indirectly 

infer assay analytic sensitivity.(4, 5) This example illustrates the importance of LOD on the 

surgical pathologist readout.

Dynamic ranges of FDA-cleared assays.

Whereas LOD identifies the analyte concentration threshold for staining, dynamic range 

describes stain intensity across a concentration range. Therefore, whereas LOD affects the 

percent positive cells, dynamic range provides greater insight into whether IHC assays can 

be harmonized. Dynamic range will also be important if stain intensity, rather than just the 

presence of stain, is important in tumor scoring. Figure 4A illustrates the analytic response 

curves for the two FDA-cleared PD-L1 immunohistochemical assays that recognize the PD-

L1 intracellular domain – SP142 and SP263. The curves illustrate the aggregate data from 5 

IHC laboratories running the VENTANA PD-L1 (SP142) assay and 17 IHC laboratories 

running the VENTANA PD-L1 (SP263) assays. The error bars represent the standard 

deviation of stain intensity among the pool of laboratories, i.e., lab-to-lab variability. The 

data show a very large difference between the two assays; there is no overlap in their 

assay dynamic range. The lowest PD-L1 concentration that begins to register any visibly 

detectable stain with the VENTANA PD-L1 (SP142) assay is at the staining plateau of 

the VENTANA PD-L1 (SP263) assay. The data demonstrate that there are PD-L1 tumor 

concentrations that can be strongly positive with the VENTANA PD-L1 (SP263) assay and 

negative with the VENTANA PD-L1 (SP142) assay. The data explain why it is not possible 

to harmonize the two assays by adjusting the readout cutpoints (Discussion).

Figure 4B shows the analytic response curves of the other two FDA-cleared PD-L1 assays, 

PD-L1 IHC 28–8 pharmDx and PD-L1 IHC 22C3 pharmDx. The data for the PD-L1 IHC 

22C3 pharmDx assay are generated from 17 laboratories using the 22C3 FDA-cleared kit 

and 5 laboratories for the PD-L1 IHC 28–8 pharmDx assay. Figure 4B shows that these two 

assays had nearly identical analytic performance. Their analytic sensitivity is less than that 

for VENTANA PD-L1 (SP263) assay but much greater than VENTANA PD-L1 (SP142) 

assay. Like the VENTANA PD-L1 (SP263) assay, they also have little overlap with the 

analytic performance of VENTANA PD-L1 (SP142) assay.

Dynamic ranges of laboratory-developed tests (LDTs).

Principally for reasons of cost, some laboratories use PD-L1 LDTs. Since these tests were 

never calibrated against clinical outcomes, it is especially important to assess each LDT’s 

analytic performance against the analytic performance of the FDA-cleared PD-L1 assay 

that it is intended to replace. In Fig. 5A, 7 LDTs that use the 22C3 monoclonal antibody 

(mAb, dashed lines) are compared to the FDA-cleared kit (solid red line) using the same 

mAb. These LDTs were specifically developed for the same purpose as the FDA-approved 

CDx PD-L1 IHC 22C3 pharmDx. The laboratories performed clinical validation in order 

to provide evidence that they are fit-for-purpose; these laboratories demonstrated >90% 

positive percent agreement (PPA) and negative percent agreement (NPA) to the CDx assay.
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(23) Their analytic response curves, as shown in the dashed lines, are almost identical to 

the FDA-cleared kit (solid red line). This finding corroborates the contention that centralized 

development of LDTs for predictive biomarkers does work.

Figure 5B shows the analytic response curves of 2 other LDTs that both use the E1L3N 

primary antibody. In one instance, the assay is used only for research purposes and was not 

tested for concordance with an FDA-cleared assay. Data about the validation of the other 

are not available. Whereas the LODs of these LDTs are similar to the VENTANA PD-L1 

(SP263), the dynamic range is broader. Therefore, the two assays are likely to show similar 

numbers of positive cells (because of similar LODs) but the stain intensities may differ 

(because of different dynamic ranges).

DISCUSSION

In the broad field of laboratory medicine, traceable reference materials are the gold 

standard for verifying analytic assay performance. This principle applies not only to 

quantitative but also qualitative assays, which incorporate defined analyte concentration 

thresholds separating positive from negative test results. The introduction of calibrators 

to IHC represents a fundamental departure from traditional practice and is new to many 

surgical pathologists. Like many other reference materials, BCS calibrators are prepared 

from purified analyte in a synthetic matrix. The PD-L1 calibrators are in the form of either 

a peptide (intracellular domain) or recombinant protein (extracellular domain), attached 

to a cell surrogate – a cell-sized glass microbead. Detailed explanations and photographs 

were previously published.(2, 11, 21, 24) The microbeads adhere to the glass slide and are 

subjected to all of the steps in staining, from de-waxing/hydration and antigen retrieval at 

the beginning to counterstaining and coverslipping at the end. This is their first application 

to PD-L1 testing, an assay that has already been the subject of intensive study. The data 

illustrate what can be learned:

The commercial FDA-cleared assays exist at three analytic sensitivity levels.

The two Roche (Ventana) assays, with mAbs SP142 and SP263, were at the opposite 

extremes of analytic sensitivity, without overlap of their analytic response curves. The two 

Agilent assays, using mAbs 22C3 and 28–8, were nearly identical to each other and fall 

intermediate to the extremes of the other two assays. These findings are slightly different 

from earlier studies, which inferred that the commercial assay incorporating the SP263 

antibody is equivalent to those incorporating the 22C3 and 28–8 antibodies.(4, 5, 25) 

The previous studies, using a split-sample study design, may not have identified subtle 

differences in analytic sensitivity among assays because: (a) the PD-L1 concentrations in 

tissue samples are unknown, and (b) there is imprecision associated with manual readouts 

by pathologists. Previous studies indirectly inferred PD-L1 assay analytic sensitivity and the 

interchangeability of assays by using a large number of tissue samples or cell lines with 

unknown concentrations of PD-L1.(3–5, 25, 26) Assuming that the PD-L1 concentrations in 

these samples were randomly distributed, they collectively represent the spectrum of PD-L1 

concentrations. By comparing the percentage of positive cases or positive cells for each 

assay, the relative analytic sensitivities for various assays were inferred. To have detected 
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the higher analytic sensitivity of the VENTANA PD-L1 (SP263) assay, the previous studies 

would needed to have tested a sufficient number of samples with PD-L1 concentrations that 

fall above the LOD of the VENTANA PD-L1 SP263 assay and below that of the pharmDx 

22C3 or 28–8 assays. Since the patient samples included in the studies had unknown PD-L1 

concentrations, there was no way to identify them in advance. Also, any imprecision in the 

pathologist readout adds further “noise” to the system, obscuring true differences in analytic 

sensitivity. By virtue of the use of greater sample numbers, a recent meta analysis (3) was 

able to identify the higher analytic sensitivity of the VENTANA PD-L1 (SP263) assay. With 

calibrators, it is relatively simple to directly measure and compare analytic sensitivity.

The dynamic range data explain the inability to harmonize assays.

The data in Fig. 4 may explain published findings from the IMpassion130 study, describing 

an inability to harmonize the VENTANA PD-L1 (SP142) assay with either the VENTANA 

PD-L1 (SP263) assay or the PD-L1 IHC 22C3 pharmDx assay by adjusting the readout 

thresholds.(27) This inability to harmonize would be expected because their analytic 

response curves are highly disparate, showing no overlap. Many PD-L1 low/moderate 

expressing tumors that are detected with the SP263 or 22C3 assays will be below the LOD 

for the SP142 assay. The SP142 assay will fail to detect them regardless of the readout 

criteria.

The LOD data explain differences in patient test results.

For example, the IMpassion130 study found that the SP142-positive tumors are a subset 

of the SP263-positive or 22C3-positive groups.(27, 28) The same is true for the Blueprint 

studies.(4, 5) This falls in line with the hierarchy of analytic sensitivity shown in Figs. 2 

and 4. Only high cellular concentrations of PD-L1 will be positive for the SP142 assay. The 

Impassion130 data also underscore the point that a highly sensitive assay is not necessarily 

better as a predictive IHC biomarker assay. In that study, the benefit for the atezolizumab 

regimen was driven predominantly by the (less sensitive) SP142-positive subgroup.(28, 29)

LDTs can reproduce the analytic performance of an FDA-cleared assay.

Figure 5A illustrates the analytic performance of seven LDTs using the 22C3 primary 

antibody, all of which were validated (using patient samples) for equivalence to the PD-L1 

IHC 22C3 pharmDx assay.(23) Figure 5A shows that analytic performance of all seven 

is indistinguishable from the FDA-cleared PD-L1 IHC 22C3 pharmDx assay. Used in this 

fashion, PD-L1 BCS calibrators may find utility as a quick and inexpensive check for 

assay analytical performance equivalence before confirmation with large numbers of patient 

samples.

PD-L1 inter-laboratory variances as measured with calibrators mirror proficiency testing 
fail rates.

The data scatter in Fig. 2 and the error bars in Fig. 4A both reveal standard deviations 

of approximately 10 – 20% around each mean. These data mirror the approximately 20% 

fail rates for laboratory PD-L1 testing.(30) Most proficiency testing failures are due to 
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insufficient analytic sensitivity.(31) By providing a direct measure of analytic sensitivity, 

calibrators may be helpful to IHC laboratories in ensuring accurate testing.

Study limitations.

Calibrators provide a direct measure of analytic variables relating to the assay itself, up 

to and including the point of producing a stained slide. Analytic variables are a major 

source of IHC errors.(32) Calibrators do not evaluate the accuracy of pathologist read-outs 

or pre-analytic variables, which need to also be addressed if a laboratory is to report accurate 

test results.

Another limitation relates to the commutability of reference materials. The introduction of 

the first traceable PD-L1 IHC reference materials introduces this topic for the first time. 

Commutability refers to the ability of a reference material to accurately mirror the analyte 

as it exists in a patient sample.(33) The evaluation of commutability in reference materials 

is covered in CLSI document EP30-A.(34) In the context of PD-L1 IHC, it refers to whether 

the staining of calibrators, with purified peptide or protein PD-L1 analytes, is identical to 

the staining of native PD-L1 in the patient’s biopsy. For example, the 22C3 and 28–8 mAbs 

are partly dependent on glycosylation.(18) Our PD-L1 extracellular domain protein was 

produced in a human embryonic cell line, which glycosylates transfected proteins. If the 

tumor or infiltrating immune cells demonstrate different patterns of glycosylation, rendering 

the bioengineered PD-L1 slightly different than PD-L1 in tissue sections, then it might affect 

antibody affinity and result in a different analytic response curve. We did not attempt to 

evaluate commutability; the tools to do so (as per CLSI guidelines) in IHC do not presently 

exist. Nonetheless, we believe it likely that the calibrators are commutable because:

1. The extracellular PD-L1 domain calibrator data for the two PD-L1 assays that 

target the extracellular domain (PD-L1 IHC 22C3 pharmDx and the PD-L1 IHC 

28–8 pharmDx) approximately mirror the data as reported using patient tissue 

samples.(4, 5, 25)

2. The intracellular PD-L1 calibrator peptide is nearly identical to the peptide that 

was used as an immunogen for generating the mAbs. The intracellular calibrator 

data also mirror published findings using tissue sections.(4, 5, 25)

Future benefits.

The most important benefit of incorporating reference materials into IHC CDx testing is 

something that could not be evaluated in this study. We expect that analytic reference 

materials will dramatically improve the identification of reproducible cellular expression 

thresholds distinguishing responder from non-responder patient groups. This is especially 

impactful for predictive biomarkers because without characterization and direct monitoring 

of analytical sensitivity, obtaining accurate and reproducible test results is challenging.(32) 

In fact, without analytic test characterization, the optimal threshold distinguishing patient 

responders from non-responders to a candidate drug may not even be within the measuring 

range of the test. This is exemplified by the completely different dynamic ranges of the 

VENTANA PD-L1 (SP142) and VENTANA PD-L1 (SP263) assays (Fig. 4A).
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Integration into clinical laboratory use.

BCS calibrators offer IHC laboratory directors a new tool to improve analytic test 

performance. For PD-L1 and other CDx testing for protein expression by IHC, the ability 

to measure and monitor analytic sensitivity will improve clinical test accuracy (diagnostic 

sensitivity and specificity). To achieve that, calibrators will be helpful:

1. During initial assay validation, to verify adequate analytic sensitivity.

2. When starting a new reagent lot, to verify that the new reagent is equally potent 

as the previous.

3. After major instrument repairs or replacement of sub-systems.

4. To verify correlation of multiple instruments, all performing the same stain at a 

single site.

5. During a problem investigation.

6. To determine the optimal dilution of a concentrated antibody.

7. Periodically, such as monthly, to verify continued test accuracy.

For assay developers, CDx IHC testing, reference materials will also facilitate methodology 

transfer from clinical trials to clinical IHC laboratories for predictive and prognostic IHC 

biomarkers.
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Fig. 1. PD-L1 BCS calibrator, intracellular domain.
The epitope location data for various primary antibodies is shown. The amino acids are 

represented using the single letter amino acid code. The peptide calibrator incorporates the 

underlined amino acid sequence. The epitopes for the SP142, SP263, and E1L3N mAbs are 

found within the indicated regions.
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Fig. 2. Lower limit of detection (LOD) of various PD-L1 assays (x axis).
Lower numbers (on the y axis) equate to greater sensitivity. Each dot represents a separate 

IHC laboratory test. Blue dots depict FDA-cleared assays in clinical laboratories, green 

dots for laboratory-developed tests (LDTs), and red diamonds for FDA-cleared assays as 

performed by a reference laboratory. Tissue staining in Fig. 2 was performed by these 

reference labs. For enhanced clarity, the LDT data are positioned slightly to the right of the 

vertical lines.
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Fig. 3. Photomicrographs of PD-L1 staining on 4 commercial assays.
These are serial sections of the same tissue sample and stained by the reference labs (red 

diamonds of Fig. 1). Overall, high analytic sensitivity (as represented by low LODs) was 

associated with more PD-L1 positive cells and stronger staining. LODs are x1000 molecules 

PD-L1 per cell equivalent.
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Fig. 4. Consensus analytic response curves of FDA-cleared PD-L1 assays.
In each panel, the stain intensity (y axis) is expressed as a percentage of the maximum 

stain intensity for each assay and graphed as a function of PD-L1 concentration (x axis). A. 
Performance characteristics of the VENTANA SP263 and SP142 PD-L1 assays, correlating 

the generation of visible signal at various PD-L1 concentrations. Each dot is the mean ± 

SD of the pool of laboratories participating in the survey. B. Performance characteristics of 

the PharmDx 28–8 and 22C3 PD-L1 assays. For comparison, the analytic response curves 

shown in panel A are included.
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Fig. 5. Individual analytic response curves of PD-L1 LDTs.
Panel A shows 7 LDTs using the 22C3. Panel B shows 2 LDTs using the E1L3N primary 

antibody. This is the same as the LDTs PD-L1 (E1L3N) in Fig. 2. In each panel, the 

stain intensity as a percentage of the maximum (y axis) is graphed as a function of PD-L1 

concentration (x axis). The FDA-cleared consensus curves are also included as a comparison 

for the corresponding extra-cellular (panel A) or intracellular (panel B) domain calibrators.
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