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Transcriptional regulatory networks (TRNs) provide insight into cellular behavior by describing interactions between tran-

scription factors (TFs) and their gene targets. The assay for transposase-accessible chromatin (ATAC)–seq, coupled with TF

motif analysis, provides indirect evidence of chromatin binding for hundreds of TFs genome-wide. Here, we propose meth-

ods for TRN inference in a mammalian setting, using ATAC-seq data to improve gene expression modeling. We test our

methods in the context of T Helper Cell Type 17 (Th17) differentiation, generating new ATAC-seq data to complement ex-

isting Th17 genomic resources. In this resource-rich mammalian setting, our extensive benchmarking provides quantitative,

genome-scale evaluation of TRN inference, combining ATAC-seq and RNA-seq data. We refine and extend our previous

Th17 TRN, using our new TRN inferencemethods to integrate all Th17 data (gene expression, ATAC-seq, TF knockouts, and

ChIP-seq). We highlight newly discovered roles for individual TFs and groups of TFs (“TF–TF modules”) in Th17 gene reg-

ulation. Given the popularity of ATAC-seq, which provides high-resolution with low sample input requirements, we antic-

ipate that our methods will improve TRN inference in new mammalian systems, especially in vivo, for cells directly from

humans and animal models.

[Supplemental material is available for this article.]

Advances ingenome-scalemeasurement andmathematicalmodel-
ing herald opportunities for high-quality reconstruction of tran-
scriptional regulatory networks (TRNs). TRNs describe the control
of gene expression patterns by transcription factors (TFs) (Hecker
et al. 2009; Chai et al. 2014), providing mechanistic (and often
genome-scale) insight into the complex regulation of cellular
behavior (Bonneau et al. 2007). Measurements of chromatin state
represent one such advance for TRN inference. For example, chro-
matin immunoprecipitation with sequencing (ChIP-seq) (Robert-
son et al. 2007) enables identification of an individual TF’s
binding sites genome-wide. These dataprovide evidence for regula-
tory interactions based on proximity of the TF binding site to the
gene locus and have proved valuable for TRN inference (Lee et al.
2002; Ouyang et al. 2009; Ciofani et al. 2012). However, ChIP-
seq might not be feasible for cell types and physiological settings
in which sample material and a priori knowledge of key transcrip-
tional regulators are scarce.

Genome-scale chromatin accessibility measurements (Giresi
et al. 2007; Xi et al. 2007; Boyle et al. 2008; Buenrostro et al.
2013) and ChIP-seq for histone marks (Barski et al. 2007) correlate

with promoters, enhancers, and/or other locus control regions.
Thesedata canpartiallyovercome limitations in apriori knowledge
of cell-type–specific TF regulators if integrated with TF DNA-bind-
ing motifs (Pique-Regi et al. 2011). Large-scale efforts to character-
ize TF motifs are ongoing, with motifs currently available for
approximately 1000 TFs in human (∼60% coverage) (Jolma et al.
2010; Weirauch et al. 2014; Lambert et al. 2018). Thus, chromatin
state experiments integrated with TF motif analysis provide indi-
rect DNA-binding evidence for hundreds of TFs. This scale would
be difficult to attain from individual TF ChIP-seq experiments. Of
techniques available, the assay for transposase-accessible chroma-
tin (ATAC)–seq (Buenrostro et al. 2013) best overcomes limitations
in sample abundance, requiring two orders of magnitude fewer
cells than a typical ChIP-seq, FAIRE-seq, or DNase I hypersensitive
sites (DHS) experiment in standard, widely adopted protocols.
ATAC-seq is also possible at single-cell resolution (Buenrostro
et al. 2015).

In the context of TRN inference, chromatin state measure-
ments provide an initial set of putative TF–gene interactions based
on evidence of TF binding near a gene locus. Evidence, be it direct
(TF ChIP-seq) or indirect (e.g., TF motif occurrence in accessible
chromatin), can be used to refine gene expression modeling (Qin
et al. 2014; Blatti et al. 2015; Wilkins et al. 2016). Integration of
chromatin state data in TRN inference couldmitigate false-positive
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and false-negative TF–gene interactions expected from chromatin-
state data analyzed in isolation (Äijö and Bonneau 2016; Siahpir-
ani and Roy 2016). Sources of false positives and negatives include
(1) nonfunctional binding, (2) long-range interactions between
genes and regulatory regions, (3) the limited availability of individ-
ual TF ChIP experiments and incomplete knowledge of TF motifs,
and (4) nonbound accessible motifs. Thus, an initial TRN derived
solely from chromatin state data can be considered a useful
but noisy prior, to be integrated with other data types for TRN
inference.

Genome-scale inference of TRNs inmammalian settings is an
outstanding challenge, given the increased complexity of regulato-
ry mechanisms relative to simpler eukaryotes. Thus, chromatin
state data are especially important for mammalian TRN inference.
Construction of a genome-scale TRN for T Helper Cell Type 17
(Th17) differentiation provided a proof-of-concept for this idea
(Ciofani et al. 2012). Rich genomics data sets informed the Th17
TRN: 143 RNA-seq experiments (including knockout [KO] of 20
TFs), ChIP-seq of nine TFs, and microarray from the Immunologi-
cal Genome Project (Heng et al. 2008). We used the Inferelator
algorithm (Bonneau et al. 2006; Madar et al. 2010) to infer TRNs
from the RNA-seq andmicroarray and used independent methods
to build networks from TF ChIP and KO data. We showed that
rank combination of the networks performed best at recovering
known Th17 genes and GWAS disease genes associated with
Th17 pathologies.

Since the original Th17 TRN publication, the Inferelator
algorithmunderwentdevelopments that improve inference inuni-
cellularorganismsandareexpected to im-
prove TRN inference in a mammalian
setting (Greenfield et al. 2013; Arrieta-
Ortiz et al. 2015). Although the Infere-
lator’s coremodel of transcriptional regu-
lation still describes differential gene
expression as a sparse multivariate linear
functionof TF activities (TFAs), themeth-
ods to solve for the TF–gene interaction
terms and estimate TFAs have advanced.
For example, the current Inferelator
(Arrieta-Ortiz et al. 2015) uses a Bayesian
approach to incorporate prior informa-
tion (Greenfield et al. 2013).

The focus of this work is develop-
ment of mammalian TRN inference
methods from chromatin accessibility
and gene expression, data types available
or likely feasible for an ever-growing
number of cell types, and biological con-
ditions. In the context of mammalian
TRN inference, several studies build
TRNs directly from chromatin accessibili-
ty without further refinement by multi-
variate gene expression modeling (Neph
et al. 2012; Rendeiro et al. 2016). Several
other studies leverage variance in paired
RNA-seq and ATAC-seq data sets; these
TRNmethods are exciting developments
but require that ATAC-seq data for all or
most RNA-seq conditions (Duren et al.
2017; Karwacz et al. 2017; Ramirez et al.
2017). In contrast, the present work is
geared for TRN inference from RNA-seq

and ATAC-seq, in which ATAC-seq need not exist for more than
one gene expression condition.

Development of any TRN inference method requires a com-
prehensive benchmark with a realistic experimental design, a
recurrent challenge in computational biology. We previously de-
veloped substantial genomic resources in Th17 cells (Ciofani
et al. 2012), and with the addition of ATAC-seq to these resources,
Th17 could be a powerful system to compare network inference
from RNA-seq and ATAC-seq to a “gold standard” (GS) network
constructed through the more laborious approach of TF ChIP-
seq and TF KO RNA-seq. Given the central role of Th17 cells in
the etiology of autoimmune and inflammatory diseases (Littman
and Rudensky 2010; Stadhouders et al. 2018), an updated map
of transcriptional regulation in Th17 (incorporating new experi-
mental and computational advances) could also enhance our un-
derstanding of Th17 biology in health and disease.

Results

Construction of Th17 benchmark for TRN inference

from ATAC-seq and RNA-seq

To test the feasibility of TRN inference from chromatin accessibil-
ity and gene expression alone, we generated an ATAC-seq data set
in Th17 cells and other in vitro polarized T Helper (Th) cells,
matching a subset of experimental conditions from the original
publication (Ciofani et al. 2012) (Fig. 1A). We identified 63,049
accessible regions (peaks), and clustering revealed that most
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Figure 1. New and existing genomic benchmark resources for TRN inference in Th17. (A) PCA of chro-
matin accessibility profiles. The 33 ATAC-seq samples are plotted as a function of ATAC-seq peak inten-
sities in PCA space, using the reference set of 63,049 ATAC-seq peaks identified. Open circles denote
experimental conditions that deviate from the standard T cell differentiation conditions (e.g., gene dele-
tion, additional cytokines). Gray and red arrows indicateMaf and Stat3 KO Th17 conditions, respectively.
(B) PCA of gene expression profiles. The 254 RNA-seq samples are plotted as a function of all genes in PCA
space. (C) Study design (see text).
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dynamically changed over the Th polarization time courses (Sup-
plemental Fig. S1). These patterns are also apparent from principal
component analysis (PCA) (Fig. 1A). Timewas the most important
driver of accessibility patterns. The first principal component (PC)
explained 55% of the variance and captured peaks changing from
two to 48 h in Th17, Th0, Th2, Treg. The second PC captured acces-
sibility differences between Th17 and the other Th polarizations.
The ATAC-seq data set contains additional perturbations, includ-
ing TF KO of Stat3 and Maf for Th17 and Th0 conditions (48 h).
STAT3 is required for Th17 differentiation, and Stat3 KO dramati-
cally altered Th17 chromatin accessibility, leading to a Th0-like
profile (Fig. 1A, red arrow; Supplemental Fig. S1), whereas Maf
KO clusteredwith Th17 (Fig. 1A, gray arrow; Supplemental Fig. S1).

To the 143 RNA-seq experiments from the original publi-
cation,we added an additional 111RNA-seq experiments for a total
of 254 (Methods) (Fig. 1B). The majority (166 samples) were Th17,
spanning 1–108 h and involving KO, siRNA knockdown, and/or
drug inhibitors of TFs and signaling molecules. The study design
also included other Th polarizations (Th0 [53], Tr1 [9], and Th1/
Th2/Treg [two each]), as well as naive CD4+ T cells (25). Mirroring
chromatin accessibility patterns, PCA of the gene expression data
revealed time and T cell polarization conditions to be important
drivers of transcriptional variation (Fig. 1B; Supplemental Fig. S2).

Although gene expression data are the only required input for
the Inferelator, we hypothesized that inclusion of ATAC-seq data
would improve TRN inference. Integration of ATAC-seq with TF
motifs provides indirect evidence for the TF binding events driving
altered chromatin state (Fig. 1A) and transcription (Fig. 1B). We
generated two “prior” networks of TF–gene interactions from the
ATAC-seqdata: theA(Th17)prior, limited toTh1748-h conditions,
and the A(Th) prior, including all 33 Th samples (Methods). The
ATACpriors containedmore than1millionputativeTF–gene inter-
actions for approximately 800 TFs (Supplemental Table S1A). To
test these noisy priors in TRN inference, we developed a study de-
sign enabling quantitative performance evaluation of the resulting
TRNs (Fig. 1C). Specifically, the TRNs are evaluated based on preci-
sion recall of an independentGS composedofTF–gene interactions
supported by TF KO and TF ChIP data. As precision recall is limited
to theTFspreviously selected forKO (25TFs) and/orChIP-seq (nine
TFs), we also evaluate TRN methods based on out-of-sample gene
expression prediction.

By using precision recall and out-of-sample prediction met-
rics, we evaluate the effects of several key modeling decisions.
Figure 1C outlines inputs to the Inferelator algorithm. From the
gene expression data set, we seek to model the expression patterns
of 3578 “target”genes (Methods) as functionsofTFAs. ProteinTFAs
are rarely measured and technically infeasible for most TRN exper-
imental designs. Thus, TFA is a hidden (or latent) variable in TRN
inference (Liao et al. 2003; Fu et al. 2011). TF mRNA is the
most commonTFA estimate. However,many TF transcriptional ac-
tivities require protein posttranslational modification. Thus, TF
mRNA can be a poor proxy for protein TFA. TFA estimation based
on prior knowledge of TF target genes provides an alluring alterna-
tive as it appears to be technically feasible, requiring only partial a
priori knowledge of TF–gene interactions and gene expression data
(Methods). “Prior-based” TFAs improved TRN inference in unicel-
lular organisms (Arrieta-Ortiz et al. 2015; Tchourine et al. 2018).
Here, we evaluate this approach in a mammalian setting.

We test two methods for model building: (1) Bayesian best
subset regression with Bayesian information criteria for model se-
lection (BBSR-BIC) (Arrieta-Ortiz et al. 2015) and (2) an alternative
proposed here, modified least absolute shrinkage and selection op-

erator (Studham et al. 2014; Gustafsson et al. 2015) with stability
approach to regularization selection (Liu et al. 2010) (mLASSO-
StARS). We hypothesized that mLASSO-StARS would scale better
with the increased transcriptional complexity of amammalian set-
ting (e.g., requiring larger models; Methods). Thus, we compare
mLASSO-StARS and state-of-the-art BBSR-BIC.

Prior information can enter the inference procedure at two
steps: (1) to estimate prior-based TFA (described above) and (2) to
reinforce prior-supported TF–gene interactions at the multivariate
regression step, using BBSR-BIC or mLASSO-StARS (Fig. 1C). The
strength of prior reinforcement is an important TRN inference pa-
rameter; it controls the relative contribution of the prior (e.g., TF
ChIP, ATAC-seq motif analysis) to evidence from the gene expres-
sion model (variance explained by individual TFs). Thus, we test
several levels of reinforcement in our study design and compare
sources of prior information, in addition to ATAC-seq.

mLASSO-StARS improves inference of a mammalian TRN

As illustrated in Figure 1C, we use precision recall to evaluate the
impact of modeling decisions on TRN inference. This analysis de-
pends on the quality of the GS. Both TF KO and TF ChIP-seq
GS have caveats. Differential expression analysis of TF KOs yields
an imperfect GS, as cellular TRNs adapt to the KO over time.
Paralog compensation can lead to false negatives, whereas regula-
tors downstream from the knocked-out TF can lead to secondary
gene expression changes (false positives). The TF ChIP GS will
also contain false positives (ChIP-seq peaks are not necessarily
functional) and false negatives (peak–gene associations are based
on linear proximity). Generating a GS from edges supported by
both TF KO and TF ChIP reduces false positives but at the expense
of false negatives. Thus, precision recall is a nuanced metric of
method quality. For each GS, Supplemental Table S1A summarizes
the number of edges, TFs, and target genes, as well as the percent-
age of overlapwith other priors. BecausewehaveKOdata for 25TFs
but KO+ChIP data for only nine TFs, we also evaluate precision re-
call of the KO GS.

As expected, a TF ChIP-seq prior improves Th17 TRN infer-
ence (Fig. 2A, left). The ATAC prior boosts performance relative
to the “no prior” control TRNs (Fig. 2A, central and right; Supple-
mental Fig. S3). In comparison to the ChIP-seq prior, the boost
from the ATAC prior on the KO GS is smaller, likely reflecting in-
creased levels of noise (e.g., from motif-based TF binding predic-
tion). Also, in contrast to ChIP prior results, increasing the
strength of prior reinforcement from moderate to high yields no
advantage for the noisier ATAC prior. This suggests ATAC-seq prior
reinforcement should be limited to moderate rather than high;
gene expression data should be relied on to select a small subset
of the regulatory hypothesis from the ATAC-seq prior network.
For similar levels of prior reinforcement, prior-based TFA models
outperform TF mRNA at low recall. For all ATAC TRNs and both
GSs, mLASSO-StARS outperforms BBSR-BIC.

To explore experimental designs without context-specific
chromatin accessibility, we tested two contrasting, publicly avail-
able prior information sources. The first is TF motif analysis of
ENCODE DHS data from 25 mouse tissues, none of which include
Th17 (Stergachis et al. 2014). The second is derived from the curat-
ed TRRUST database of human TF–gene interactions (Han et al.
2015). Although the ENCODE DHS prior includes about 1.5 mil-
lion interactions between 546 TFs and about 17,000 genes (similar
scale to the ATAC priors), the TRRUST prior is sparse: about 7000
interactions between 582 TFs and approximately 2000 genes

Regulatory networks from RNA-seq and ATAC-seq
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(Supplemental Table S1A). The TRRUST and ENCODE priors over-
lap less with the GSs than context-specific priors, and this is re-
flected in lower precision recall relative to ChIP and ATAC priors
(Supplemental Fig. S3). However, use of either the ENCODE or
TRRUST prior improves performance relative to the no prior con-
trol; this improvement is substantial for prior-based TFA models.
Again, across priors, TFA methods, and levels of prior reinforce-
ment, mLASSO-StARS outperformed BBSR-BIC.

To evaluate performance on experimental designs with fewer
gene expression samples, we reduced the gene expression matrix
from 254 to 50 randomly selected samples (Supplemental Fig.
S4). The reduced sample size had a minor impact on precision re-
call, especially for context-specific ChIP andATACpriors. These re-
sults bode well for extension of our methods to contexts in which
gene expression data are less abundant.

We also evaluated how the different modeling decisions af-
fect target prediction for each TF (Fig. 2C). There is nearly an or-
der-of-magnitude difference in TF degree in the KO+ChIP GS
(Fig. 2B), so this per-TF analysis additionally ensured that results
were not dominated by a few high-degree TFs. Overall, mLASSO-

StARS also outperformed BBSR-BIC at TF-specific AUPR resolution
(Supplemental Fig. S5).

AUPRs for many TFs were dependent on TFA estimation pro-
cedure (Fig. 2C). TF mRNA should work well for TFs whose main
source of regulation is transcriptional, whereas for TFs regulated
by posttranslational modification, prior-based TFA would be pref-
erable. Consistent with this, prior-based TFA models have higher
AUPR for STAT3, whereas prior-based TFA did not always improve
prediction of RORC targets. With the ChIP prior (which included
RORC TF ChIP), prior-based TFA AUPR was on par with TF mRNA
AUPR. However, for the noisier ATAC-seq prior, prior-based TFA
performed only slightly better than random, whereas TF mRNA
models (including the “no prior” control) performed well across
GSs. For ATAC-based TRN inference, target prediction for some
TFs was better using prior-based TFA (HIF1A, STAT3, NFE2L2),
whereas TF mRNA was better for some TFs (RORC, MAF, FOSL2)
and roughly equivalent for others. Summarizing across priors
and parameter sets, no TFA method dominates (Supplemental
Fig. S5B). Based on these results, we later construct “final” Th17
TRNs using both TFA estimation methods.

B
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C

Figure 2. A prior network derived from ATAC-seq data improves TRN recovery of gold-standard TF–gene interactions. (A) Precision recall of Th17 TRNs.
The left two panels enable comparison of TRNs built from ChIP versus Th17 ATAC priors, quantified by precision recall of the KO GS (25 TFs, 8875 inter-
actions); insets display AUPR. The performance of several TRNs are plotted for each prior, based on Inferelator method. (LS) mLASSO-StARS; (BB) BBSR-BIC;
(m) TF mRNA; (TFA) prior-based TFA; (+) indicates strength of prior reinforcement. Random and “no prior” TRNs serve as references. The right panel shows
precision recall of the KO-ChIP GS (nine TFs, 2375 edges) for TRNs built from the Th17 ATAC prior. (B) Number of targets per TF in the GSs. Targets per TF
are limited to the 3578 considered by themodel. (C) TF-specific TRN performance. For each GS, AUPRs were calculated for each TF individually. TF-specific
performance of TRNs is quantified as the log2 fold-change between AUPR of the TRN model relative to random. +, m, and TFA are as in A.
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Th17 TRN models predict out-of-sample gene expression patterns

We next evaluated whether the TRN models could predict out-of-
sample gene expression patterns. In contrast to precision recall,
gene expression prediction provides the opportunity to evaluate
all interactions in the model. This evaluation method is especially
important in poorly characterized cellular contexts, for which GSs
do not exist. We chose three out-of-sample prediction leave-out
sets, each with distinct patterns of gene expression (highlighted
in Fig. 3A). The three leave-out sets were “early Th17” (all Th17
time points between 1–16 h; eight samples), “all Th0” (Th0 sam-
ples for all time points and perturbations; 53 samples), and “late
Th17” (18 Th17 samples from 60 to 108 h after TCR stimulation).
For both the BBSR-BIC andmLASSO-StARSmethods,we tested pre-
diction over a range of edge confidence values and corresponding
model sizes. We quantified performance using r-squared of predic-
tion, R2

pred (Fig. 3B,C); R2
pred . 0 indicates that the model has pre-

dictive benefit (Methods). Across all leave-out sets and methods,

out-of-sample prediction improved most as models expanded
from average size of one to five TFs/gene (Fig. 3B). Most methods
performed similarly well from zero to 10 TFs/gene, with the excep-
tion of BBSR-BIC models using prior-based TFA, in which predic-
tion was worse. Predictive performance plateaued at about 10–15
TFs/gene, depending on the leave-out set (Fig. 3B, Supplemental
Fig. S6). For model sizes of 10–15 TFs/genes, the mLASSO-StARS
models outperformed BBSR-BIC models (Fig. 3B,C). These results,
together with precision recall analyses, support mLASSO-StARS
over BBSR-BIC for mammalian TRN inference.

Although we recommend StARS edge stabilities to rank inter-
actions, we used the best quality metrics at hand (precision, recall,
and R2

pred) to guide selection of model-size cutoff for the “final”
Th17 TRN (Methods). These quality metrics are plotted versus
model size (Fig. 3D; Supplemental Figs. S6, S7) for TRNs with the
Th17 ATAC (“ATAC-only”) or ChIP+KO+ATAC priors. (The
ChIP+KO+ATAC prior [Methods] represents our best [combined]
source of prior information and is later used to derive our

“final” Th17 TRN.) Once average model
sizes reach approximately 15 TFs/gene
(Supplemental Fig. S6), predictive perfor-
mance plateaus, suggesting an average of
15 TFs/gene as a cutoff for edge inclusion
in the network. Standardizing network
sizes to 53,000 TF–gene interactions
(about 15 TFs/gene), we calculated the
percentage edge overlap among TRNs
built from ATAC, ChIP, KO, ENCODE
DHS, TRRUST, and combined priors. For
each prior, we considered five modeling
modes: prior-based TFA with no, moder-
ate, or strong prior reinforcement and
TF mRNA TFA with moderate or strong
prior reinforcement. The percentage of
shared edges between TRNs ranged from
83% to 10%. We clustered the networks
to visualize how the modeling decisions
affected resulting TRNs on a global scale
(Supplemental Fig. S8; Supplemental
Note 1).

“Core” Th17 TRNs contain literature-

supported TF–gene interactions

Our primary objective is to assess the fea-
sibility of high-quality TRN inference
from gene expression and ATAC-seq
data. Therefore, it is important to exam-
ine the Th17 TRNs at high resolution.
Here, we focus analysis on TRN predic-
tions for 18 “core” Th17 TFs and genes
readily familiar to Th17 biologists (Fig.
4). TF–gene interactions in this “core”
have been the focus of many studies
(Christie and Zhu 2014; Li et al. 2014),
which we leverage to evaluate the
ATAC-based Th17 core TRNs.

From the literature and theKO-ChIP
data (Fig. 4C), there is support for edges
between RORC and several key Th17 cy-
tokines and receptors: Il17a, Il17f, Il22,
Il1r1, and Il23r. Two of these interactions

B
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Figure 3. TRNs derived from RNA-seq and ATAC-seq data predict out-of-sample gene expression.
(A) Leave-out sets plotted inPCA space. (B) Geneexpressionprediction.R2pred for each leave-out set is plotted
asa functionofmeannumberofTFspergene. (LS)mLASSO-StARS; (BB)BBSR-BIC; (m)TFmRNA; (TFA)prior-
based TFA; (+) indicates strength of prior reinforcement. The gray line corresponds to amodel-size cutoff of
mean15TFspergene. (C)DistributionsofR2pred values. Empirical cumulativedistribution functions (CDFs) of
per-geneR2predvalues foreachmethod(model-size cutoff =mean15TFspergene). (D)Modelqualitymetrics
versus model size. For two TRN models built with Th17 ATAC (left) or ChIP+KO+ATAC (right) priors
(mLASSO-StARS, bias =0.5, TFA=P+X), the qualitymetrics (R2pred for each leave-out set, precision and recall)
are plotted as a function ofmodel size. Themodel size used for subsequent analyses is highlighted.
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(Il17a, Il23r) were present in the ATAC prior and resulting TRNs
(Fig. 4A). Gene expression modeling with TF mRNAwas sufficient
to recover four interactions (Il17a, Il17f, Il1r1, and Il23r) in the no
prior TRN Figure 4B; these were also recovered in the ATAC TF
mRNA TRN. The prior-based TFA ATAC TRN (Fig. 4A, right) recov-
ers a data-driven edge between RORC and Il22. By combining pre-
dictions frombothATACTRNs (Methods), all five RORC targets are
recovered (Fig. 4A, central). As expected, inclusion of RORC ChIP
and/or KO in the prior also leads to recovery of all five TF targets
(Fig. 4D).

STAT3 is required for Th17 differentiation, playing a crucial
role in driving Rorc expression. There is support for this interaction
not only from context-specific ATAC-seq prior but also the
ENCODE DHS prior. Consistent with the poor quality of mRNA-
based STAT3 predictions (Fig. 2C), this interaction is not present
in the no prior TRN. It is, however, recovered by all ATAC and
ENCODE TRNs, even those built with TFmRNA, in which prior re-
inforcement likely overcomes weak correlation between TF mRNA
and protein activity level (Fig. 4A–C; Supplemental Fig. S9).

MAF is another key regulator of Th17 cytokine and receptor
expression, with KO-ChIP support for Il17a, Il17f, Il23r, and
Il1rb. There is ATAC-seq support for MAF regulation of Il17a,
Il17f, and Il23r. The prior-supported targets are recovered by the
TF-mRNA ATAC models, but only the Il23r interaction is present
in prior-based TFA models (Fig. 4A). Similar to Rorc, Maf mRNA
might be the better proxy for TFA. Prior reinforcement also played
a role, as only two of the four interactions are present in the no pri-

or TRN (Fig. 4B). In the absence of con-
text-specific prior information and a
strong signal from the gene expression
model, only a single edge (Il23r) was re-
covered by one of the ENCODE models
(Supplemental Fig. S9).

These results highlight the potential
for TRN inference in new settings, in
which integration of chromatin accessi-
bility and gene expression is more feasi-
ble than sequential TF ChIP and KO
experiments. Consistent with the TF-
resolved AUPR analysis (Fig. 2C), they
also suggest that there is value to build-
ing models from both TFA methods. For
construction of the “final” Th17 TRN,
we combine models based on both TFA
methods (Methods). The literature-curat-
ed core of our final Th17 TRN contains
the RORC and MAF cytokine and recep-
tor interactions highlighted from the
literature, as well as the established
connection between STAT3 and Rorc
(Fig. 4D).

ATAC-derived Th17 TRNs contain

known and novel Th17 TFs

Having verified that the Th17 TRNs con-
tain core Th17 TF–gene interactions from
the literature, we develop a global, unbi-
ased analysis of the final ChIP+ATAC+
KO TRN to identify “core” Th17 regula-
tors de novo. In addition, we extend
our analysis to a final TRN using the

ATAC-only prior to simulate mammalian TRN inference in less
well studied systems, in which KO and/or ChIP data might be un-
available. Overall, prior-supported edgesmake up 63% and 43% of
the ∼53,000 TF–gene interactions in ChIP+KO+ATAC and ATAC-
only TRNs, respectively (Supplemental Table S5). Of the 715 po-
tential TF regulators considered for final models, nearly all
(∼95%) have targets in the final TRNs, with positive interactions
outnumbering negative nearly twofold (1.8:1 for ChIP+KO+
ATAC or 1.9:1 for ATAC-only). TF degree varies dramatically
(Supplemental Figs. S10, S11). Whereas the ATAC-only network
democratizes TF degree distribution (no TF has more than 500 tar-
gets), the addition of ChIP andKO leads to veryhighdegree for sev-
eral TFs in the ChIP+KO+ATAC TRN (more than 500 targets for
IRF4, BATF, MAF, SP4, FOSL2, and STAT3). Although there is a
bias for TFs in the prior to have higher degree, several TFs without
prior support have more than 100 targets in the final networks
(four TFs for the ChIP+KO+ATAC TRN and 14 TFs for the
ATAC-only TRN). Thus, prior information is not weighted so
strongly as to preclude inclusion of TFs without known motifs.
This aspect is important for discovery and holds for TFs with edges
in the prior. Although only 16% or 7% of input prior edges remain
in the TRN, 27% or 46% of learned regulatory interactions for TFs
with prior information are new (not originally in the prior) in KO+
ChIP+ATAC or ATAC-only TRNs, respectively. Thus, our method
can reduce both false negatives and false positives found in prior
networks. For example, motif analysis of the RORC ChIP data re-
vealed that only about one-third of RORC peaks contained a
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Figure 4. The Th17 TRNs recover key TF–gene interactions from the literature. (A–D) Th17 core TRN
models. “Core” Th17 genes and TFs were selected from the literature for visual comparison with
jp_gene_viz software. Network size was limited to an average of 15 TFs per gene for Inferelator networks
using the following: (A) Th17 ATAC prior; (B) no prior; or (D) ChIP + ATAC+KO prior. The edges in
Inferelator TRNs are colored according to partial correlation (red indicates positive; blue, negative)
and weighted proportionally to edge stability. Solid edges have prior support, whereas dotted edges
were learned from gene expression modeling alone. (C) The full KO-ChIP GS from Ciofani et al.
(2012), where edge sign is based on differential gene expression analysis between TF KO and control.
Nodes are colored according to z-scored gene expression at 48 h in Th17, relative to the other Th cell
time points (red/blue indicates increased/decreased expression). The “final” KO+ChIP +ATAC (D) and
ATAC-only (B) TRNs max-combine networks built using TF mRNA and prior-based TFA.
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RORC motif (at motif occurrence cutoff
Praw= 10−4). Although RORC can bind
DNA directly, the RORC ChIP data sug-
gest that RORC might also bind DNA in-
directly (e.g., via TF complexes). Such
indirect binding would be difficult to
detect by ATAC-seq motif analysis alone,
but their gene targets can be recovered
via gene expression modeling.

Many of the TFs with highest degree
are shared between the ChIP+KO+
ATAC and ATAC-only TRNs (e.g., IRF4,
BATF, SP4, RXRA, STAT3) (Supplemental
Figs. S10, S11). We developed an unbi-
ased approach to identify key regulators
of the Th17 program. TFs were included
in the set of “core” Th17 regulators if
they met one of two criteria: (1) The TF
promotes Th17 gene expression through
activation of Th17 genes, or (2) the TF
promotes Th17 expression through re-
pression of non-Th17 genes (Methods).
Similar de novo Th17 core TFs were re-
covered from both ChIP+KO+ATAC
and ATAC-only TRNs, with several recog-
nizable Th17-specific TFs from the litera-
ture (RORA, RORC, STAT3, MAF) in both
networks (Fig. 5A,B). We note that this
“core” TF analysis is robust to model-
size cutoffs, as analysis of TRNswith aver-
age model-size of five or 10 TFs/gene
yields similar results (Supplemental Fig.
S12). Similarly, top-degree TFs per TRN
are robust across model sizes (Supple-
mental Fig. S13).

TF–TF modules exhibit coordinated

control of gene pathways in Th17

To aid in exploring the large Th17 TRNs
(about 53,000 TF–gene interactions), we
identified clusters of TFs with significant
overlap in target genes (see Methods)
(Fig. 5C; Supplemental Figs. S14, S15).
We then applied a comprehensive gene-
set enrichment analysis to predict func-
tional roles for the “TF–TF clusters,”
looking for consensus among pathway
enrichments from five databases (Gene
Ontology, Pathway Commons, KEGG,
WikiPathways, and signatures from MSigDB) (Supplemental Figs.
S16, S17; Kanehisa and Goto 2000; Gene Ontology Consortium
2004; Pico et al. 2008; Cerami et al. 2010; Liberzon et al. 2011).
Most clusters were conserved between ChIP+KO+ATAC and
ATAC-only networks, and within clusters, TFs shared features. For
example, several clusters contained TFs defined in the de novo
Th17 cores. RORCwas amember of a Th17-promoting TF–TFmod-
ule including RORA, NR1D1, andVAX2 (Fig. 5C, light-blue square;
Supplemental Figs. S14–S17); functional annotations for this clus-
ter include “IL23 signaling” and “rheumatoid arthritis,”which are
consistent with prior knowledge. Th17-promoting TFs HIF1A,
HIF3A, DPF1, SP9, and SCRT1 cluster with five to six other TFs

(green square), and enrichments for this cluster include “hypoxia,”
“HIF1A transcription factor network,” and “glycolysis.”

Other clusters contained TFs that promote the expression of
genes repressed at 48 h in Th17 cells. One such cluster contained
Th1 TFs (IRF1, STAT1, and STAT2) with additional interferon re-
sponse factors and STATs (Fig. 5C, hot-pink box). As expected,
this “interferon cluster” has enrichments for “response to interfer-
on gamma,” “type 1 interferon pathway,” “response to virus.”
Although TF gene expression for this cluster is highest in Th1 rel-
ative to other Th populations at 48 h, gene expression is at its high-
est at the 1-h Th17 time point, suggesting an interferon-like
response for Th17 cells very early in the Th17 polarization time
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Figure 5. Analysis of the Th17 TRNs expands the “core” Th17 TRNs and predicts multivariate regula-
tion of Th17 gene pathways. De novo Th17 core TFs in the ChIP + KO+ATAC TRN (A) and ATAC-only TRN
(B). The Top 30most significant “core” TFs are displayed. Significance was based on enrichment of a TF’s
(1) positive gene targets in up-regulated Th17 genes or (2) negative targets in down-regulated Th17
genes. (Left) Significance and direction of regulation; (right) number, sign, and prior support of TF target
edges. Superscripts “c” and “y” indicate TF Th17 association from Ciofani et al. (2012) and Yosef et al.
(2013), respectively. (C ) Top 15 TF–TF modules for ChIP + KO+ATAC TRN. TFs were clustered into mod-
ules based on shared positive target genes between TFs (Methods). Gene-set enrichment was used to
annotate clusters, and TF members are listed.
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course (Supplemental Figs. S14, S15). This result is consistent with
predictions from another Th17 TRN (Yosef et al. 2013), in which
authors also predict roles for IRF1, IRF2, IRF9, STAT1, and STAT2
within the first 4 h of Th17 polarization. Both findings are consis-
tent with potential plasticity, observed in vivo, in Th17 cell pro-
grams that are homeostatic or pathogenic, with expression of
Th1-like features in the latter.

Gene-set enrichment provides functional predictions for oth-
er TF–TFmodules, including “amino acid transport,” “integrin sig-
naling,” “DNAmismatch repair,” “p53 signaling,” and others (Fig.
5C; Supplemental Figs. S14–S17). These predictions provide fur-
ther confirmation of TRNquality, asmanymodules have predicted
function in processes for which individual TFs are already impli-
cated (e.g., HIF1A and HIF3A in the HIF1A/hypoxia module,
TRP53 and TRP73 in the “p53 signaling”module). TF–TF modules
and functional annotations are largely conserved between KO+
ChIP+ATAC and ATAC-only TRNs, the latter prior network being
much more economically feasible than the first. More fundamen-
tally, these predictions suggest howaltering sets of TFsmight influ-
ence Th17 pathways and responses.

New phenotypes are associated with TFs in the Th17 TRN

Th17 cells contribute to the pathogenesis ofmultiple autoimmune
diseases (Stadhouders et al. 2018). We previously tested whether
genes coregulated by the “Th17 core” (RORC, STAT3, BATF, IRF4,
andMAF) were enriched for gene sets fromGWAS of nine autoim-
mune diseases and three “negative con-
trols” (Alzheimer’s, schizophrenia, and
type 2 diabetes) (Ciofani et al. 2012).
Consistent with the known role for
Th17 in autoimmune disease, genes
from the autoimmune-disease sets were
enriched (Ciofani et al. 2012). Since
then, Th17 cells have also been implicat-
ed inobesity-relateddiseases (Harleyet al.
2014; Endo et al. 2017) and psychiatric
disorders (Debnath and Berk 2014; Choi
et al. 2016). In parallel, the number of ge-
nome-wide association studies grew ex-
ponentially (MacArthur et al. 2016), and
as demonstrated above, our network
model improved in both comprehensive-
ness and accuracy.

We performed an extensive, unbi-
ased GWAS analysis of our “final” up-
dated (KO+ChIP+ATAC) Th17 TRN,
including any phenotype with five or
more associated genes; 991 phenotypes
met this criterion. Not only did we dra-
matically expand the phenotypes con-
sidered, we more broadly queried the
Th17 TRN. For each of the 605 TFs indi-
vidually, we tested for TF-target genes en-
richment in each of the GWAS gene sets
(Supplemental Table S6). Despite the
large number of TF–phenotype associa-
tions tested, eight reached significance
(FDR=10%) (Fig. 6A). STAT3 targets
were significantly enriched for genes
associated with inflammatory bowel
disease (IBD), as well as the two IBD-sub-

types, Crohn’s disease and ulcerative colitis. Both genetic (Cho
2008) and functional studies (Xavier and Podolsky 2007) support
a role for STAT3 in IBD; indeed, STAT3 is a proposed
IBD therapeutic target (Lee et al. 2015; Nguyen et al. 2015). Our
analysis also newly implicates FOXB1 in regulation of IBD genes.
We compared the centrality of STAT3 and FOXB1 in the Th17
TRN (Supplemental Fig. S18A) to their centrality in the subnet-
work limited to the 54 IBD genes in the Th17 TRN (Fig. 6B, left).
We examined both degree and betweenness centrality. For each
TF, betweenness is the fraction of shortest paths connecting TFs
to target genes in the network that contain the TF.Whereas degree
is a local measure (TF’s direct effect on gene expression), between-
ness is a more global measure of TF importance, as it can also cap-
ture TFs that regulate a large number of genes through control of
other TFs. Although STAT3 had the sixth-highest degree in the
full Th17 TRN (Supplemental Fig. S18A), it has the highest-degree
TF in the IBD subnetwork (Fig. 6B). Relative degree more than
doubles for both STAT3 and FOXB1 in the IBD subnetwork, and
betweenness centrality increased, too (Fig. 6B). The IBD genes reg-
ulated by STAT3 and FOXB1 include a number of Th17 genes: Rorc,
Il23r, Tnfsf15 (Fig. 6B, right).

NFKB2 and ETS1 are also associated with immune pheno-
types (Fig. 6A). NFKB2’s targets are enriched in the pheno-
type “chronic inflammatory diseases (ankylosing spondylitis,
Crohn’s disease, psoriasis, primary sclerosing cholangitis, ulcera-
tive colitis) (pleiotropy)” (Supplemental Fig. S18B). Mutations in
NFKB2 have been previously associated with common variable
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Figure 6. The Th17 TRNs implicate phenotypes and putative regulators in Th17 cells. (A) TFs whose
target genes are enriched in GWAS phenotype genes (FDR =10%). (IBD) Inflammatory bowel disease;
(chronic inflammatory diseases) chronic inflammatory diseases (ankylosing spondylitis, Crohn’s disease,
psoriasis, primary sclerosing cholangitis, ulcerative colitis; pleiotropy). # GWAS, # TF, and # Overlap cor-
respond to the number of genes associatedwith the phenotype, regulated by the TF in the Th17 TRN (KO
+ChIP +ATAC), and the overlap between those two sets, respectively. Further details are contained in the
Methods. (B) STAT3 and FOXB1 are central regulators of IBD genes. (Left) Each arrow corresponds to a
single TF. Arrow source is TF’s centrality (out degree, betweenness) in the full Th17 TRN, and arrowhead
is TF centrality for the IBD subnetwork (in which target genes are limited to the 54 shared between the
Th17 TRN and IBD GWAS set). STAT3 and FOXB1 (pink arrows) both show significant increase in degree
centrality for IBD genes (FDR =10%). (Right) The subnetwork connecting STAT3 and FOXB1 to their tar-
get genes in the IBD set. Node color indicates log2(fold-change) in Th17 48-h condition relative to other
Th timepoints (red indicates increased; blue, decreased), whereas red/blue edges indicate positive/neg-
ative regulation. Solid edges have support in the ChIP + KO+ATAC prior, whereas dotted edges do not.
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immunodeficiency (CVID) (Chen et al. 2013; Lindsley et al. 2014;
Liu et al. 2014), a heterogeneous disorder in which 25%of patients
suffer autoimmune disorders, including thrombocytopenic pur-
pura, autoimmune hemolytic anemia, rheumatoid arthritis, and
autoimmune enteropathy (which can be classified as Crohn’s dis-
ease) (Cunningham-Rundles 2008; Lopez-Herrera et al. 2012).
Thus, NFKB2 was previously genetically associated with pleiotro-
pic autoimmune diseases, in the context of CVID. (We note that
our set of GWAS phenotypes did not include CVID.) ETS1’s targets
are associated with “neutrophil percentage of granulocytes” (Sup-
plemental Fig. S18C). ETS1 is known to repress the Th17 program
(Moisan et al. 2007). Ets1 expression decreases over the course of
both Th0 and Th17 polarization and, of the 48-h Th polarization
conditions, has highest expression in Treg. Mutations in ETS1
have been associated with systemic lupus erythematosus (SLE)
(Leng et al. 2011), an autoimmune disease in which the role of
neutrophils has become increasingly appreciated (Smith and
Kaplan 2015). Thus, a predicted role in neutrophil regulation
could be consistent with the known role of ETS1 in SLE.

Discussion

Th17 cells protect mucosa from bacteria and fungi but can also
drive autoimmune and inflammatory disease (Khader et al. 2009;
Littman and Rudensky 2010; Stadhouders et al. 2018). These
diverse roles require coordination of thousands of genes. TF regu-
lation of gene expression provides a map for immuno-engineering
Th17 behavior in disease. Researchers in academia and industry
have used our first genome-scale Th17 TRN (Ciofani et al. 2012)
to develop hypotheses in the context of autoimmunity (Isono
et al. 2014; Yang et al. 2014; Patel and Kuchroo 2015). Here, we
provide an important update to our knowledge of Th17 transcrip-
tional regulation, enabled by technical advances in genomic mea-
surement and computational advances in TRN inference. KO data
for 20 TFs and TFChIP data for nine TFswere central to the original
Th17 TRN, providing excellent coverage of TF–gene targets for TFs
in that set. However, technical limitations and cost precluded ap-
plication of these tools to the hundreds of TFs expressed over the
course of Th17 differentiation, all of which could play important
roles in Th17 gene expression regulation.

In combination with large-scale efforts to learn TFDNA-bind-
ing motifs (Badis et al. 2009; Jolma et al. 2013; Weirauch et al.
2014; Najafabadi et al. 2015), the advent of ATAC-seq represents
an opportunity to overcome limitations of sequential TF ChIP ex-
periments, expanding the number of TFs with chromatin binding
profiles by over an order of magnitude. In addition, although TF
KO and ChIP data were pragmatically limited to 48-h Th17 condi-
tions, standard ATAC-seq protocols require two orders of magni-
tude fewer cells than TF ChIP. Here, we obtained (indirect) TF
binding profiles from multiple differentiation time points. Yet TF
binding profiles derived frommotif analysis of ATAC-seq are noisy.
Here, we provide a single, integrated method to infer regulatory
roles for TFs genome-wide. At its core, gene expression is modeled
as a function of TF activities, inwhich prior information (e.g., from
ATAC-seq) can be used to (1) improve TF activity estimates for
some TFs and (2) favor TF–gene interactions that also have prior
support. We rigorously test the performance of our method in
terms of precision recall and gene expression prediction. Our
methods have two very desirable features (1) they prune initial
noisy prior networks (by over an order of magnitude in this study)
while (2) also learning new TF–gene interactions for TFs with and
without prior information.

Our final Th17 TRN is built integrating our best knowledge
(KO and ChIP-seq of key Th17 TFs with ATAC-seq and a rich
gene expression data set). Our de novo Th17 core includes the
original core (RORC, STAT3, BATF, IRF4, MAF) and dozens of addi-
tional TFs. The TF–TFmodule analyses predict gene pathway regu-
lation bymultiple TFs.We also exhaustively test for the association
of TFs with nearly 1000 GWAS phenotypes, uncovering known as-
sociations between STAT3 and IBD, as well as several novel TF as-
sociations with immune phenotypes. Notably, these TFs were
not themselves members of the gene sets for the phenotypes
they are predicted to regulate. Thus, application of our TRNmeth-
ods might provide new links between TF regulators and disease-
associated genetic polymorphisms. The resulting Th17 TRN
provides an important update to our knowledge of transcriptional
regulation in Th17 cells and can be used to query key regulators of
pathways and disease genes.

Of perhaps greater importance, the TRN experimental design
and computational methods proposed are generalizable, designed
for regimes in which prior knowledge of transcriptional regulators
and/or sample material is scarce (e.g., cells directly from humans
and animal models). Given the rigorous testing and case study
presented here, we have high expectations for their successful ap-
plication in other systems. Indeed, we have already applied our
methods to a new physiological setting, constructing and experi-
mentally validating TRNs for innate lymphoid cells of the intes-
tine (Pokrovskii et al. 2018). Our methods are widely applicable.
Prior information can be derived from diverse sources: chromatin
state data, systems genetics, and literature-curated databases.

This work also highlights avenues for future improvement of
TRN inference methods. We tested two methods for TF activity es-
timation: (1) based on TF mRNA levels and (2) based on prior
knowledge of TF–gene interactions. Although prior-based TFA im-
proved TRN inference in Bacillus subtilis and yeast (Arrieta-Ortiz
et al. 2015; Tchourine et al. 2018), neither method consistently
outperformed the other in this study. As a result, final TRNs were
built using both TFA methods. There are multiple dimensions
along which TFA estimation could be improved. The simplicity of
the linear framework proposed for prior-based estimation has lim-
itations in the context of complexmammalian transcriptional reg-
ulation, and a more sophisticated mathematical model for TFA
estimation could be of value. TFA estimation would also improve
from better prediction of TF binding events. Here, we limited our
approach to a simple TF motif analysis of accessible chromatin,
yet several more sophisticated methods exist and merit testing
(Pique-Regi et al. 2011; Sherwood et al. 2014; Chen et al. 2017;
Lamparter et al. 2017). Another limitation of our method is the
mappingof putative TF binding events to gene loci. In our analysis,
3D distance between potential regulatory regions and gene loci is
approximated by linear distance, a shortcoming that chromatin
capture data (e.g., Hi-C [Lieberman-Aiden et al. 2009] and other
3D-chromatin techniques [Zhang et al. 2012; Beagrie et al. 2017])
would mitigate. Thus, the Th17 genomics data set (Ciofani et al.
2012), augmented by our new ATAC-seq and RNA-seq experi-
ments, provides a fertile testing ground for the development of fu-
ture TRN inference methods and innovation.

Methods

ATAC-seq

CD4+T cellswere sorted andpolarized according themethodprevi-
ously described (Ciofani et al. 2012), and ATAC-seq samples were
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prepared as described previously (Buenrostro et al. 2013).
Paired-end 50-bp sequences were generated from samples on an
Illumina HiSeq 2500. Sequences were mapped to the murine ge-
nome (mm10) with Bowtie 2 (2.2.3) (Langmead and Salzberg
2012), filtered based on mapping score (MAPQ>30, SAMtools
[0.1.19] [Li et al. 2009]), and duplicates removed (Picard; http
://broadinstitute.github.io/picard). The ATACseqQC package (Ou
et al. 2018) was used to evaluate ATAC-seq fragment-length dis-
tributions and signal at TSS for each sample (Supplemental Fig.
S19). For each sample individually, we ran PeaKDEck (parameters
–bin 75, -STEP 25, -back 10000, -npBack100000) (McCarthy and
O’Callaghan 2014) and filtered peaks with a Praw < 10−4. To enable
quantitative comparison of accessibility across samples, we gener-
ated a reference set of accessible regions, taking the union
(BEDTools; Quinlan andHall 2010) of peaks detected in individual
samples. The reference set of ATAC-seq peaks contained 63,049 po-
tential regulatory loci, ranging from 75 to 3725 bp (median, 275
bp). Reads per reference peak were counted with HTSeq-count
(Anders et al. 2015). ATAC-seq datawere robustly normalized using
DESeq2 (Love et al. 2014) for PCA and clustering (Fig. 1A; Supple-
mental Fig. S2). The 33 ATAC-seq experiments are available from
NCBI’s Gene Expression Omnibus (GEO) Database (GSE113721).

RNA-seq

The 18 new samples composing “late Th17” time points were gen-
erated as follows: Naive CD4+ T cells were primed on an anti-CD3
(Bio X Cell BE0001-1) and anti-CD28 (Bio X Cell BE0015-1) coated
plate (without any additional cytokine) for 12–14 h (overnight).
Cells were then polarized with one of two cytokine cocktails: (1)
Th17N, TGF-b (0.3 ng/mL, PeproTech 100-21-10) + IL6 (20 ng/
mL, eBioscience 34-8061-82); or (2) Th17P, IL6 (20 ng/mL) + IL1b
(20 ng/mL, PeproTech 211-11b) + IL23 (20 ng/mL, R&D Systems
1887-ML-010). Cellswere harvested for RNA-seq at 60 and108h af-
ter TCR stimulation. Cells were lysed and snap-frozen in TRIzol
then thawed for chloroform extraction, using a 1:1 ratio of 70%
ethanol to aqueous phase. Samples were loaded onto a Qiagen
RNeasy column according to the manufacturer’s instructions.
rRNAwasdepletedwithaRibo-Zerogoldkit; librarieswere thenpre-
pared using the Illumina TruSeq stranded total RNA library prep
and sequenced on an Illumina HiSeq 2500. The remaining 81
new CD4+ T cell samples were (1) naive or polarized and (2) pro-
cessed as previously described (Ciofani et al. 2012). The 99 RNA-
seq experiments are available from GEO (GSE113720). Publicly
available RNA-seq data were downloaded from GEO: GSE40918
(156 samples), GSE70108 (four samples), and GSE92992 (eight
samples). Sequences were mapped to mm10 (STAR aligner)
(Dobin et al. 2013). Reads per gene were counted (using HTSeq-
count [Anders et al. 2015] with parameters ‐‐stranded=no ‐‐mode
=union) and robustly normalized (DESeq2) (Love et al. 2014).
Supplemental Note 2 details treatment of batch effects.

TRN inference

Selection of target genes

We built gene expression models for 3578 target genes, composed
of the union of (1) genes differentially expressed between Th17
and Th0 at 48 h (FDR=10%, log2|FC| > log2(1.5)) and (2) the
2100 genes in the original Th17 TRN (Supplemental Table S2;
Ciofani et al. 2012).

Selection of potential regulators

We initially generated a custom list of potentialmouse protein TFs,
combining (1) mouse and human TFs from TFClass (Wingender

et al. 2014) andgeneswith theGOannotation “transcription factor
activity.” (Human TFs were mapped to mouse using theMGI data-
base.) Fromour list of potentialmouse protein TFs (2093 genes), we
generated a list of 869 potential TF regulators, limited to TFs with
differential gene expression in at least one pairwise comparison be-
tween Th17, Th0, Th1, Treg, or Th2 at 48 h (FDR=10%, log2|FC| >
log2(1.5)). This initial list was used for all analyses comparing
mLASSO-StARS and BBSR-BIC (Figs. 2, 3B; Supplemental Figs. S3,
S6). However, given recent efforts in TF annotation (Lambert
et al. 2018), we generated a new list of mouse TFs for subsequent
TRN analyses. Lambert et al. (2018) manually curated lists of (1)
likely TFs and (2) “likely non-TFs.” We converted both lists to
mouse.TogainmouseTFswithouthumanorthologs,we integrated
withmouse TFs fromAnimalTFDB (Zhang et al. 2015) but removed
anymouse TFs (70) that were “likely non-TFs.”Our final mouse TF
list contained 1577 TFs, 715 ofwhich served as potential regulators
(differentiallyexpressedasdescribedabove).BothcandidateTF lists
are available (Supplemental Table S3).

Generation of prior matrices

ATAC-seq peaks were associated with putative TF binding events
and target genes to generate a “prior” network, P∈R|genes|×|TFs|, of
TF–gene interactions. We used a compendium of human and
mouse TF motifs. Human and/or mouse TF binding motifs
(PWMs) were downloaded from the Cis-BP motif collection ver-
sion 1.02 (Weirauch et al. 2014; http://cisbp.ccbr.utoronto.ca)
and the ENCODE motif collection (Kheradpour and Kellis 2014;
http://compbio.mit.edu/encode-motifs). Transfac version 2014.2
motifs (Wingender 2008), referenced in the human Cis-BP collec-
tion, were reformatted with the MEME Suite tool transfac2meme
version 4.10.1. Human ENCODE motifs were added to the
Cis-BP motif collection if the TF PWM had R2 < 0.95 with a Cis-
BP entry for that TF. The combined human ENCODE and Cis-BP
set were mapped to mouse orthologs. We scanned peaks for indi-
vidual motif occurrences with FIMO (parameters ‐‐thresh .00001,
‐‐max-stored-scores 500000, and a first-order-Markov background
model) (Grant et al. 2011). We found inclusion of human TF
orthologs from the ENCODE motif collection slightly increased
precision recall relative to mouse Cis-BP alone (Supplemental
Fig. S20). TFmotif occurrenceswith raw P-value <10−5 were includ-
ed in downstream analysis. Putative binding events were associat-
ed with a target gene, if the peak fell within ±10 kb of gene body.
We tested several peak–gene association rules based on distance
from gene body or TSS, and TRN inference was robust to that
choice (Supplemental Fig. S21). We generated two ATAC-seq pri-
ors: (1) A(Th17), for which only peaks from Th17 48 h wild-type
conditions were included, and (2) A(Th), for which all Th samples
were included. For the resulting prior matrix of TF–gene interac-
tions, entries were one if a TF motif was found proximal to the
gene and zero otherwise. Similar methods were used to derive pri-
ors fromChIP-seq, TRRUST, ENCODEDHS, and combined sources
(Supplemental Note 3).

Inference framework

We used the Inferelator model for TRN inference (Bonneau et al.
2006). At steady state (consideration of time-series is discussed in
Supplemental Note 4, Supplemental Fig. S23), gene expression is
modeled as a sparse, multivariate linear combination of TFAs:

xij =
∑
k[TFs

bikakj, (1)

where xij corresponds to the expression level of gene i in condition
j, ajk is the activity of TF k in condition j, and bik describes the effect
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of TF k on gene i. A TF’s mRNA expression can serve as a proxy of
protein TFA.More recently (Arrieta-Ortiz et al. 2015), TFA has been
estimated based on partial prior knowledge of a TF’s gene targets:

X = PA, (2)

where X∈R|genes|×|samples| is the expression matrix for genes in the
prior, P∈R|genes|×|TFs| is the prior matrix of known TF–gene interac-
tions, and A∈R|TFs|×|samples| contains the unknown TFAs. Equation
2 has no unique solution, but the least-squares solution has
worked well in simpler organisms (Arrieta-Ortiz et al. 2015;
Tchourine et al. 2018). Given first-time application to amammali-
an setting, we tested both methods of TFA estimation: (1) TF
mRNA levels and (2) prior-based (Equation 2). Note that all ex-
pressed genes (24,007) with edges in the prior were used to solve
Equation 2. As described in results, we solved for the interaction
terms {bik} in Equation 1 using the current Inferelator (BBSR-BIC)
(Arrieta-Ortiz et al. 2015), as well as a new method (mLASSO-
StARS; detailed below).

Model-building with LASSO and StARS

We constructed sparsemodels of gene expression using amodified
LASSO framework:

B̂ = argminB |X− BA|22 + |L ◦ B|1, (3)

whereX andA are defined as above, B∈R|genes|×|TFs| is thematrix of
inferred TF–gene interaction coefficients, Λ∈R|genes|×|TFs| is a ma-
trix of nonnegative penalties, and ° represents an entry-wise ma-
trix product (Studham et al. 2014; Gustafsson et al. 2015).
Matrix representation of the LASSO penalty enables incorporation
of prior information. Specifically, a smaller penalty, Λik, is used if
there is evidence for the TF–gene interaction in the prior matrix.
Similar to the G-prior in the current Inferelator BBSR and older
Inferelator modified elastic net framework (Greenfield et al.
2013), this procedure encourages selection of interactions support-
ed by the prior if there is also support in the gene expression data.
For this study, the entries of theΛmatrices were limited to two val-
ues: the nonnegative value λ, for TF–gene interactions without ev-
idence in the prior, and bias∗λ, where bias ∈ [0,1], for TF–gene
interactions with support in the prior.

We hypothesized that a data-driven approach to model selec-
tion might perform better in a complex, mammalian setting than
a theoretical one (e.g., BIC used in Inferelator-BBSR-BIC). Specifi-
cally, we chose to test StARS (Liu et al. 2010), anticipating that
the resulting networks would be larger than those built using
our BBSR-BICmethod.We hypothesized that a largermodelmight
be needed to describe a mammalian TRN. StARS was designed to
ensure that the inferred network of interactions includes the
true set of network interactions with high probability. In contrast,
another popular data-driven λ selection method, stability selec-
tion, seeks to limit false-positive rate (Meinshausen and Bühl-
mann 2010), which in a biological setting might be overly
conservative (Liu et al. 2010). Thus, StARS seemed ideally suited
to our objective.

In brief, StARS rests on the definition of edge instabilities. For
a fixed value of λ, instabilities are estimated via subsampling and
can be interpreted as twice the Bernoulli variance of a subsampled
edge or the fraction of times subsample edge predictions disagree
(Liu et al. 2010). This definition is used to select the smallest λ val-
ue corresponding to an acceptable average edge instability; authors
heuristically recommend an average instability cutoff = 0.05.

Importantly, given our application of StARS in the new set-
ting of TRN inference and a modified LASSO objective function,
we used out-of-sample gene expression prediction and precision

recall of GS interactions to guide selection of an appropriate insta-
bility cutoff rather than relying on the recommended heuristic
(Supplemental Note 5; Supplemental Figs. S24–S29). Following
our previous work in ecological network inference (Kurtz et al.
2015), TF–gene interactions were ranked according to nonzero
subsamples per edge. To better and more efficiently prioritize
high-confidence edges for TRN inference (see Supplemental Note
5; Supplemental Figs. S26–S28), we developed the following edge
confidence score:

Confidence (i,k) = Nonzero Subsamples+ |pcorr(i,k)|, (4)

where i and k correspond to gene i and TF k, and pcorr(i,k) is the par-
tial correlationbetween gene i and TF k, for a setmodel size. For TF–
gene interactions with the same number of nonzero subsamples,
the TF–gene interaction with higher absolute partial correlation
will be higher confidence.

mLASSO-StARS was implemented in MATLAB R2016b,
and code relies on the Glmnet for MATLAB package (http://www
.stanford.edu/~hastie/glmnet_matlab/) to solve Equation 3. Com-
putational speed-ups using bStARS (Müller et al. 2016) are dis-
cussed in Supplemental Note 6 and Supplemental Fig. S30. Code
is available in Supplemental Materials and from https://github
.com/emiraldi/infTRN_lassoStARS.git.

Prior reinforcement

We tested several levels of prior reinforcement (none, moderate,
and high) for BBSR-BIC and mLASSO-StARS. For BBSR-BIC, these
corresponded to G-prior weights of 1, 1.1, and 1.5, for mLASSO-
StARS, bias = 1, 0.5, 0.25, respectively. These prior-reinforcement
parameters resulted in commensurate levels of TRN prior-edge in-
corporation between methods (Supplemental Fig. S22).

Gene expression prediction

Wegenerated three leave-out (test) data sets (Fig. 3A; Supplemental
Table S4). For each leave-out prediction challenge, the training
set included all samples excluding test. For each training set, we
performed model selection and parameter estimation indepen-
dently of the test set. Both BBSR-BIC and the mLASSO-StARS
methods provide confidence estimates for predicted TF–gene
interactions, andwebuilt TRNmodels of various sizes as a function
of edge confidence cutoffs for each of the training sets. For
parameter estimation, training TFA matrices were mean-centered
and variance-normalized according to the training-set means
�atrain [ R|TFs| and standard deviations �s a

train [ R|TFs|. Target gene ex-
pression vectors were mean-centered according to the training-set
mean �xtrain [ R|genes|. Then, for each confidence-level cutoff, we re-
gressed the vector of normalized training gene expression data
onto the reduced set of normalized training TFA estimates to arrive
at a set ofmultivariate linear coefficients Btrain∈R|genes|×|TFs|. Sumof
squared error of prediction was calculated as follows:

SSEpred =
∑

ie|genes|
je{test}

xij −
∑

ke|TFs|
bik,train

akj − �ak,train
sa
k,train

( )
− �xi,train

( )2

.

(5a)

The “null” model SSE was calculated relative to the mean of train-
ing data:

SSEnull =
∑

ie|genes|
je{test}

(xij − �xi,train)
2
. (5b)
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We then calculated R2
pred, a normalized measure of predictive per-

formance:

R2
pred = 1− SSEpred

SSEnull
, R2

pred [ (−1, 1]. (5c)

For gene expression prediction with prior-based TFA, the
mRNA of target genes with edges in the prior contribute to TFA es-
timation (Equation 2), and then their gene expression patterns
are predicted as a function of TFA. This circularity did not lead
to overfitting and inflated R2

pred values (Supplemental Note 7;
Supplemental Figs. S31, S32).

Final TRNs

To generate “final” TRNs, we usedmLASSO-StARS with the follow-
ing parameters: moderate prior reinforcement (bias = 0.05) and λ
corresponding to average network instability = 0.05 to rank edges
by confidence. To ensure that our final Th17 TRNwas as complete
and accurate as possible, our final network edge inclusion criteria
was context-specific, guided by the most rigorous tools at hand,
precision recall and out-of-sample gene expression prediction
(see supporting results and discussion in Supplemental Note 5).
We included the highest confidence edges until we reached amod-
el size of average 15 TFs/gene (3578 genes × 15 TFs/gene=53,670
TF–gene interactions). Given the complementary performance of
TF-mRNA and prior-based TFA, we combined resulting TRNs by
taking the maximum edge confidence to preserve the individual
strengths of each (Kittler et al. 1996; Castro et al. 2019). See
Supplemental Note 8 and Supplemental Figures S33 and S34 for
performance comparison of max- to rank-combine (Marbach
et al. 2012) relative to individual TRNs aswell as performance com-
bining TRNs from different priors.

De novo Th17 core

Th17 TFs were limited to TFs specifically promoting Th17 gene ex-
pression patterns. TFs were included in the core if they met one of
two criteria: The TF promotes Th17 gene expression through (1) ac-
tivation (the TF’s positive edges are enriched in up-regulated Th17
genes at an FDR=1%) or (2) repression of non-Th17 genes (TF’s
negative edges are enriched in down-regulated Th17 genes at an
FDR=1%).

Gold standards

For the GSs from our laboratory, we used recommended cutoffs of
0.75, 0.75, and 1.5 for KO, ChIP, and KO+ChIP networks, respec-
tively (Ciofani et al. 2012). For the six additional TF KO experi-
ments, we downloaded networks without filtering (Yosef et al.
2013). For both GSs, gene symbols were mapped from mm9 to
mm10, and only genes mapping to both genome builds were con-
sidered in precision recall analysis. Random AUPR was calculated
as the ratio of total GS edges to the number of possible edges be-
tween target genes and TFs in the GS.

Network visualization and availability

Networks were visualized using jp_gene_viz, a newly designed
interactive interface, based on iPython. Software is available at
https://github.com/simonsfoundation/jp_gene_viz. All 36 LASSO-
StARS Th17 TRNs (from Supplemental Fig. S8), GSs, and final, com-
bined TRNs are available in a Jupyter-notebook binder: https://
mybinder.org/v2/gh/simonsfoundation/Th17_TRN_Networks/
master. Both jp_gene_viz codebase and TRN notebooks are also
included in Supplemental Materials.

TF–TF module analysis

We calculated the number of shared target genes between each
pair of TFs, analyzing positive and negative target edges separately.
(Edges with |partial correlation| < 0.01 were excluded from analy-
sis, as were TFs with fewer than 20 gene targets.) TFs vary greatly
by number of target genes (Supplemental Figs. S10, S11), so we
devised an overlap normalization scheme that controlled for the
variable number of targets per TF (Supplemental Note 9; Supple-
mental Fig. S35).

GWAS analysis

The NHGRI-EBI GWAS Catalog v1.0.2 (MacArthur et al. 2016) was
downloaded on August 4, 2018. SNPs were mapped to the nearest
gene within ±1 Mbp using the catalog’s “mapped gene(s).”
Phenotype-associated gene sets were converted to mouse gene
symbols. Sets containing five or more genes (991 sets) were re-
tained. For each TF in the Th17 TRN (KO+ChIP+ATAC prior)
with five or more targets (605 TFs), overlap with the GWAS gene
sets was calculated and significance estimated using the hypergeo-
metric CDF. Benjamini–Hochberg correction was applied to con-
trol for multiple hypothesis testing. Network statistics were
calculated in MATLAB R2016b, normalizing degree by total target
genes and fraction of shortest paths (betweenness) by total num-
ber of paths between TFs and target genes (some of which were
also TFs).

Data access

The data sets from this study have been submitted to the
NCBI Gene Expression Omnibus (GEO; https://www.ncbi.nlm
.nih.gov/geo/) under accession number GSE113723.
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