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Abstract

Cellular interactome, in which genes and/or their products interact on several

levels, forming transcriptional regulatory-, protein interaction-, metabolic-, signal

transduction networks, etc., has attracted decades of research focuses. However,

such a specific type of network alone can hardly explain the various interactive

activities among genes. These networks characterize different interaction

relationships, implying their unique intrinsic properties and defects, and covering

different slices of biological information. Functional gene network (FGN), a

consolidated interaction network that models fuzzy and more generalized notion of

gene-gene relations, have been proposed to combine heterogeneous networks

with the goal of identifying functional modules supported by multiple interaction

types. There are yet no successful precedents of FGNs on sparsely studied non-

model organisms, such as soybean (Glycine max), due to the absence of sufficient

heterogeneous interaction data. We present an alternative solution for inferring the

FGNs of soybean (SoyFGNs), in a pioneering study on the soybean interactome,

which is also applicable to other organisms. SoyFGNs exhibit the typical

characteristics of biological networks: scale-free, small-world architecture and

modularization. Verified by co-expression and KEGG pathways, SoyFGNs are

more extensive and accurate than an orthology network derived from Arabidopsis.

As a case study, network-guided disease-resistance gene discovery indicates that

SoyFGNs can provide system-level studies on gene functions and interactions.

This work suggests that inferring and modelling the interactome of a non-model
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plant are feasible. It will speed up the discovery and definition of the functions and

interactions of other genes that control important functions, such as nitrogen

fixation and protein or lipid synthesis. The efforts of the study are the basis of our

further comprehensive studies on the soybean functional interactome at the

genome and microRNome levels. Additionally, a web tool for information retrieval

and analysis of SoyFGNs can be accessed at SoyFN: http://nclab.hit.edu.cn/

SoyFN.

Introduction

The living body is a complex system of storing and processing information. Full

understanding of this system means characterising the function of its components

and their interactions. The cell, as the most basic system of life, is a system of

hierarchical organisation from individual molecules (such as genes, mRNAs,

proteins, and metabolites) to complex molecular pathways (such as gluconeo-

genesis and tricarboxylic acid cycle), in which molecular interactions play an

important role. Interacting molecules form functional modules (such as groups of

molecules involved in the same biological process), which in turn interact with

each other to drive larger scale biological processes. Comprehensive maps of the

interactions among biomolecules provide an overall view of the cell. The past

decade has witnessed significant effort aimed at modelling, identifying, organising,

and analysing cellular interactomes. Such effort, grounded in significant advances

in our understanding of molecular biology, is supported by the omic-level high-

throughput data collections and acquisition techniques, which are used to

interrogate the states and interactions of biomolecules at multiple levels, and to

further map the structure of the genome-wide interaction networks.

If the complex system of a cell is regarded as a gene society, although it is in fact

composed of a variety of biological molecules, the heterogeneous interactions

between biological molecules are, essentially, interactions between genes. A same

gene society may be modelled by various networks, of which the most popular are

the protein-protein interaction network (PPIN), gene regulatory network (GRN,

or transcriptional regulatory network, TRN) and metabolic network (MN). In

addition, there exist various other types of connections upon which to model gene

interactions, such as signal transduction pathways, co-expression networks,

genetic interactions, and so forth (Figure 1). However, these models characterise

the different interactive relationships between genes, implying their unique

intrinsic properties and defects, and covering different slices of biological

information. In other words, one specific type of connection alone cannot explain

the various interactions among genes. Integrating them would contribute to a

comprehensive view of the cellular system. Therefore, a challenging problem of

network integration arises.
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Some pioneering approaches have arisen to combine networks of different

interaction types defined on the same sets of nodes, with the goal of identifying

functional modules supported by multiple types of interactions. The functional

gene network is such a consolidated interaction network that models fuzzy and a

more generalised notion of gene-gene relations. Further, the strength of

interaction between any two genes indicates the level of confidence in the

functional coupling between the two genes. Insuk Lee and Edward M. Marcotte

along with their colleagues [1, 2] first proposed a complete description and

construction of the FGNs. They represented the specific types of interactions

between genes by a more inclusive type of relations, functional interactions. The

consolidation of various types of interactions with the use of the more inclusive

functional interactions results in more extended coverage of genome by the gene

network (Figure 1). Such consolidated interaction networks are modelled in the

form of weighted graphs, where edge weights represent the likelihood of

interaction between genes, estimated on the basis of various statistical models and

techniques. Such a network is referred to as a probabilistic functional gene

network (PFGN) [3]. So far, PFGNs have been successfully constructed for

unicellular organism yeast (S. cerevisiae) [2, 4], the invertebrate nematode (C.

elegans) [5, 6], the model plants Arabidopsis mustard (A. thaliana) [7, 8] and rice

(O. sativa) [9], the mammal mouse (M. musculus) [10–12] and even the human

species (H. Sapiens) [13].

Figure 1. Various types of interactions between genes and a schematic view of the workflow for constructing
the probabilistic functional gene networks (PFGNs).

doi:10.1371/journal.pone.0113907.g001

A Genomewide Functional Gene Network of Soybean

PLOS ONE | DOI:10.1371/journal.pone.0113907 November 25, 2014 3 / 31



Although reconstruction of FGNs, depending on a variety of function-

associated data (Figure 1), has been successful in many model plant species,

especially, for example, the dicot Arabidopsis [7] and the monocot rice [9],

integrating diverse genomic data into network models for many other plants, such

as soybean, is still problematic. First, the genomic data are heterogeneous in their

sensitivity and specificity for relationships between genes. For example,

experimental methods such as mass spectrometry preferentially observe abundant

proteins, whereas comparative genomics methods apply only to evolutionarily

conserved genes. Second, genomic data sets vary widely in their utility for

reconstructing gene networks. Thus, we need robust benchmarking methods that

can be used to evaluate each data set and allow comparison of their relative merits.

Third, data sets are often correlated, but the correlations are always difficult to

measure because of data incompleteness (a common problem) and sampling

biases [4]. For most species, the richness and accuracy of these various function-

associated data are quite inconsistent. For example, for model organisms, such as

Arabidopsis, a wealth of data resources is available owing to extensive research,

but for other non-model organisms, such as soybean, there are not enough data to

construct such networks. We therefore need a cross-species and minimally data-

dependent approach to construct the FGNs of non-model organisms.

The Gene Ontology (GO) project [14] has integrated information from

multiple data sources to annotate genes to specific biological process (BP),

molecular function (MF) or cellular component (CC), which are three sub-

ontologies (or aspects). GO annotation (GOA) itself can be regarded as a de facto

way to integrate diverse unstructured data into a single structured data source.

Therefore, GOA is important for inferring FGNs based on the fact that the

strength of functional interaction between genes is proportional to their

functional similarity (FS). Thus we can calculate the FS among all the genes of an

organism based on GOA and further construct a genome-wide network, referred

to as an FGN. As a weighted network model, edge weights in the FGN represent

the functional similarity rather than the likelihood of interaction between genes in

a PFGN.

In comparison to the PFGN, the FGN based on GOA seems to be much easier

to construct. However, construction of such a genome-wide FGN for soybean is

challenging for several reasons. First, whereas A. thaliana has <27,000 protein

coding genes (The Arabidopsis Information Resource, release 9) [15], soybean is

predicted to have 46,430 protein coding genes, 70% more than Arabidopsis [16],

but it in fact has 54174 protein-coding genes annotated by EnsemblPlants, as of

May 2013 (v1.0, JGI-Glyma-1.1). This increased genome complexity results in a

combinatorial explosion for the number of pairwise relations between genes

(theoretically <1.5 billion pairs in total but actually we computed more than 2.7

billion pairs because of the three aspects of GO), complicating discovery of true

functional associations. Second, the current reference knowledge and raw omic

data available for modelling gene interactions are much sparser for soybean than

for Arabidopsis, reducing the predictive power of resulting networks and

increasing the difficulty of evaluating this power. Despite these hurdles, we
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constructed the first version soybean FGNs, called SoyFGNs, using the three

aspects of GOA published by UniprotKB in September 2012 (version 111), which

cover <70% of the 54174 soybean genes (Ensembls) recorded by EnsemblPlants.

The construction of the second version SoyFGNs covering all 54174 genes is under

way. The entire construction process described below includes the following steps:

1) measuring the pairwise functional similarities of genes annotated by GO; 2)

setting a threshold to determine how similar in function the gene pairs should be

to be connected in the network; 3) dissecting the validity of SoyFGNs by topology

analysis, comparative analysis and functional verification.

Material and Methods

Datasets

Gene ontology (GO)

The GO data were downloaded from the Gene Ontology website [17] (data

version: 1.1.3499), excluding cross-products, inter-ontology and ‘‘has-part’’

relationships. This dataset contains 38137 terms, including 1692 obsolete terms.

The total valid terms in BP, MF and CC number 23928, 9467 and 3050,

respectively. The ‘‘is-a’’ and ‘‘part-of’’ relationships number 56718 and 6127,

respectively.

GO annotations (GOA)

The GOAs of soybean (Glycine max) were downloaded from UniProt-GOA

(http://www.ebi.ac.uk/GOA/, version 111). A total of 165040 annotations

annotate 37827 (,70%) of the 54174 soybean genes (recorded by EnsemblPlants,

release 18 April 2013). The entries annotated in BP, MF and CC number 47452,

92374 and 25214, respectively. The genes annotated in BP, MF and CC number

27594, 33189 and 14150, respectively. Here we use UniprotKB AC/IDs or Ensembl

Genome IDs to represent corresponding genes.

Functional similarities of pairwise genes

We previously proposed a shortest semantic differentiation distance (SSDD)

method to calculate the semantic similarity between GO terms from a novel

perspective [18]. An overlapping directed acyclic graph (DAG, a sub-graph of

GO) was generated to represent two given terms. Such a DAG was then viewed as

a semantic genealogy wherein a term inherits the semantics of its ancestors and

distributes it to its descendants. We introduced the concept of semantic

differentiation to represent the transition of a term from one pattern of semantic

integration to another and the concept of semantic totipotency to represent the

capacity of this differentiation. Taking into account all paths linking a term and its

ancestors, the semantic totipotency of a given term t is quantified as a T-value

(T(t)) as follows:

A Genomewide Functional Gene Network of Soybean

PLOS ONE | DOI:10.1371/journal.pone.0113907 November 25, 2014 5 / 31

http://www.ebi.ac.uk/GOA/


T tð Þ~
1 if t~r

mean
tp[parentof tð Þ

v:T tp
� �� �

if t=r

8<
: , ð1Þ

where r represents a root term. The semantic totipotency of the three root terms is

given as 1. The variable v is the semantic differentiation factor for edge linking

term t with its parent tp. The T-values of any other terms are derived as the

average of all of its parents’ T-values multiplied by the semantic differentiation

factor (v). The differentiation capacity (T(t)) should decrease moving down the

hierarchy and be positively proportional to the number of descendants, or local

density. Thus, the v between a term t and its parent tp should be greater than 0

and less than 1, and can be calculated as

v ~
Dst(t)
Dst(tp)

, ð2Þ

where Dst(t) is the number of descendants of the term t, including itself.

Based on T-values, we proposed the SSDD to measure the semantic similarity

in the GO. Given two terms tA and tB, the normalised distance between them is

defined as

Dist tA,tBð Þ~
arctan min

P
t[path(tA,tB)

T tð Þ
( ) !

p=2
, ð3Þ

where path tA,tBð Þ represents a set of terms on the shortest path connecting the

terms tA and tB via their lowest common ancestors(LCAs). The arctan function is

used to normalise the distance to (0, 1). Apparently, Dist tA,tBð Þ is symmetric, i.e.

Dist tA,tBð Þ~Dist tB,tAð Þ. After normalisation, the semantic similarity is defined as:

SimSSDD tA,tBð Þ~1{Dist tA,tBð Þ, ð4Þ

SSDD was shown to be effective for measuring the semantic similarity of

pairwise GO terms. We also need a method for integrating pairwise semantic

similarities into a single FS of genes because a gene is often annotated by more

than one term in GOA. Three distinct approaches have been proposed for this

integration: Lord et al. [19, 20] used an arithmetic average (Avg) of pairwise

similarities between all terms of the first protein set and the second one; Sevilla et

al. [21] used only the maximum (Max) similarity between all term pairs; Couto et

al. [22], Schlicker et al. [23] and Azuaje et al. [24] developed the best-match

average (BMA) method, in which each term of the first protein is paired only with

the most similar term of the second one and vice versa. We take the BMA

approach to compare gene similarities, as it was found to be most effective [25].

Given two genes, g1 and g2, BMA is defined as
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FSgene(g1,g2)~

Pm
i~1

max
1ƒjƒn

SS(go1i,go2j)
� �

z
Pn
j~1

max
1ƒiƒm

SS(go2j,go1i)
� �

mzn
, ð5Þ

where go1i (go2j) denotes a term that belongs to the term set with a size of m(n)

that annotates g1 (g2). Thus, each gene pair is assigned three FSs based on three

orthogonal aspects of GO. We also need a single integrated FS for each gene pair

(denoted by FSINT ). Thus, we calculate the weighted average of the three FSs as

their integration (hereinafter denoted by INT), which can be formulated as

FSINT~
wbp:FSbpzwmf :FSmf zwcc:FScc

wbpzwmf zwcc
, ð6Þ

where, FSbp, FSmf , and FScc are three FSs for each gene pair; wbp, wmf and wcc are

the corresponding weights of the three GO aspects. Though the absence of a

criterion to quantify the weights of the different aspects of GO on gene’s function,

we let the weight be equal to the corresponding FS, based mainly two

considerations. First, because genes function unequally in the three GO aspects,

the one yielding greater similarity should have a greater weight. Second, a great

reduction in the integrated FS can be avoided even though the gene pair receives a

zero FS in some aspect. The final formula for the integrated FS is

FSINT~
FSbp:FSbpzFSmf :FSmf zFScc:FScc

FSbpzFSmf zFScc
, ð7Þ

where, FSINT also ranges between 0 and 1.

SoyFGNs construction

As shown in our previous work [18], our method yields more reliable gene FS for

such species that has shallow gene annotations as soybean, somewhat resolving a

critical problem in functional network construction. In doing so, we can calculate

any pairwise FSs for a list of genes g1,g2, � � � ,gNf g, and further get an N|N
similarity matrix M~ FSij

� �
, in which the element FSij represent the functional

similarity of the gene gi and gj. The next is to filter the matrix M to derive an

adjacency matrix A~ aij
� �

representing the functional gene network. The key to

do this is to determine how similar in function must the two genes be to be linked

in the network, i.e. appropriate threshold is needed to ensure that gene pairs with

FSs greater than or equal to the threshold value will be connected by edges

(aij~FSij); otherwise, they are not connected directly(aij~0).

In this study, we adopted clustering coefficient-based threshold selection. The

clustering coefficient (Ci) of a node (i) in a network is defined as Ci~2ni=ki(ki{1),

where ni represents the number of edges between ki(w1) first neighbours of a gene

i; if ki~1, we define Ci~ 0. The clustering coefficient of a network is defined as the

average clustering coefficient of all of its nodes,

A Genomewide Functional Gene Network of Soybean
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C~
1
N

XN

i~1

Ci, ð8Þ

where N is the number of nodes in the network. If N~0, we define C~0.

The construction of a gene network can be viewed as a process in which links

are removed from the initially complete graph by gradually increasing the FS

threshold. Because all FSs range between 0 and 1, we set a series of incremental

thresholds t (0ƒtƒ1) with an increment of 0.01. For each threshold t, we

construct a network by set aij~0 if FSijvt. In systems biology, a genuine

biological network should be scale-free and highly modular; its clustering

coefficient, denoted by c tð Þ, should be significantly higher than that of the

corresponding random network, denoted by cr(t). Here, we denote the difference

between c(t) and cr(t) by Dc tð Þ, i.e. Dc tð Þ~c tð Þ-cr tð Þ. We conjectured that the

most appropriate threshold should be the maximum t, which can produce a

monotonically increasing Dc tð Þ when the links are removed gradually as the

threshold increases from 0 to t. More specifically, we formulated this as a discrete

optimisation problem, where the critical cut-off threshold t� was determined by

finding the first t, which lets Dc tz0:01ð Þ-Dc tð Þv0 over a set of t gradually

increasing from 0 to 1. Note that calculating cr(t) of the randomise networks is

nontrivial by formula (8) because it is not clear which random network model

should be used for this purpose. Hence, we adopted a statistical method proposed

by Elo et al. [26] for its solution. If N denotes the total number of nodes and ki

denotes the degree of a node i for the original network, then cr(t) is calculated as

the expected value of the clustering coefficient as follows:

cr(t)~
�k2{�k
� �2

�k3N
, ð9Þ

where �k~1=N
PN

i ki, and �k2~1=N
PN

i ki
2.

Finally, an FGN can be constructed and represented as G(V ,E,W,T), where

V~fg1,g2, � � � ,gNg represents the genes involved in the network, E~feij~

[gi,gj] j FSij§Tg represents the edges between gene pairs with FSs greater than

or equal to the threshold T, W~FSij represents the weights of the edges, which are

the FSs of pairwise genes.

Using the pairwise FS of all soybean genes and the clustering coefficient-based

threshold selection, we construct four soybean functional gene networks

(SoyFGNs) in BP, MF, CC and INT, respectively.

Topologic characterisation of SoyFGNs

One way to characterise biological networks is to study their topologic properties.

We using Cytoscape 2.8.2 [27], investigated the global properties of the resulting

SoyFGNs. In addition, we conducted an in-depth analysis of the degree

distribution and degree correlation, as described in the next two subsections.

A Genomewide Functional Gene Network of Soybean
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Degree distribution

Many early studies observed that biological networks are generally scale free and

their degree distribution follows the power law [28, 29]. A number of later studies

have argued that there are other distributions, such as the log-normal

distribution, which explain the degree distribution better than power law [30, 31].

We used three models to investigate the distributions of the four resultant FGNs:

lognormal, power law and exponential. All model fittings and visualisations are

completed with the use of Origin 9 (http://www.originlab.com).

Degree correlation

Degree correlation is a basic structural metric for calculating the likelihood that

nodes link to nodes of similar or dissimilar nodal degree. The former case is called

positive degree correlation, and the latter is called negative degree correlation. In

the social sciences, a network with positive degree correlation is referred to as an

assortative network, whereas a network with negative degree correlation is referred

to as disassortative network [32]. Three ways of characterising the amount of

degree correlation are used, each involving less detail and expressing the result in

more compact terms. They are the joint degree distribution (JDD), the k-nearest

neighbours (knn) and the Pearson degree correlation (PDC).

The JDD is defined as the distribution in which each entry Dij is the number of

edges that the nodes at their endpoints have degrees i and j, respectively. JDD is

actually a two-dimensional distribution of the number of edges with respect to the

degree of their connected nodes.

Instead of recording every pair of nodes, as JDD does, knn simply averages the

degrees of the neighbours of each node of a given degree and plots the results as

linear, semi-log, and log-log plots. If a degree is missing, it is skipped in the graph.

A rise in knn along with a rise in nodal degree indicates that nodes of similar

degree tend to be linked, whereas a fall in knn with a rise in degree indicates the

opposite.

PDC is the most condensed way to characterise the degree-link structure of a

network. It consists of the conventional Pearson correlation calculation applied to

each pair of linked nodes. The result always lies in the range [21, 1], with a

negative value indicating that nodes of dissimilar degree tend to be linked and a

positive value indicating that nodes of similar degree tend to be linked.

Evaluating SoyFGNs through comparison to a network generated

by orthology from Arabidopsis

A Soybean network generated by orthology from Arabidopsis

An alternative approach to constructing a soybean gene network might be simple

to transfer linkages from orthologous gene pairs of the existing gene network. This

approach does not require modelling using soybean annotations or any of the

soybean-derived experimental data. The value of this approach has been shown in

reconstruction of gene networks for C. elegans [5] and Arabidopsis [7]. To assess

the accuracy of the SoyFGNs in comparison to such an orthology-derived

A Genomewide Functional Gene Network of Soybean
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network, we first identified the orthologs between soybean and Arabidopsis

using BLASTN, the results are shown in Table S1. We then downloaded the gene

network of Arabidopsis from BioGRID (3.2.96) and infer soybean gene linkages

based on linkages of this network, generating an orthology-derived soybean

gene network, which consists of 16566 nodes (genes) and 146562 edges

(linkages).

Inferring functional linkages from KEGG pathways and validating a query

network

To validate SoyFGNs using independent annotations, we employed the Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway database [33]. KEGG is

based on manual curation and is thus considered generally accurate and largely

independent from both SoyFGNs and the orthology-derived network. We

downloaded equivalent link information for soybean genes from LinkDB (http://

www.genome.jp/linkdb/) using UniprotKB AC/ID on March 2013. All links were

also mapped to Ensembl Genomes IDs. As a result, 3145 genes were mapped to

238 pathways, which can be retrieved by our web database (http://nclab.hit.edu.

cn/SoyFN/tar_pathway.php). As a benchmark network, the KEGG-derived

network was constructed by generating linkages between genes sharing KEGG

annotation terms, i.e. sharing the same KO IDs. The validation of a query network

by KEGG-derived network is mainly based on the gene coverage and the linkage

accuracy. The gene coverage (Gcvrg) is defined as Gcrvg~ Nshared=NKEGGð Þ|100%,

where Nshared is the number of genes shared by the query network and the KEGG-

derived network, Nkegg is the number of genes involved in KEGG-derived network.

The linkage accuracy (Lacc) is defined as Lacc~ Lshared=LKEGG

� �
|100%, where

Lshared is the number of linkages between Nshared genes in the query network, LKEGG

is the number of linkages between Nshared genes in the KEGG-derived network.

Inferring functional linkages from co-expression data and validating a query

network

Another major source of functional associations is mRNA co-expression data. So

we additionally inferred functional associations from mRNA co-expression

profiles to evaluate SoyFGNs. 11 datasets for Glycine max genes was downloaded

from the Gene Expression Omnibus (GEO) [34] on March 2013 (Table 1). In

order to reduce the false positive rate, 4 datasets that have less than 20 samples

each were discarded. The remaining 7 datasets were then filtered by removing the

uninformative sets by testing for a significant correlation between the Pearson

correlation coefficients (PCCs) between pairs of genes’ expression vectors and

removing the genes not sharing a specific Ensembl Genomes ID for further

analysis. For each dataset, the PCC between pairs of genes’ expression profile was

used as the measure for inferring the co-expression linkages. The pairs of genes,

between which the absolute value of PCC is more than 0.8, were linked. Finally, all

linkages derived from 7 expression datasets were merged into a final co-expression

network. The inclusiveness of a network versus co-expression network is also

measured by the gene coverage (Gcvrg) and the linkage accuracy (Lacc).The gene
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coverage (Gcvrg) is defined as Gcrvg~ Nshared
�

Nco{exp
� �

|100%, where Nshared is the

number of genes shared by the query network and the co-expression network,

Nco{exp is the number of genes involved in co-expression network. The linkage

accuracy (Lacc) is defined as Lacc~ Lshared=Lco{exp

� �
|100%, where Lshared is the

number of linkages between Nshared genes in the query network, Lco{exp is the

number of linkages between Nshared genes in the co-expression network.

For the reason that co-expression network is generated from an approach

different from the one to generate GO, while the KEGG network is generated from

the same approach to generate GO. It would generate a very low linkage accuracy.

To evaluate the perhaps low linkage accuracies are statistically significantly higher

than the background accuracy, we made an additional statistical analysis between

the linkage accuracies of the original ontology-derived network and SoyFGNs and

their corresponding randomized networks. A randomized network is generated by

doing randomly perturbations to the edges, but maintaining the same nodes and

their degree distributions. As our pre-experiments showed that more than 400

times perturbations could provide a stable-property randomized networks, we

used the average of 400 randomized networks to evaluate the background linkage

accuracy. The p-values are given to indicate their difference significances (by

ANOVA).

Network-guided disease-resistant gene discovery

The aforementioned pathway and co-expression analysis showed that genes for

similar biological processes or with similar expression profiles can be successfully

Table 1. Soybean mRNA expression datasets and the inferred functional linkages.

Accession Series Title # samples # genes
# inferred
linkages

GDS3229 GSE9374 Transgenic and conventional cultivar comparison 25 9971 1810344

GDS3230 GSE8432 Fungal pathogen Phakopsora pachyrhizi effect on leaves:
time course

25 12723 3639596

GDS3231 GSE9730 Lipochitooligosaccharide effect on first trifoliolate leaf 6 - -

GDS3234 GSE7108 Leaf response to fungal pathogen Phakopsora pachyrhizi 6 - -

GDS3235 GSE8112 Early maturation-stage seed compartments 34 4911 88776

GDS3238 GSE6414 Globular-stage seed compartments 28 7271 183976

GDS3239 GSE7511 Heart-stage seed compartments 23 10067 407522

GDS3240 GSE7592 Scarlet Runner Bean globular-stage embryo 4 - -

GDS3241 GSE7881 Cotyledon-stage seed compartments 18 - -

GDS3242 GSE7124 Effect of host quantitative resistance during Phytophthora
sojae infection: time course

128 6553 1344441

GDS3244 GSE9687 Phytophthora sojae infection effect on hypocotyl sections:
time course

160 6756 367047

Merged co-expression network 12933 2971228

Accession numbers reference the GEO datasets. The dashes (-) represent the discarded datasets that have less than 20 samples each.

doi:10.1371/journal.pone.0113907.t001

A Genomewide Functional Gene Network of Soybean

PLOS ONE | DOI:10.1371/journal.pone.0113907 November 25, 2014 11 / 31



associated in SoyFGNs. We next, as a case study, specifically tested the feasibility

of predicting the genes governing plant disease resistance by using SoyFGN-INT

in two steps: network-guided discovery and in silico verification.

Plant disease resistance protects plants from pathogens. Resistance genes (R-

genes) are genes in plant genomes that convey plant disease resistance against

pathogens by producing R-proteins. The main classes of R-genes consists of a

nucleotide binding domain (NB) and a leucine rich repeat (LRR) domain(s) and

are often referred to as (NB-LRR) R-genes. NB-LRR R-genes can be further

subdivided into toll interleukin 1 receptor (TIR-NB-LRR) and coiled-coil (CC-

NB-LRR) [35]. To implement this study, randomly selected 24 genes were used as

query genes to predict R-genes using the Gaussian smoothing guilt-by-association

method [36]. In order to evaluate the stability of prediction, 6 (1/4) of 24 query

genes were putative R-genes, while others were experimentally verified R-genes

(see Table S2). To be noted that, we here predicted candidate genes by only using

the direct network neighbors via guilt-by-association. 225 of 737 candidate genes,

which are highly connected with 14 query R-genes and constitute the biggest

disease resistant module, were used for further analysis (see Table S3). For these

225 disease-resistant candidates, we first defined their functions by extensive

databases and literatures searches. Second, we assigned a weighted rating (WR)

score for each candidate according to its connected known R-genes to prioritize

their possibilities to be R-genes. Obviously, WR of a gene should be positive

proportional to both the number of its neighbor function-known R-genes and the

average weight of edges link it to the neighbors, which were represented as

functional similarity (FS). We used the so called ‘true Bayesian estimate’ to

compute such WR, which is a useful weighting mechanism used by the Internet

Movie Database (IMDb) to adjust a movie’s rating score based on the number of

votes it has received. The formula is defined as:
v

vzm
:Fz

m
vzm

:C

where F, the average FS of each gene; C, the total average FS of all genes; v, the

number of neighbor function-known R-genes; m, a minimum number of

neighbors to a R gene, which was set to be the first quartile of the neighbor

number distribution of all 225 genes. The resulting WR scores of 225 genes are

also provided in Table S3 (xls).

Results

Functional similarities of pairwise genes

Measuring the pairwise FSs of soybean genes is the first step of SoyFGNs

construction. UniProt-GOA (http://www.ebi.ac.uk/GOA/), published in

September 2012 (version 111), deposit 165,040 annotations, annotating 37,827

(,70%) of the 54174 soybean genes in total (recorded by EnsemblPlants, release

18-April 2013). The numbers of genes annotated by BP, MF and CC are 27594,
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33189 and 14150, respectively. Using our previously proposed SSDD [18], we

obtained 380700621 (27594*27593/2), 550738266 (33189*33188/2), and

100104175 (14150*14149) pairwise FSs in BP, MF, and CC respectively. We then

assigned each gene pair with an integrated FS using the weighted average of three

FSs (see METHODS for details), producing 715422051 (37827*37826/2) pairwise

FSs of 37827 genes, referred to as ‘‘Integration (INT)’’. We excluded the FSs of the

genes themselves because these will not be used for subsequent construction of the

no-loop networks. The distribution of these four types of pairwise FSs is shown in

Figure 2. The complete data are provided on our website (http://nclab.hit.edu.cn/

SoyFN) because their sizes exceed the upper limit of supplementary files (each

larger than 8 GB). All genes can be retrieved by the UniprotKB AC/ID or the

Ensembl Genome ID on our website (e.g., K7MVA4 and GLYMA18G52145).

Hereafter in this paper, we use the UniprotKB AC/ID to refer to the

corresponding gene.

SoyFGNs construction

Our SoyFGNs are weighted undirected graphs in which the nodes represent genes

and the edges represent their functional associations weighted by the pairwise

functional similarities (FSs) of genes they link. Given pairwise FSs, the next step is

to set an appropriate threshold to ensure that gene pairs with FSs greater than or

equal to the threshold will be connected by edges; otherwise, they are not

connected directly. We adopted the clustering coefficient-based threshold

selection, which is based on the fact that given a threshold t, a biological network

Figure 2. The distribution of pairwise functional similarities of soybean genes (dashed lines with marks) and the cumulative probabilities of distributions
(solid lines with marks).

doi:10.1371/journal.pone.0113907.g002
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Figure 3. Cluster coefficient and nodes number of the network under each threshold in BP, MF, CC, and Integration (INT), respectively. Black arrows point to
the first peaks of the red curve and rectangular boxes show the corresponding threshold values. c tð Þ represents the cluster coefficient of the created network
(blue curve), cr tð Þ the cluster coefficient of the corresponding random network (green curve) and Dc tð Þ the difference between c tð Þ and cr tð Þ (red curve).
‘‘Nodes’’ represents the number of nodes at each threshold (grey curve).

doi:10.1371/journal.pone.0113907.g003

Table 2. Summary properties of soybean functional gene networks (SoyFGNs) in BP, MF, CC, and INT.

Property SoyFGN-BP SoyFGN-MF SoyFGN-CC SoyFGN-INT

Number of nodes 25835 28833 14136 33807

Number of edges 7366700 8552866 6144656 9187249

Cluster coefficient 0.8521 0.9594 0.9107 0.7522

Connected components 137 119 76 38

Diameter 11 9 11 10

Radius 1 1 1 1

Centralisation 0.04196 0.07967 0.09372 0.1325

Shortest paths 9337684 1982914 1739716 51359370

Characteristic path length 3.366 2.0965 3.90382 3.7753

Avg. number of neighbors 139.7488 166.0099 128.96774 132.9974

Density 0.025 0.0273 0.0482 0.0182

Heterogeneity 0.8835 0.9205 0.8464 1.0899

All properties are calculated by Cytoscape 2.8. The suffix BP refers to biological progress; MF, molecular function; CC, cellular component; INT, integrated
network based on the integrated functional similarity.

doi:10.1371/journal.pone.0113907.t002
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should be scale-free and highly modular, and thus its average clustering

coefficient, denoted by c tð Þ, should be significantly higher than that of the

corresponding random network, denoted by cr(t).

By setting a series of incremental thresholds t (from 0 to 1)with an increment of

0.01, we used each threshold to filter the original networks (including all pairwise

similarities of genes) in BP, MF, CC and INT, respectively. As a result, we

obtained 100 networks each in BP, MF, CC and INT. Using our own JAVA script,

we calculated the cluster coefficient of each network (c(t)) and that of its random

model (cr(t)). As shown in Figure 3, the first stop of monotonically increasing of

the Dc tð Þ occurs at t~ 0.99, 0.99, 0.84, and 0.99 in BP, MF, CC, and INT,

respectively, which indicates that these thresholds are the most appropriate ones

for constructing the FGNs in BP, MF, CC, and INT, respectively (for more

explanation, see the corresponding parts of the METHODS section).

Using the above-mentioned thresholds, we constructed four FGNs in BP

(SoyFGN-BP), MF (SoyFGN-MF), CC (SoyFGN-CC), and INT (SoyFGN-INT)

(Table 2).

Topologic characterisation of SoyFGNs

Global topologic properties of SoyFGNs

Analysed by Cytoscape 2.8.2, the global properties of the functional gene networks

in BP, MF, CC, and INT are shown in Table 2. These four networks cover 25835

(93.63% of 27594), 28833 (86.88% of 33189), 14136 (99.90% of 14150) and 33807

(89.37% of 37827) genes (recorded by UniprotKB-GOA, version 111 September

2012) of Soybean, respectively. All networks manifest the typical common

characteristics of biological networks: high clustering coefficient, small diameter

and low density, and high centralisation.

Degree distribution

Three models were used to investigate the distributions of the four SoyFGNs:

lognormal, power law, and exponential. Graphs of the degree distribution and the

three fitted models for each network are shown in Figure 4. The detailed

parameters of these models and their performances (represented by R-squared,

R2) are listed in Table 3. Our results showed that the exponential models followed

by power law models fit the degree distribution best, and the lognormal models

were the worst. The degree distributions indicate that SoyFGNs have the typical

characteristics of biological networks, e.g., scale free, small world, rather than the

characteristics of random networks, for which the degree distribution fit Poisson

distribution best. We would like to clarify that Poisson distribution was also used

to fit the degree distribution of SoyFGNs, but the results are not given because

they deviated fully from the degree distribution of each network.

Degree correlation

The JDD of SoyFGNs in BP, MF, CC, and INT are visualised as a 3-D surface

graph in Figure 5. The results suggest several important points. First, in all
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SoyFGNs, most of degree pairs have a small number of edges. The average

numbers of edges are 38.66, 153.13, 88.46, and 26.15 for SoyFGN in BP, MF, CC,

and INT, respectively, indicating the low network densities as shown in Table 2.

Second, the extremely sharp protrusions show that little nodes share a large

number of edges, indicating the existence of local dense functional modules in

SoyFGNs. Third, the majority of apparent peaks (the number of edges >2000)

appear in the low-low and high-high degree node pairs, suggesting that the genes

tend to interact with those of similar degrees in SoyFGNs, indicating their

assortative features.

Similar results were obtained in the analysis of the knn and the PDC (Figure 6).

The overall ascending knns and large positive PDCs indicate that genes of similar

degrees tend to be connected with each other more in all four SoyFGNs.

SoyFGNs is more extensive and accurate than a network

generated by orthology from Arabidopsis

It is an open question how well a gene network derived from a better-

characterised dicot such as Arabidopsis might faithfully reconstruct a gene

network in another dicot such as soybean. To assess the accuracy of such a

network, we defined an orthology-derived soybean gene network from

Figure 4. The graphic view of the degree distributions and fitted models for each functional gene network.

doi:10.1371/journal.pone.0113907.g004
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Arabidopsis. The orthology-derived gene network covers 16566 soybean genes

with 146562 links, whereas SoyFGNs cover 25835(9269 more genes), 28833(12267

more genes), 14136(2430 fewer genes) and 33807(17241 more genes) genes with

7366700, 8552866, 6144656 and 9187249 links in BP, MF, CC and INT,

respectively (Figure 7). Therefore, in terms of genome coverage, SoyFGNs are

more extensive than orthology-derived network. We further assessed the quality

of SoyFGNs in comparison to orthology-derived network by two additional

computational analyses using two independent data sources: KEGG pathways and

co-expression profiles.

Assessment using linkages derived from KEGG pathways

We tested the accuracy of the SoyFGNs versus the orthology-derived network

using linkages derived from the KEGG pathway database. As a result, the KEGG-

derived network consists of 380969 edges between 3144 genes, which share 238

KO IDs in 123 pathways of Soybean. The validation of a query network by the

KEGG-derived network was based mainly on the gene coverage (Gcvrg) and the

linkage accuracy (Lacc) defined in Method section. Compared with orthology-

derived network, SoyFGNs have significantly higher Gcvrg and Lacc (Table 4),

indicating SoyFGNs shared significantly more genes and linkages with KEGG-

derived network than did the orthology-derived network. Assessed by linkages

derived from KEGG pathways, SoyFGNs are therefore considered to be more

extensive and accurate than orthology-derived network. We noted that SoyFGN-

CC gets a lower Gcvrg than orthology-derived network. This is mainly because (1)

GO annotates the fewest number of genes in CC (see section 2.1.2) and (2) KEGG

annotates genes mainly considering their molecular function (MF) or biological

Table 3. Three types of fitted models of the degree distribution for each network.

Model Parameter SoyFGN-BP SoyFGN-MF SoyFGN-CC SoyFGN-INT

Lognormal y~y0z
Affiffiffiffiffi

2p
p

sx
e
{

ln x
m

h i
2s2

y0 0.00¡0.012 0.00¡0.007 0.00¡0.006 0.01¡0.017

m 0.14¡34.14 0.37¡15.400 3.69¡3.901 0.25¡20.765

s 6.82¡325.768 4.32¡51.178 2.40¡1.723 4.23¡90.514

A 1.06¡7.539 0.87¡1.539 1.52¡0.177 0.90¡4.142

R2 0.29636 0.34583 0.85317 0.33868

Power law y~a:xb a 0.16¡0.014 0.16¡0.015 0.19¡0.012 0.16¡0.019

b 20.77¡0.058 20.78¡0.060 20.83¡0.049 20.76¡0.081

R2 0.74028 0.6772 0.86078 0.65361

Exponential y~y0zAebx y0 0.00¡0.002 0.00¡0.002 0.00¡0.002 0.00¡0.003

A 0.17¡0.10 0.17¡0.012 0.20¡0.12 0.18¡0.017

b 20.18¡0.016 20.18¡0.017 20.24¡0.019 20.19¡0.026

R2 0.89807 0.84248 0.93275 0.81939

R-squares (R2) in bold font and grey background represent the best fitted model for each network.

doi:10.1371/journal.pone.0113907.t003
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processes (BP) they participated while few about which cellular component (CC)

they are.

Assessment using linkages derived from co-expression profiles

We evaluated the SoyFGNs by comparing them to the orthology-derived network

using the soybean gene co-expression network. As described in Introduction

section, the co-expression network can, to some extent, reveal the genes function

and the complex mechanism of action between genes, although genes interacting

with each other do not always have similar gene expression profiles, and vice

versa. Therefore we used the co-expression network as another independent

reference network to evaluate the extent to which the more inclusive SoyFGNs

consolidate the gene interactions derived from co-expression, referred to as

inclusiveness. To do this, 7 of 11 in total Gene Expression Omnibus (GEO) [34]

datasets were used to infer gene co-expression interactions, resulting in a co-

expression network of 12933 genes linked by 2971228 edges. The inclusiveness of a

network versus the co-expression network was also measured by the gene coverage

Figure 5. The joint degree distributions (JDD) of SoyFGNs. The X- and Y-axes represent the nodal degrees and Z-axis represents the number of edges of
the pairwise degrees. The distributions show that genes in SoyFGNs tend to interact with the genes of the same degree, indicating the characteristic of
assortativity.

doi:10.1371/journal.pone.0113907.g005
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(Gcvrg) and the linkage accuracy (Lacc), which led to similar results (Table 5), i.e.,

SoyFGNs shared more genes and linkages with the co-expression network than

did the orthology-derived network, indicating the greater extensity and accuracy

of SoyFGNs. Additionally, the statistics analysis showed that the shared edges

(accuracy) are significantly higher than background (p,0.05, Table 5). Thus,

according to the above two comparisons, reconstructing a gene network

specifically for soybean genes rather than simply generating the network from

orthology is essential and improves both accuracy and coverage of the network.

Network-guided discovery of disease-resistant genes

Eighteen randomly selected true R-genes and six putative R-genes (listed in Table

S2) were used as query genes to predict the potential R-genes in SoyFNG-INT by

using guilt-by-association [36]. As a result, we identified 737 candidate genes with

a predicted function in disease resistance, accounting for 95.0% of 776 genes

deposited as disease resistance genes in UniprotKB as of June 2013. The 737

Figure 6. The k-nearest neighbours (knn) and Pearson degree correlations (PDCs) of SoyFGNs. Note that the PDC in each sub-graph was calculated
according to the degree of two endpoints of all edges, rather than results derived from this graph.

doi:10.1371/journal.pone.0113907.g006
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candidate genes and 24 query genes together constitute a disease-resistant gene

network (Figure 8), which shows that most true R-genes (shaped like red

octagons) are more connective with each other and share more candidates than

the putative R-genes (red diamonds) do. We selected only the genes (14 genes,

pink background in Table S2 or red-filled octagons in Figure 8) and their first

neighbors (225 genes, yellow-filled ellipses in Figure 8) that constitute the largest

disease-resistance module (listed in Table S3) as the high-confidence predictions

to further evaluate the predictability of SoyFGN. Of these 225 disease-resistant

candidates, 117 genes (52.00%) were previously known as R-genes, 25 of which

Figure 7. SoyFGNs include many genes and linkages beyond those found by simple orthology from the Arabidopsis gene network, as shown by four Venn
diagrams of the gene linkages. The size of the pie corresponds to the number of edges. The numbers outside and inside the parentheses refer to the
number of genes and the number of linkages in each network, respectively.

doi:10.1371/journal.pone.0113907.g007

Table 4. SoyFGNs are more extensive and accurate than orthology-derived network, validated by linkages derived from KEGG pathways.

Network Nshared/NKEGG Gcvrgð%Þ Lshared /LKEGG Laccð%Þ
Orthology-derived 994/3144 31.62 219/37123 0.59

SoyFGN-BP 1791/3144 56.97 36785/147159 25.00

SoyFGN-MF 2110/3144 67.11 47583/198588 23.96

SoyFGN-CC 742/3144 23.60 6339/18506 34.24

SoyFGN-INT 2199/3144 69.94 57581/206116 27.94

doi:10.1371/journal.pone.0113907.t004
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were experimentally validated and 92 putative; 103 genes (45.78%), of which the

functions were previously unknown, were newly predicted to be disease-resistant

genes by using SoyFGN-INT; only 5 genes were not confirmed to be associated

with plant disease resistance, i.e. false positive (2.22%). The results are also briefly

summarised in Figure 9A.

In silico verification of newly predicted disease-resistant genes

As the results of network-guided R-gene discovery, a highly confident disease-

resistance module consisting of 14 query R-genes and 225 more predicted

candidates was obtained by using the Gaussian smoothing guilt-by-association

method. Among the 225 candidates (Table S3 (xls)), except 6 false-positive genes,

103 predicted candidates’ functions are unknown. For these 103 newly predicted

disease-resistant genes, it is nontrivial for us to validate them one by one using

wet-lab experiments. Here we provide an in silico verification to check the

performance of SoyFGN-INT on predicting the function of unknown genes by

using Blast2GO [37]. The verification procedure includes the following: 1) BLAST

the protein sequences of 103 candidates against the non-redundant protein

database of NCBI (nr) using BLASTP to hunt for their orthologues; 2) analysis of

the enrichment functions of BLAST hits by integrating the functional information

retrieved from GO annotations, domain/motif and the KEGG pathways; 3)

mapping the enrichment functions of orthologues to the unknown genes. We

made many settings to reduce the false positive. In BLAST step, all sequences were

blasted to nr (non-redundant protein database of NCBI) using BLASTP, with the

minimum E-value of 1.0E-8; top 20 hits were selected to be used in next step;

genes with less than 5 hits were excluded. In annotation step, in addition to GO

annotations, we also ran the ‘InterProScan’ using all available applications as well

as ‘GO-Slim’ using ‘goslim_plant.obo’ to enrich the annotations. Additionally,

Enzyme codes and KEGG pathways were taken into account to enhance the

annotations.

As a results, 97 of the 103 genes got at least 1 hit, of which 89 genes got at least

10 hits and 87 genes got more than 20 hits (see Table S4). 97 matched genes finally

got 451 annotations in three aspects of GO (P, biological process; F, molecular

function; C, cellular component) in total (see Table S4). 14 matched genes were

Table 5. SoyFGNs are more extensive and accurate than orthology-derived network, validated by linkages derived from co-expression profiles.

Network Nshared/Nco{ exp Gcvrgð%Þ Lshared /Lco{ exp Laccð%Þ Average background Laccð%Þ p-value

Orthology-derived 575/12933 4.44 472/23107 2.04 2.14 0.048144

SoyFGN-BP 5996/12933 46.36 24863/746387 3.33 0.59 0.008131

SoyFGN-MF 8235/12933 63.67 58727/1308942 4.49 0.46 0.004702

SoyFGN-CC 3286/12933 25.41 30725/239832 12.81 1.04 0.003726

SoyFGN-INT 9164/12933 70.86 91367/1496597 6.10 1.91 0.01437

p-value indicate the significance that the networks have a higher linkage accuracy than background.

doi:10.1371/journal.pone.0113907.t005
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mapped to 8 Enzyme codes and involved in 18 KEGG pathways (Table 6). The

species distribution of the annotations is shown in Figure 10. The enriched

putative functions of all these 97 matched genes are shown in Figure 11.

According to the annotations as well as the extensive database and literature

searches, 77 of the 103 genes were newly predicted to be putative disease-resistant

genes, 13 were recognised as non-resistant genes, and the rest (13 genes) remained

unknown. Finally, 194 (86.22%) of 225 genes were identified as disease-resistant

genes, an increase of 65.8% over the previously known R-genes, 13 retained

unknown function and 18 were false positive (Figure 9B). Additionally, all

predicted R genes were prioritised by assigning each with a weighted rating (WR)

score. The results are provided in Table S4, which will help biologist identify the

R-genes from the most likely candidates.

Discussion

System-level insight into the cellular interactome of non-model

organisms becomes feasible

We have shown here that inferring, modelling, and analysing the intracellular

interactome of a non-model species became a reality based on the notion of

functional gene network (FGN). Although FGNs have been constructed for many

model species, the methods cannot yet be extended to other infrequently studied

species, such as Glycine max, due to the absence of sufficient heterogeneous and

previously known omic-level interaction data as shown in Figure 1. Using GO

annotations and our SSDD method, proposed for comparing gene functional

similarity (FS), we identified the pairwise genes’ FSs for soybean and further

modelled the gene network on the notion of functional association. The schemes

introduced here seem much simpler than those integrating heterogeneous omic

data, yet it is currently the best solution for non-model species because the GO

annotations actually provide a way to integrate diverse data into a single

structured dataset. Inferring from orthologs, co-expression, and sharing KEGG

terms are some alternative solutions, by which, however, the networks were

proved to be less extensive and accurate than SoyFGNs. Additionally, as a case

study, the successful application of SoyFGN-INT to predict the soybean disease-

resistant genes further illustrates that SoyFGNs constructed on the basis of GO

similarities can also provide system-level insight into the intracellular interactome

as the networks of model organisms did, and this will speed up the discovery and

definition of the function and interaction of genes that control important plant

characteristics such as disease resistance, symbiotic nitrogen fixation, and protein

Figure 8. The 24 query genes (red filled) and the 737 candidate genes (ellipse). 6 putative R-genes are shaped like diamonds and 18 experimentally verified
R-genes are shaped like octagons. The links between hunted candidate genes are not shown. A disease-resistant module is shown at the lower part of the
figure, consisting of 225 candidates (yellow-filled ellipses) and surrounding 14 true R genes (red-filled octagons).

doi:10.1371/journal.pone.0113907.g008
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and lipid synthesis in soybean. A study conducted on the soybean microRNA

interactome based on SoyFGNs is an additional powerful evidence of the

important roles of SoyFGN in future studies of the soybean functional

interactome at the genome and microRNome levels[38].

The first global view of soybean gene functional interaction

Soybean (Glycine max) is one of the most economically important crops and a

major food source. A soybean whole-genome shotgun sequence of Glycine max

Figure 9. Network-guided discovery of disease-resistant genes. (A) Brief statistics of the 225 genes involved
in the predicted disease-resistance module in SoyFGN-INT (before in silico verification). Numbers in the bars
indicate the corresponding gene numbers. Percentages above the bars indicate the corresponding
proportions. (B) The results after in silico verification, wherein the dark part of the same colour indicates the
newly validated genes, which are those previous tagged with ‘‘Unknown function’’ in B (shown as the dashed
box in C now). By in silico verification, 77 additional genes were predicted to be plant disease resistance
genes.

doi:10.1371/journal.pone.0113907.g009
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var. Williams 82 was first reported in 2010 [16], which stimulated research on

soybean at the genome level. The work introduced herein is the first study on

soybean gene interaction on the genome level. We drew four functional gene

networks (SoyFGNs), containing up to 70% of the soybean genes reported by

EnsemblPlants (release 18, April 2013) and the construction of the second version

SoyFGNs covering all genes is about to release. The topological analysis showed

that, like other biological networks, SoyFGNs are scale free, and their degree

distributions fit best to exponential and power-law distributions. Their degree

correlations indicate that the genes of similar degrees tend to be connected with

each other more in all four SoyFGNs, referred to as assortativity, implying the

existence of functional modules in SoyFGNs. The achievements we report here

will be fundamental to further studies on the interactome of soybean at the

genome level. We admit that the SoyFGNs certainly contain false positives and

even errors, just as or more than the model organisms contain. However, the

effort involved in this work seems to be the best solution with the best outcome

Table 6. 14 genes were mapped to 8 enzyme codes and involved in 18 KEGG pathways.

Pathway
#Genes in
pathway Enzyme Enzyme ID

#Genes per
Enzyme Genes Pathway ID

Oxidative phosphorylation 1 Dehydrogenase ec:1.6.99.3 1 C6TJX1 map00190

Steroid degradation 1 dehydrogenase ec:1.1.1.145 1 C6TFN3 map00984

Drug metabolism - cytochrome P450 1 dehydrogenase ec:1.1.1.1 1 C6TH27 map00982

Arginine and proline metabolism 1 Cyclodeaminase ec:4.3.1.12 1 C6TA12 map00330

Metabolism of xenobiotics by cyto-
chrome P450

1 dehydrogenase ec:1.1.1.1 1 C6TH27 map00980

Naphthalene degradation 1 dehydrogenase ec:1.1.1.1 1 C6TH27 map00626

Thiamine metabolism 3 Phosphatase ec:3.6.1.15 3 C6TAR2, C6T851,
C6TIP6

map00730

Chloroalkane and chloroalkene degra-
dation

1 dehydrogenase ec:1.1.1.1 1 C6TH27 map00625

Steroid hormone biosynthesis 1 dehydrogenase ec:1.1.1.145 1 C6TFN3 map00140

Purine metabolism 4 phosphatase ec:3.6.1.15 3 C6TAR2, C6T851’6TIP6 map00230

Purine metabolism 4 Adenylpyrophosph-
atase

ec:3.6.1.3 1 C6T7M9 map00230

Glycine, serine and threonine metabo-
lism

1 dehydrogenase ec:1.1.1.1 1 C6TH27 map00260

Isoflavonoid biosynthesis 4 Reductase ec:1.3.1.45 4 C6TD30,
C6TLM0,C6TNS6,
C6TB34

map00943

Flavonoid biosynthesis 1 4-reductase ec:1.1.1.219 1 C6TFN3 map00941

Nitrogen metabolism 1 dehydrogenase ec:1.6.99.3 1 C6TJX1 map00910

Glycolysis Gluconeogenesis 1 dehydrogenase ec:1.1.1.1 1 C6TH27 map00010

Fatty acid degradation 1 dehydrogenase ec:1.1.1.1 1 C6TH27 map00071

Tyrosine metabolism 1 dehydrogenase ec:1.1.1.1 1 C6TH27 map00350

Retinol metabolism 1 dehydrogenase ec:1.1.1.1 1 C6TH27 map00830

doi:10.1371/journal.pone.0113907.t006
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for such non-model organisms in absence sufficient data sources. The inherent

deficiencies will certainly be overcome with increasingly enrichment of the data.

Availability

Based on the research described herein, we developed a user-interactive web

platform for information retrieval and analysis of the SoyFGNs and the

aforementioned microRNA networks derived from SoyFGNs, SoyFN: http://nclab.

hit.edu.cn/SoyFN/.

Prospects

Our SoyFGNs provide a systematic view of the whole soybean genome, and hence

such construction of the genome-wide networks has been followed by attempts to

Figure 10. The species distribution of BLAST hits of the 103 genes.

doi:10.1371/journal.pone.0113907.g010
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discover and predict function within the system as a whole. Therefore, the effort

represented by our study is just the beginning of characterising the soybean

functional genome. As shown in Figure 12, our whole research project consists of

three main focuses: 1) construction of SoyFGN as described herein (shapes in blue

background); 2) inferring the microRNA functional network of soybean based on

the SoyFGNs (shapes in yellow background); 3) module detection, miRNA-gene

two layer network analysis, and further interactive module analysis coupled with

genomic context analysis to discover the gene-miRNA regulatory mechanism

involved in stress resistance, nitrogen fixation, protein and lipid synthesis along

with other biological processes in soybean (shapes in red background). Overall,

the efforts of the study described herein are the basis of our further comprehensive

studies on the soybean functional interactome at the genome and microRNome

levels.

Conclusions

As the most important biomolecules in a cell, genes rarely act alone. They interact

functionally with other genes to synergistically mediate their biological functions.

So far, hardly anything is known about this functionally interplay between genes

in Soybean (Glycine max) at the genome level. The only large-scale genomic study

in Soybean investigated the whole-genome shotgun sequences of Williams 82

[16], which stimulated our research on genome-level interactions among genes.

As an initial step on the way to fully expose the ensemble of all functional

associations between genes, we here present the first FGNs of soybean (SoyFGNs).

Instead of combining unavailable genomic, transcriptomic and comparative

genomic data to predict associations (interactions) between gene pairs, we

inferred the gene functional associations from GOA resulting in four

comprehensive networks of gene associations that covers 70 percent of the

predicted genes of soybean. We showed that SoyFGNs are scale free, and in which

the genes of similar degrees tend to be connected with each other more in all four

SoyFGNs, referred to as assortativity, implying the existence of functional

modules in SoyFGNs. Verified by co-expression and KEGG pathways, SoyFGNs

are more extensive and accurate than an orthology network derived from

Arabidopsis. Network-guided disease-resistance gene discovery indicates that

SoyFGNs constructed on the basis of GOA can also provide system-level insights

into the intracellular interactome as the networks of model organisms did, which

will speed up the discovery and definition of the function and interaction of genes

that control important plant characteristics such as disease resistance, symbiotic

nitrogen fixation, and protein and lipid synthesis in soybean. The availability of

Figure 11. The enriched putative functions and GO-level distribution of 97 annotated genes. (A) The enriched functions in BP. (B) the enriched functions in
MF. (C) The GO-level distribution. Only the functions, by which at least 5 genes were annotated, are shown.

doi:10.1371/journal.pone.0113907.g011

A Genomewide Functional Gene Network of Soybean

PLOS ONE | DOI:10.1371/journal.pone.0113907 November 25, 2014 28 / 31



the predicted functional association network allows a gradual transition from a

single gene perspective to a more comprehensive understanding of the complex

biology of soybean. Additionally, a web tool for information retrieval and analysis

of SoyFGNs can be accessed at SoyFN: http://nclab.hit.edu.cn/SoyFN.

Supporting Information

Table S1. Orthologs between soybean and Arabidopsis using BLASTN.

doi:10.1371/journal.pone.0113907.S001 (XLS)

Table S2. Twenty-four query genes used in SoyFGN-INT-based prediction.

doi:10.1371/journal.pone.0113907.S002 (XLS)

Figure 12. Schematic view of the work described herein as part of the whole research project for the soybean
functional network. Rounded rectangles with blue backgrounds represent construction of soybean functional
gene networks (SoyFGNs); yellow backgrounds represent construction of soybean miRNA functional
networks (SoymiRFN) on the basis of SoyFGNs; red backgrounds represent our subsequent research
prospects.

doi:10.1371/journal.pone.0113907.g012
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Table S3. The 225 candidate R-genes involved in the predicted disease-

resistance module in SoyFGN-INT.

doi:10.1371/journal.pone.0113907.S003 (XLS)

Table S4. The putative functional annotations of 103 unknown genes by using

Blast2GO.

doi:10.1371/journal.pone.0113907.S004 (XLS)

Acknowledgments

We thank the editors and reviewers for their valuable comments and suggestions.

Author Contributions
Conceived and designed the experiments: YX MG XL. Performed the experiments:

YX CW. Analyzed the data: YX QZ MG. Contributed reagents/materials/analysis

tools: XL CW YL. Wrote the paper: YX MG QZ XL.

References

1. Marcotte EM, Pellegrini M, Thompson MJ, Yeates TO, Eisenberg D (1999) A combined algorithm for
genome-wide prediction of protein function. Nature 402: 83–86.

2. Lee I, Date SV, Adai AT, Marcotte EM (2004) A probabilistic functional network of yeast genes. Science
306: 1555–1558.

3. Lee I (2011) Probabilistic functional gene societies. Prog Biophys Mol Biol 106: 435–442.

4. Lee I, Li Z, Marcotte EM (2007) An improved, bias-reduced probabilistic functional gene network of
baker’s yeast, Saccharomyces cerevisiae. PloS One 2: e988.

5. Lee I, Lehner B, Crombie C, Wong W, Fraser AG, et al. (2008) A single gene network accurately
predicts phenotypic effects of gene perturbation in Caenorhabditis elegans. Nat Genet 40: 181–188.

6. Lee I, Lehner B, Vavouri T, Shin J, Fraser AG, et al. (2010) Predicting genetic modifier loci using
functional gene networks. Genome Res 20: 1143–1153.

7. Lee I, Ambaru B, Thakkar P, Marcotte EM, Rhee SY (2010) Rational association of genes with traits
using a genome-scale gene network for Arabidopsis thaliana. Nat Biotechnol 28: 149–156.

8. Hwang S, Rhee SY, Marcotte EM, Lee I (2011) Systematic prediction of gene function in Arabidopsis
thaliana using a probabilistic functional gene network. Nat Protoc 6: 1429–1442.

9. Lee I, Seo Y-S, Coltrane D, Hwang S, Oh T, et al. (2011) Genetic dissection of the biotic stress
response using a genome-scale gene network for rice. Proc Natl Acad Sci U S A 108: 18548–18553.

10. Guan Y, Myers CL, Lu R, Lemischka IR, Bult CJ, et al. (2008) A genomewide functional network for
the laboratory mouse. PLoS Comput Biol 4: e1000165.

11. Kim WK, Krumpelman C, Marcotte EM (2008) Inferring mouse gene functions from genomic-scale
data using a combined functional network/classification strategy. Genome Biol 9: S5.

12. Peña-Castillo L, Tasan M, Myers CL, Lee H, Joshi T, et al. (2008) A critical assessment of Mus
musculus gene function prediction using integrated genomic evidence. Genome Biol 9: S2.

13. Lee I, Blom UM, Wang PI, Shim JE, Marcotte EM (2011) Prioritizing candidate disease genes by
network-based boosting of genome-wide association data. Genome Res 21: 1109–1121.

14. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, et al. (2000) Gene ontology: tool for the
unification of biology. The Gene Ontology Consortium. Nat Genet 25: 25–29.

A Genomewide Functional Gene Network of Soybean

PLOS ONE | DOI:10.1371/journal.pone.0113907 November 25, 2014 30 / 31

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0113907.S003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0113907.S004


15. Swarbreck D, Wilks C, Lamesch P, Berardini TZ, Garcia-Hernandez M, et al. (2008) The Arabidopsis
Information Resource (TAIR): gene structure and function annotation. Nucleic Acids Res 36: D1009–
D1014.

16. Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, et al. (2010) Genome sequence of the
palaeopolyploid soybean. Nature 463: 178–183.

17. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, et al. (2000) Gene Ontology: tool for the
unification of biology. Nat Genet. pp.25–29.

18. Xu Y, Guo M, Shi W, Liu X, Wang C (2013) A novel insight into Gene Ontology semantic similarity.
Genomics 101: 368–375.

19. Lord PW, Stevens RD, Brass A, Goble CA (2003) Investigating semantic similarity measures across
the Gene Ontology: the relationship between sequence and annotation. Bioinformatics 19: 1275–1283.

20. Lord PW, Stevens RD, Brass A, Goble CA (2003) Semantic similarity measures as tools for exploring
the gene ontology. Pac Symp Biocomput 2003: 601–612.

21. Sevilla JL, Segura V, Podhorski A, Guruceaga E, Mato JM, et al. (2005) Correlation between gene
expression and GO semantic similarity. IEEE/ACM Trans Comput Biol Bioinform 2: 330–338.

22. Couto FM, Silva MJ, Coutinho PM (2007) Measuring semantic similarity between Gene Ontology
terms. Data Knowl Eng 61: 137–152.

23. Schlicker A, Domingues FS, Rahnenführer J, Lengauer T (2006) A new measure for functional
similarity of gene products based on Gene Ontology. BMC Bioinformatics 7: 302.

24. Azuaje F, Al-Shahrour F, Dopazo J (2006) Ontology-driven approaches to analyzing data in functional
genomics. Methods Mol Biol 316: 67–86.

25. Pesquita C, Faria D, Bastos H, Ferreira A, Falcao A, et al. (2008) Metrics for GO based protein
semantic similarity: a systematic evaluation. BMC Bioinformatics 9: S4.
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