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Endometrial cancer (EC), the second most common malig-
nancy in the female reproductive system, has garnered
increasing attention for its genomic heterogeneity, but under-
standing of its metabolic characteristics is still poor. We
explored metabolic dysfunctions in EC through a comprehen-
sive multi-omics analysis (RNA-seq datasets from The Cancer
Genome Atlas [TCGA], Cancer Cell Line Encyclopedia
[CCLE], and GEO datasets; the Clinical Proteomic Tumor
Analysis Consortium [CPTAC] proteomics; CCLE metabolo-
mics) to develop useful molecular targets for precision therapy.
Unsupervised consensus clustering was performed to catego-
rize EC patients into three metabolism-pathway-based sub-
groups (MPSs). These MPS subgroups had distinct clinical
prognoses, transcriptomic and genomic alterations, immune
microenvironment landscape, and unique patterns of chemo-
therapy sensitivity. Moreover, the MPS2 subgroup had a better
response to immunotherapy. Finally, three machine learning
algorithms (LASSO, random forest, and stepwise multivariate
Cox regression) were used for developing a prognostic meta-
gene signature based on metabolic molecules. Thus, a 13-hub
gene-based classifier was constructed to predict patients’ MPS
subtypes, offering a more accessible and practical approach.
This metabolism-based classification system can enhance prog-
nostic predictions and guide clinical strategies for immuno-
therapy and metabolism-targeted therapy in EC.

INTRODUCTION
Metabolism reprogramming has been regarded as a hallmark of can-
cer cells, which fosters tumor initiation and progression.1 This phe-
nomenon, known as aerobic glycolysis or the Warburg effect, allows
cancer cells to preferentially use glucose to produce lactate even in the
presence of oxygen, providing a rapid energy supply for proliferation
and contributing to anabolic pathways for amino acids, lipids, and
nucleotide synthesis.2–5 The tricarboxylic acid (TCA) cycle further
generates essential metabolites such as aspartate and citrate, facili-
tating tumor growth and metastasis for most cancer cells.6–9 In recent
years, extensive research has delved into multiple metabolic pathways
in cancer with the understanding of nutrient competition.10 In addi-
This is an open access article under the CC BY-N
tion to supporting anabolism, tumor metabolites can act as signaling
molecules with tumorigenic effects and remodel the tumor immune
microenvironment to evade immune surveillance.11–13

Intricate interactions between gene mutations, involving oncogenic
or tumor suppressor genes, and downstream signaling pathways
(e.g., phosphatidylinositol 3-kinase-AKT-mammalian target of rapa-
mycin complex 1 [PI3K-AKT-mTORC1] and MYC), orchestrate the
dysregulation of metabolic enzyme expression, promoting cancer cell
survival.14–17 Moreover, the extrinsic tumor microenvironment
(TME), characterized by nutrient constraints, low oxygen levels,
and an acidic milieu, drives cancer cells to adapt their metabolic path-
ways. Consequently, the interplay between genetic alterations and
external environmental stresses contributes to tumor metabolic
heterogeneity within the same tissue.18–20 Targeting metabolism en-
zymes with drugs holds great promise because it not only offers the
potential to eliminate tumor cells but it also remodels the TME,
thereby enhancing tumor immunity.21,22 However, the low specific-
ities of metabolic inhibitors hamper their effectiveness, causing
normal tissue toxicity and acquiring resistance.23

Endometrial cancer (EC) is heterogeneous cancer, histologically clas-
sified as endometrioid and non-endometrioid types (serous, clear
cell, undifferentiated, mesonephric, mesonephric-like, squamous,
mucinous intestinal type, and mixed carcinomas and carcinosar-
coma), and categorized into The Cancer Genome Atlas (TCGA)
four molecular subgroups according to molecular profile, polymerase
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ε ultramutated, microsatellite instability hypermutated (MSI), copy-
number low (CN-L), and copy-number high (CN-H).24 It ranks as
the second most common gynecologic cancer among women, with
its incidence on the rise due to factors such as obesity and an aging
population.25,26 Surgery (minimally invasive surgical staging and
sentinel lymph node biopsy) is the mainstream therapy for EC. Ad-
vances in our understanding of the molecular biology of EC have
paved the way for targeted chemotherapy and immunotherapy stra-
tegies, especially in adjuvant, advanced, and recurrent disease settings
and those desiring fertility-sparing treatment.27–30 Several previous
studies have pointed to metabolism dysregulation as an important
risk factor for EC initiation and progression.31,32 Other past studies
have centered primarily on cell-level metabolism inhibitor thera-
pies.33 However, there remains a paucity of studies on understanding
its impact on tumor biology, therapeutic outcomes, and clinical ther-
apies, remaining an area that warrants further exploration.

In this study, we comprehensively analyzed the overall metabolism
dysregulation of EC using transcriptomics and proteomics data.
Based on 84 different metabolic pathways, we identified metabolism
pathway-related molecular subgroups that reflected distinct clinical
features, genomic alterations, metabolic profiles, TME immune infil-
tration, immunotherapy response, and chemotherapy sensitivity.
Furthermore, we developed a quantitative metabolism-based gene
signature using machine learning algorithms to predict prognosis
and guide precision therapy decisions in EC.

RESULTS
Transcriptomic and proteomic profiles revealed metabolism

reprogramming of EC

To investigate whether metabolism reprogramming occurred in EC,
we first conducted principal-component analysis (PCA) comparing
normal (para- and normal endometrium) with tumor tissues and
found distinct metabolic transcriptional profiles, whereas different
histological types and grades of EC had relatively similar expression
patterns in both TCGA and GSE17025 cohorts (Figures 1A, 1B,
S1A, and S1B). Patients with endometrial hyperplasia without atypia
adjacent to EC tissue also shared similar expression patterns of meta-
bolic-related genes to paired tumor tissue in the GSE106191 cohort
(Figure S1C). Consequently, gene set enrichment analysis (GSEA)
analysis was further performed on the differentially expressed genes
(DEGs) between EC and normal/precancerous tissue to reveal the
significantly changed metabolic pathways. The dysregulated path-
ways appeared to encompass most metabolic processes, with a major-
ity of them being upregulated in the EC tumor samples (Figures S1D–
S1F). Within the top 10 upregulated pathways across all 3 datasets, a
consistent activation was observed in both the glycolysis/gluconeo-
genesis and folate biosynthesis pathways (Figure 1C).

Subsequently, at the protein level, the Clinical Proteomic Tumor
Analysis Consortium (CPTAC) EC proteome study analyzed 10,180
protein levels of 131 samples along with their corresponding bio-
specimen information. However, only 1,161 metabolism pathway-
related proteins were investigated. Moreover, the PCA analysis
2 Molecular Therapy: Nucleic Acids Vol. 35 June 2024
confirmed that EC exhibited a distinct metabolic landscape compared
to normal tissue based on the protein-level metabolic pathways (Fig-
ure 1D). Differential analysis on CPTAC transformed data (log2
(num + 10)) between EC and normal tissue revealed 120 DEGs
with statistical significance (p < 0.05, log fold change [FC] >0.05) (Fig-
ure S1G). Similar to the above transcriptomic data (GSE17025 and
TCGA EC cohorts), the oxidative phosphorylation and glycan
biosynthesis pathways were found to be significantly activated in
EC compared to normal tissue in the CPTAC cohort (Figures 1E,
S1H, and S1I). These findings demonstrate the presence of metabolic
reprogramming in samples of EC.

Metabolism pathway-based subtyping of EC

To reveal the metabolism heterogeneity of EC, we carried out
consensus clustering and NbClust testing analysis on the gene set
variation analysis (GSVA)-derived enrichment scores of 84 metabolic
pathways and identified 3 as the optimal clustering number in the
TCGA cohort. PCA also confirmed that 3 was the best number for
clustering. Subsequently, a total of 548 patients were classified into
3 distinct metabolism pathway-based subgroup (MPS) clusters:
MPS1 (35.9%), MPS2 (33.4%), and MPS3 (30.7%) (Figures 2A, 2B,
S2A, and S2B). MPS1 exhibited a “hot”metabolic profile, encompass-
ing nearly all metabolic categories. MPS2 demonstrated upregulation
in specific lipid metabolism and amino acid metabolism pathways,
including primary bile acid biosynthesis, steroid hormone biosyn-
thesis, and linoleic acid metabolism, among others. In contrast,
MPS3 displayed a relatively “cold” metabolic phenotype compared
to the other two clusters (Figure 2C).

We further investigated the clinicopathological features among three
metabolism-related subtypes. Kaplan-Meier (KM) survival analysis
revealed that the MPS3 subtype had the worst overall survival (OS)
(log rank test, p < 0.05) and disease-free survival (DFS) (log rank
test, p = 0.067) compared with the other two subtypes (Figure 2D).
Univariate Cox regression analysis confirmed that MPS3 had a worse
OS (hazard ratio [HR] 2.22, 95% confidence interval [CI] 1.32–3.75,
p = 0.0026) and DFS (HR 1.74, 95% CI 1.08–2.78, p = 0.02) about the
MPS2 cluster. However, no significant differences in OS and DFS
were observed betweenMPS1 andMPS2 (p > 0.05). TheMPS3 cluster
exhibited a higher proportion of EC patients with the serous histolog-
ical type, grade 2–3, and stage III–IV compared to the other two clus-
ters (p < 0.001) (Figure 2E). Patients in the MPS3 cluster tended to be
older compared to those in the MPS1/2 clusters (p = 0.082) (Fig-
ure S2C). Comparison of the TCGA molecular subgroups34 with
the MPS clusters revealed that the MPS3 cluster was predominantly
composed of the CN-H type, whereas the MPS2 cluster demonstrated
a higher proportion of the CN-L type (p < 0.001) (Figure 2F;
Table S3). Subgroup analysis revealed that the largest subset of EC
(referred to as the nonspecific molecular profile [NSMP], also known
as CN-L) exhibited heterogeneous metabolic profiles across MPS
clusters. Importantly, within the MPS1 subgroup, NSMP patients
demonstrated a tendency toward poor OS (Figures 2G and S2D).
Similarly, among patients in the MSI or not-assigned groups with
an intermediate prognosis, those falling within the MPS3 subgroup



Figure 1. Transcriptomic and proteomic profiles revealed metabolism reprogramming of EC

(A and B) PCA plot of metabolic genes in the TCGA cohort (A) and GSE17025 (B). (C) Venn diagram illustrating the shared upregulated metabolic pathways among the TCGA,

GSE106191, and GSE17025 cohorts (left); and representative GSEA plots showcasing glycolysis/gluconeogenesis and folate biosynthesis pathways in the TCGA cohort

(right). (D) PCA plot of metabolic genes at the protein level in the CPTAC cohort. (E) Bar plots depicting GSEA on differentially expressed metabolic genes in the CPTAC EC

cohort, comparing tumor samples to normal samples.
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exhibited a shorter recurrence duration, although the difference
did not reach statistical significance (Figure S2E). In summary, these
findings underscore the intricate interplay between TCGA molecular
subtypes and metabolic profiles, shedding light on the prognostic
nuances within NSMP EC.

Transcriptomic profiling comparison among MPS subtypes

The heterogeneous metabolic phenotypes prompted us to explore the
potential molecular characteristics of different MPS subgroups based
on transcriptional profiling. We first identified significantly altered
metabolism pathway-related genes of each MPS cluster by compara-
tive analysis (Figure S3A; Table S4). Next, we determined whether
these key metabolic enzyme expression levels were linked with the
enrichment scores of metabolic pathways in different MPS clusters.
GSEA analysis further uncovered metabolic heterogeneity among
MPS clusters, and the enriched metabolic pathways in each subgroup
were highly consistent with those identified through differential
analysis based on GSVA scores (Figures S3B–S3D). The MPS1 sub-
group displayed upregulation in pentose and glucuronate inter-
conversions, arginine and proline metabolism, and glutathione
Molecular Therapy: Nucleic Acids Vol. 35 June 2024 3
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metabolism, featuring specific gene overexpression such as UDP glu-
curonosyltransferase family 1 member A6 (UGT1A6), nucleoside
diphosphate kinase 2 (NME2), and aldo-keto reductase family 1
member B10 (AKR1B10). Tumors in MPS2 exhibited enrichment
in a-linoleic acid metabolism, arachidonic acid metabolism, fatty
acid degradation, and drug metabolism, with elevated expression of
genes such as alcohol dehydrogenase 1B (ADH1B), phospholipase
A2 group IIC (PLA2G2C), glutathione S-transferase alpha 3
(GSTA3), and cytochrome P450 family 2 subfamily B member 6
(CYP2B6). Conversely, fatty acid elongation was inactivated, as indi-
cated by the lower expression of ELOVL family genes. In stark
contrast, the MPS3 cluster demonstrated downregulation of retinol
metabolism, steroid hormone biosynthesis, glycolysis/gluconeogen-
esis, unsaturated fatty acid, and pyruvate metabolism pathways, of
which mRNA expression of alcohol dehydrogenase 4 (ADH4), phos-
pholipase A2 group IIC (PLA2G2C), and cytochrome P450 monoox-
ygenase (CYP) family genes was downregulated (Figures 3A–3C).

Delving into the intricate molecular landscape of EC, we intricately
dissected the activation patterns of hallmark signaling pathways
across the three distinct MPS subtypes. Pathways enrolled in the
cell cycle, including MYC, E2F, G2M, and mitotic, were conspicu-
ously activated in the MPS1 and MPS3 subgroups, whereas they
were inactivated within the MPS2 cluster (Figures 3D and S4A).
Tumor metabolic reprogramming has been previously reported
to be closely associated with the epithelial-to-mesenchymal transi-
tion (EMT).35 Intriguingly, the EMT scores and EMT-related gene
expression, such as SRY-box transcription factor 9 (SOX9), twist
family bHLH transcription factor 1 (TWIST1), forkhead box F1
(FOXF1), zinc finger E-box binding homeobox 1 (ZEB1), zinc
finger E-box binding homeobox 2 (ZEB2), and GATA binding pro-
tein 6 (GATA6), were relatively lower in MPS1 than the other two
clusters (Figures 3E and 3F). Following correlation analysis, amino
acid metabolism pathways (e.g., glycine, serine, and threonine
metabolism; cysteine and methionine metabolism; lysine degrada-
tion), carbohydrate metabolism pathways (including the TCA cy-
cle, pentose phosphate pathway, glyoxylate and dicarboxylate
metabolism), biosynthesis-related pathways (glycosylphosphatidy-
linositol biosynthesis, fatty acid elongation, and steroid synthesis),
cofactors, and nucleotide metabolism were discerned. Notably,
these pathways, integral to cell replication and proliferation, were
identified. Furthermore, the glycosaminoglycan synthesis pathway
was found to be linked to tumor EMT (Figure 3G). We thus amal-
gamated subtype-specific metabolic characteristics that signifi-
cantly influence tumor behavior within the MPS subtypes, summa-
rizing distinctive metabolic therapies (Table S5). MPS1 suggests
targeting strategies involving inhibitors of glucose metabolism
and amino acid metabolism. MPS3 suggests targeting nucleotide
Figure 2. Metabolism pathway-related stratification of EC

(A) EC patients were clustered into 3 subgroups based on GSVA scores of 84 metabolic

subgroups in the TCGA cohort. (C) Heatmap of the normalized enrichment scores for 84

OS (upper) and DFS (lower) among the 3 subtypes in the TCGA cohort. (E and F) Bar plots

TCGA molecular subgroups (F) among the 3 MPS clusters. (G) Comparison of OS and
metabolism, specifically interrupting DNA synthesis. Meanwhile,
MPS2 indicates potential benefits from exogenous a-linoleic acid
treatment, as previous literature has indicated.36 Targeting tumor
cell metabolism presents a promising avenue for molecular
interventions.37

Featured genomic alterations among MPS clusters in EC

Genomic alterations, such as tumor suppressor (e.g., von-Hippel Lin-
dau) loss of function and oncogene gain of function (leading to PI3K/
AKT/mTOR activity), are likely to result in cancer metabolic reprog-
ramming.18 We explored the top 10 mutated genes of each subgroup
and found completely different mutation profiles among 3 MPS sub-
groups (Figures S5A–S5C). We then compared the mutation fre-
quencies of 10 classical oncogenic pathways among the 3 MPS clus-
ters.38 The MPS1 subgroup showed significantly higher mutation
frequencies in the PI3K, nuclear factor erythroid 2-related factor 2
(NRF2), transforming growth factor b (TGF-b), MYC, Hippo, and
Notch pathways, whereas the MPS3 cluster was characterized by
the highest mutation in the TP53 pathway. Notably, members in
the PI3K pathway were highly mutated in the MPS1/2 cluster
(p < 0.05) (Figure 4A). This observation positions MPS1 as a potential
candidate for targeted therapies leveraging small-molecule inhibitors
tailored to these specific pathways. When focusing on MPS subtype-
specific metabolism-related mutated genes, we noticed that the MPS1
cluster has comparatively higher mutation frequencies among the
PI3K members (phosphatase and tensin homolog [PTEN], 67.6%),
and lysine degradation pathway members (lysine methyltransferase
2D, KMT2D, 39.6%; lysine methyltransferase 2C, KMT2C, 26.4%;
lysine methyltransferase 2A, KMT2A, 21.4%; SET domain containing
2, histone lysine methyltransferase, SETD2, 7.47%; and nuclear recep-
tor binding SET domain protein 1, NSD1, 25.3%) (p < 0.05) (Fig-
ure 4B; Table S6). KMT subfamily genes catalyze the various lysine
methylation events decorating the core histone proteins, which in-
duces epigenomic and metabolic reprogramming in multiple types
of cancer.39 For example, KMT2D regulates multiple glycolytic genes,
thus conferring a therapeutic vulnerability to glycolytic inhibitors.40

Consequently, we have gained profound insights into tumor meta-
bolic heterogeneity by analyzing gene mutation profiles. This knowl-
edge forms the basis for developing targeted therapeutics tailored to
specific MPS subtypes.

In terms of somatic copy-number variation (CNV) differences, we
also observed among three MPS clusters that MPS3 has a relatively
higher CNV burden and chromosome instability level (Figures 4C
and S5D). The amplification or deletion regions of each cluster are
shown in Figures 4D–4F.MPS1 has a relatively high amplification fre-
quency in 3:1q22 (50%), 2:1q21.3 (48%), 4:1q25.3 (46%), 5:1q32.1
(42%), and 24:8q24.21 (37%); MPS2 in 2:1q22 (44%), 1:1q21.3
pathways. (B) PCA on the metabolic pathways GSVA scores showed 3 distinct MPS

KEGGmetabolic pathways among the TCGA ECMPS subgroups. (D) KM curves of

depicting the distribution of different histological types, grades, FIGO stages (E), and

DFS in NSMP patients among MPS subgroups.
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(44%), 20:10q22.2 (28%), 16:8q11.23 (27%), and 17:8q22.3 (27%); and
MPS3 in 28:8q24.21 (59%), 6:1q22 (58%), 5:1q21.3 (56%), 13:3q26.2
(53%), and 25:8q11.23 (52%) (Figure S5E). Kyoto Encyclopedia of
Genes and Genomes (KEGG) analysis revealed that genes with ampli-
fication were enriched in the nitrogen metabolism and glycosamino-
glycan synthesis pathways in the MPS1 cluster; signaling pathways
regulating the pluripotency of stem cells and cancer pathways in
the MPS2 cluster, and ribosome, TGF-bsignaling, EGFR tyrosine ki-
nase inhibitor resistance, and cholesterol metabolism in the MPS3
cluster (p < 0.01) (Figures 4G–4I). These results indicated that the
amplification of the chromosomal region was comparatively consis-
tent with the activation of metabolic pathways of ECs. Meanwhile,
the higher chromosomal instability level explained worse DFS41

and potential clinical benefits from poly (ADP-ribose) polymerase
(PARP) inhibitors and Pt-containing therapy in the MPS3
subgroup.42

Distinct immune microenvironment infiltration and

heterogeneous responses to immunotherapy among MPS

subgroups

As previous literature has reported, various metabolic changes and
epigenetic modifications have also been reported to play an important
role in tumor progression by driving immune escape or hindering im-
mune surveillance.1,43,44 In our study, we observed an enriched pres-
ence of CD4 T cells, M0 macrophages, M2 macrophages, and regula-
tory T cells (Tregs) within the TME of EC (Figure S6A). Compared
with the other clusters, MPS2 exhibited a notably elevated abundance
of CD4 memory resting T cells and Tregs. In contrast, the levels of
follicular helper T cells, M1 and M2 macrophages, activated mast
cells, and neutrophils were comparatively lower (p < 0.05) (Fig-
ure 5A). As expected, the infiltration of lymphocytes showed a
gradual decline from MPS2 to MPS3 and MPS1 clusters, with the
highest levels of total macrophages and M2/M1 ratio observed in
MPS1 (p < 0.05) (Figures S6B and S6C). We also observed a lower im-
mune infiltration level in the MPS3 subgroup by the single-sample
GSEA (ssGSEA) algorithm, and total immune cells exerting anti-
tumor or protumor effects both increased in the MPS2 subgroup
(Figures S6D and 5B). We could conclude that the metabolic hetero-
geneity of EC is closely associated with the occurrence of TME
changes.

Although past studies have undeniably established the effectiveness
of immunotherapy in EC, the responsiveness to this treatment
varies considerably among individual patients.45 Specifically, we
explored whether different MPS subgroups showed varying sensi-
tivity to immunotherapy since substantial differences in immune
cell infiltration existed within each subgroup. The estimated im-
mune scores and dysfunction scores of the MPS2 cluster were
Figure 3. Metabolic pathway-based subtyping revealed distinct transcriptomic

(A–C) Chord diagrams displaying enriched metabolic pathways with significantly change

MPS3 cluster. (D) GSEA plots of differentially changed hallmark oncogenic pathways of M

significance. (F) Boxplots of comparison of EMT-related genes, SOX9, TWIST1, FO

enrichment scores of metabolic pathways and hallmark oncogenic pathways. *p < 0.0
higher than the MPS3 cluster (Figures S6E and 5C). However, the
Tumor Immune Dysfunction and Exclusion (TIDE) scores and
exclusion scores were lower in the MPS1 cluster than in the other
clusters (p < 0.05) (Figures 5D and 5E). The tumor mutation burden
(TMB) level was also the highest in the MPS1 cluster, which indi-
cated a better response to immunotherapy (Figure 5F). Previous
literature confirmed that lymphocyte activation 3 (LAG3) expres-
sion in peripheral blood cells identified patients with poorer out-
comes after immune checkpoint blockade.46 Notably, elevated
expression levels of interferon gamma receptor 1 (IFNGR1) and
LAG3 were observed in the MPS3 subgroup, whereas the MPS2
cluster exhibited higher levels of cytotoxic T lymphocyte-associated
protein 4 (CTLA4) and programmed cell death 1 (PDCD1) (Fig-
ure 5G). Undoubtedly, the predictive response rate was highest in
the MPS2 subgroup according to the TIDE algorithm (Figure 5H).
In conclusion, contrasting the two clusters, although the MPS2 clus-
ter exhibited abundant immune cell infiltration, it concurrently pre-
sented indications of immune dysfunction. However, the MPS1
cluster, characterized by elevated TMB and lower TIDE scores, sug-
gests a reduced likelihood of immune escape, accompanied by
increased production of novel tumor antigens. Compared with the
MPS3 subgroup, the other two subgroups may benefit from
immunotherapy.

Metabolism pathway-based subtyping reflects unique

chemotherapy sensitivity and metabolic profiles at the cellular

level

In addition to conventional chemotherapy, we aimed to explore
novel, highly effective molecular targeted drugs based on MPS sub-
types to enhance precision therapeutic outcomes. Overall, the top
10 drugs with the lowest predicted area under the curve (AUC) values
in the total TCGA cohort according to the PRISM and Cancer
Therapeutics Response Portal (CTRP) databases were identified
(Figures S7A and S7B). We then discovered unique four PRISM-
derived drugs (Triptolide, YM-155, Maytansinol, and Exatecan)
and four CTRP-derived drugs (BRD9876, docetaxel, VX-680, and
BRD-K30748066) by comparative analysis (logFC >0.2, p < 0.05)
(Figures 6A and 6B). Laboratory studies reported that ribophorin II
(RPN2) and budding uninhibited by BUB1 mitotic checkpoint
serine/threonine kinase (BUB1) upregulation conferred the docetaxel
resistance of cancer cells.47,48 Consistent with the previous research,
patients in the MPS3 subgroup had higher expression levels of the
above two genes and AUC values, suggesting a lower sensitivity to do-
cetaxel (Figure 6C).

To validate the chemotherapy sensitivity prediction ability of MPS
classification, we stratified EC cell lines based on transcriptomic pro-
files using the pair method (Figure 6D). Metabolites differential
characteristics

d metabolic genes in each MPS cluster: (A) MPS1 cluster, (B) MPS2 cluster, and (C)

PS1 andMPS3 clusters. (E) Comparison of EMT scores of eachMPS cluster. ns, no

XF1, ZEB1, ZEB2, and GATA6. (G) Heatmap displaying the correlation between

5; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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analysis revealed higher glutathione reduced, cytidine monophos-
phate, and triacylglycerol levels, and lower ornithine, anserine, and
3-methyl adipic acid in cell MPS3 (Figure 6E). KEGG enrichment
analysis underscored the consistent enriched metabolic pathways
within the cell MPS1 cluster compared with the MPS3 subgroup in
the TCGA cohort, encompassing most pathways such as fructose
and mannose metabolism, pyrimidine metabolism, and vitamin B6
metabolism, thereby confirming the robustness of MPS classification
in EC cell lines (Figures S7C and S7D). Next, as anticipated, the EC
cell MPS3 subgroup exhibited greater aggressiveness than the MPS1
subgroup, marked by the upregulation of EMT and hedgehog path-
ways (Figure 6F). Furthermore, we found similar responses to
MPS-unique agents between two cell MPS subgroups based on the
PRISM (Figure 6G). This integrated approach, combining cellular
transcriptomes andmetabolomics, not only strengthens the reliability
of metabolic pathway subtyping but also provides valuable insights
into tailored therapeutic strategies for EC.

Development of metabolism-related prognosis risk model using

machine learning algorithms

Subsequently, we sought to quantitatively assess the prognostic rele-
vance of metabolic gene expression by using advanced machine
learning techniques to develop a predictive model (Figure 7A). First,
392 metabolic genes were found to be significantly associated with OS
by univariate Cox regression analysis (p < 0.05) (Table S7). LASSO-
LR (least absolute shrinkage and selection operator regularized logis-
tic regression) Cox regression identified 22 key genes when the
lambda value was set as lambda. min (Figures 7B and S8A). The
LASSO-LR model, incorporating these selected genes, demonstrated
higher AUC values for 1–5 years and effectively discriminated pa-
tients’ OS (Figures S8B and S8C). The optimal random forest model
was achieved via grid search, setting ntree = 200 and nsplit = 5, result-
ing in error rates below 0.20 (Figures 7C and S8D). Internal 10-fold
cross-validation further confirmed the accuracy of the random forest
model, with mean C-index values of 0.72 in the training cohort and
0.60 in the testing cohort (Figure S8E). Second, 21 commonmetabolic
genes from the LassLR and random forest models were put into
stepwise regression analysis (Figures S8F and S8G). The metagene
signatures were then constructed by considering all of the possible
combinations (C [13, 1] + C [13, 2] + C [13, 3] + . + C [13, 13])
of the 13 selected genes using the multivariate Cox regression
analysis and grouped into 5 clusters based on their respective
AUC values (Figure 7D). The metagene signature 2.91*ornithine
transcarbamylase (OTC) +13.23*glutamic-oxaloacetic transam-
inase 1 like 1 (GOT1L1) + 1.47*creatine kinase, mitochondrial
1B (CKMT1B) + 2.22*tyrosinase related protein 1 (TYRP1) +
2.29*alpha-1,3-mannosyl-glycoprotein 4-beta-N-acetylglucosaminyl-
Figure 4. Featured genomic alterations among MPS clusters in EC

(A) Comparison of mutation frequencies of 10 oncogenic pathways among the EC MPS

and interconnections of the top 10 differentially mutatedmetabolic genes in each cluster

(C) Comparison of HRD scores among MPS subgroups. (D–F) The chromosomal altera

subgroup; F, MPS3 subgroup). (G–I) Dot plots displaying the KEGG analysis results fo

subgroup (G, MPS1; H, MPS2; I, MPS3). *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0
transferase A (MGAT4A) + 5.59*N-deacetylase and N-sulfotransfer-
ase 4 (NDST4) + 1.62*membrane bound O-acyltransferase domain
containing 2 (MBOAT2) + 0.35*PTEN +1.36*phospholipase A2
group IIA (PLA2G2A) + 0.42*tRNA selenocysteine 1 associated pro-
tein 1 (TRNAU1AP), was derived from the above 8,191 combinations
with the highest C-index by 10-fold cross-validation (Figure 7E).

Based on median metagene scores, EC patients were then categorized
into two groups (> median metagene scores, high risk; < median
metagene scores, low risk). The time-dependent receiver operating
characteristic (ROC) curves and KM survival curves also confirmed
the prognosis predictive value of metagene scores (p < 0.05)
(Figures 7F, 7G, S8H, and S8I). Furthermore, the pronounced
disparity in risk scores among theMPS subgroups underscores the ef-
ficacy of the metagene signature in capturing intricate variations in
tumor metabolism. The high-risk group had a comparatively higher
proportion of the MPS subgroup, thereby emphasizing its utility as
a tool for effectively stratifying EC cases (Figures 7H and 7I).

In our subsequent examination, we delved into the potential clinical
implications of the metagene signature. Notably, the low-risk group
demonstrated significantly elevated immune scores, estimate scores,
and stromal scores, along with heightened CTLA4 and PDCD1
expression levels indicating a more favorable response to immuno-
therapy (Figures 8A and 8B). In the high-risk group, patients dis-
played heightened TIDE scores and lower response rates to immuno-
therapy across multiple cohorts, including TCGA and dependent
GEO datasets such as GSE78220, GSE115821, and GSE168204. This
consistent pattern reinforces the predictive utility of the metagene
signature in assessing immunotherapy response (Figure 8C). Upon
univariate Cox regression, patient age, Federation Internationale de
Gynecolgie et d’Obstetrique (FIGO) stage, histological grade, histo-
logical type, R0 resection, tumor invasion, and metagene risk scores
demonstrated significant associations with OS (Table S8). Subse-
quently, multivariate Cox regression was performed on the above sig-
nificant features in EC patients. FIGO stage, R0 resection, and meta-
gene risk scores were confirmed to be independently important
variables of OS and then included to construct a prognostic nomo-
gram model (Figures 8D and 8E). The nomogram model had not
only good discrimination ability but also calibration ability in the
training, testing, and total TCGA EC cohorts (Figures 8F and 8G).

DISCUSSION
Cancer cells not only possess a distinct metabolic profile compared to
normal cells but also demonstrate significant metabolic diversity and
plasticity. Cancer cell metabolism networks either directly or indi-
rectly control key aspects of cell function covering tumor initiation,
subgroups in the TCGA cohort. (B) Sankey plot illustrating the mutation frequencies

(comparedwith the other subgroups; false discovery rate < 0.05) in the TCGA cohort.

tion profiles for EC MPS clusters in the TCGA cohort (D, MPS1 subgroup; E, MPS2

cusing on genes located within the significantly amplified regions of each EC MPS

.0001.
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growth, and metastasis.49 Moreover, growing evidence indicates that
cancer cell metabolism has pivotal implications in the regulation of
the TME immune response through the release of specific metabo-
lites, such as lactate, prostaglandin E2, and arginine, which can influ-
ence the expression of immune molecules.1 Understanding how can-
cer cells regulate their metabolic networks in heterogeneous diseases
such as EC is vital for enhancing precision therapy strategies for this
condition. Our research endeavors to unravel ECmetabolism remod-
eling and heterogeneity by harnessing multi-omics and classifying
ECs into three heterogeneous subtypes with distinct metabolic fea-
tures, prognoses, genomic alterations, and sensitivities to various
therapies (Table S9).

In alignment with prior investigations, our study illustrates that EC
tissue exhibits discernible metabolic profiles compared with normal
tissue at both transcriptomic and proteomic levels.33,50 Noteworthy
alterations in metabolic pathways, akin to other cancer types, encom-
pass heightened oxidative phosphorylation, glycolysis/gluconeogen-
esis, and pentose and glucuronate interconversions in EC. The oxida-
tive phosphorylation process generates ROS and drives ATP
synthesis, promoting tumor initiation, proliferation, invasion, and
metastasis as reported in the literature.51–53 Cancer cells necessitate
robust anabolism to synthesize essential cellular components for pro-
liferation. In EC, this anabolic drive is evident through dysregulated
biosynthetic pathways, including activated folate metabolism and
diverse glycan biosynthesis. Consistent with previous studies that
strengthened the significance of cytochrome P450 polymorphisms
in cancer susceptibility, especially in hormone-related cancers,54 the
cytochrome P450 pathways were inactivated in EC.

Our study further corroborated the presence of metabolism heteroge-
neity in EC, based on a metabolism-focused transcriptional profile.
EC patients in theMPS1 subgroup demonstrated a metabolism-active
state supporting macromolecule synthesis, including nucleotide
biosynthesis, DNA replication, and protein synthesis, under sufficient
ATP and necessary substrates supply accompanied by the dysregula-
tion of multiple metabolic pathways, such as glycolysis, one-carbon
metabolism, and mitochondrial TCA cycle pathways that are known
to be necessary for heme and nucleotide synthesis.55,56 Conversely,
the MPS3 subgroup showed a reduction in anabolic, energy-
consuming activities, especially cell proliferation, for which EMT
scores and EMT-related gene expression levels were higher, indicative
of metabolism plasticity contributing to tumor metastasis. The previ-
ous literature has highlighted intrinsic metabolism reprogramming
occurring in tumor cells through a slow-cycling persister state, which
subsequently drives cancer progression.57–59 Furthermore, we re-
vealed significant disparities in drug metabolism, unsaturated fatty
Figure 5. Distinct immune microenvironment and heterogeneous responses to

(A) Comparison of infiltration levels of 22 immune cells estimated by CIBERSORT analys

total enrichment scores of immune cells exerting antitumor (left) and protumor (right) am

scores (C), exclusion scores (D), and TIDE scores (E) among the 3 MPS clusters in the TC

TCGA cohort. (G) Analysis of the expression level of CD274, CTLA4, IFNGR1, LAG3, and

the predictive response rate among MPS clusters in the TCGA cohort. *p < 0.05; **p <
acid metabolism, and steroid biosynthesis pathways between the
MPS2 and MPS3 subgroups, emphasizing their potential roles in
determining the clinical outcomes of EC patients. Metabolomics
studies also revealed that arachidonic acid, stearic acid, and linoleic
acid metabolites enrolled in lipid metabolism were lowered in
advanced-stage and nonendometrioid EC samples.60–62 Building
upon the insights gained from multi-omics analysis, we hypothesized
that focusing on subtype-specific metabolic characteristics that signif-
icantly influence tumor behavior within the MPS subtypes may pro-
vide useful targeted therapy strategies in EC, but these need further
validation in the future.

To elucidate the potential intrinsic drivers of metabolic phenotypes,
we focused on germline mutations in relevant genes, including meta-
bolic enzymes and oncogenes or tumor suppressors, as well as
genomic region variations. Notably, the MPS1 subgroup exhibited
higher mutation frequencies in members of the PI3K, Hippo,
NRF2, and MYC pathways. These pathways increase metabolic flux
to sustain proliferation through either direct regulation of nutrient
transporters and metabolic enzymes or the control of transcription
factors that regulate the expression of key components of metabolic
pathways.15,63,64 NRF2, a key regulator of the cellular antioxidant
response, controls the expression of genes that counteract oxidative
and electrophilic stresses to maintain redox homeostasis.65,66 More-
over, we observed significant mutations in enzymes of the lysine
degradation pathway, such as KMT2D/C/A and NSD1, within the
MPS1 cluster. Indeed, KMT2D, a histone methyltransferase modu-
lating chromatin structure by promoting H3K4 methylation, was
frequently mutated, the loss of which induces epigenomic and meta-
bolic reprogramming to rewire molecular pathways in multiple types
of cancer.40,67–70 In addition, the MPS3 subgroup displayed a high
frequency of mutations in the TP53 pathway and had relatively
heightened copy-number alterations burden and chromosomal insta-
bility. Cancer cells with homologous recombination deficiency
(HRD) are particularly responsive to PARP inhibitor therapy,
leveraging the vulnerability in alternative DNA repair pathways.
Identifying HRD biomarkers helps pinpoint patients who can benefit
from targeted PARP inhibition.71 This study positions MPS1 as a hot-
spot for targeted interventions, leveraging its distinct genomic profile,
while also shedding light on potential treatment avenues for theMPS3
subgroup based on chromosomal instability patterns.

Metabolism pathway-based classification also has important implica-
tions in clinical translation. First, with immune checkpoint therapy
showing varying response rates, the pursuit of precision therapy be-
comes crucial for maximizing clinical benefits.29,30,72 Under the cir-
cumstances, numerous studies have searched for prediction markers
immunotherapy among MPSs

is among the 3 MPS subgroups in the TCGA cohort. (B) The boxplot comparing the

ong the 3 MPS subgroups in the TCGA cohort. (C–E) Assessment of dysfunction

GA cohort. (F) Boxplot displaying the total TMB among the 3 MPS subgroups in the

PDCD1 in the 3MPS subgroups of the TCGA cohort. (H) The sunburst chart displays

0.01; ***p < 0.001; ****p < 0.0001.
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for immunotherapy response from the perspective of immune cells,
molecules, and tumor mutation73–77 More and more evidence has
pointed out that tumor metabolism reprogramming has wider impli-
cations in the regulation of antitumor immune response influencing
immune cell differentiation and function.1,78,79 In our study, the
MPS2 subgroup had abundant infiltration of immune cells with anti-
tumor function and higher expression of immune molecules, whereas
immune dysregulation within the TME prevented the immune cells
from exerting their full effects in this subgroup. However, the
MPS1 subgroup, despite having a higher TMB, showed poor immune
cell infiltration, leading to a limited response to immunotherapy. Sec-
ond, we demonstrated unique chemotherapeutic drug sensitivity pro-
files among the different MPS clusters, revealing potential therapeutic
strategies tailored to tumor metabolism for treating EC patients.
Intriguingly, the predicted drugs according to the CTRP database
reveal rapid cell-cycle arrest in tumor cancer cells and showed higher
sensitivity in the MPS1 and MPS3 clusters with lower AUC
values. Furthermore, four specific drugs, exatecan mesylate, sepantro-
nium bromide, maytansinol, and triptolide, showed promising cura-
tive effects in more aggressive EC. The exploration and analysis of
high-throughput omics data under the framework of MPS subtyping
not only paves the way for discovering novel drugs but also holds the
promise of advancing precision clinical treatments. However, the full
realization and validation of its clinical applicability require further
investigation and confirmation.

The growing integration of machine learning in various healthcare
domains, along with the abundance of well-characterized cancer data-
sets, has expedited the exploration of the potential of machine
learning in deciphering the intricate biology of cancer.80 The applica-
tion of LASSO and random forest algorithms ensured the selection of
important features, and stepwise regression was used to analyze the
intersected variables. This process led to the identification of the
optimal prognostic model for our study. The prognostic model we
developed not only demonstrated robust predictive significance for
patient outcomes but also facilitated the establishment of risk strati-
fication. Furthermore, across multiple immunotherapy cohorts, our
model exhibited distinct differences in immunotherapy response
rates and chemotherapy outcomes, underscoring its potential clinical
utility and relevance in precision medicine for cancer patients.

This study has certain limitations. First, our molecular subtyping
based on metabolic pathways relied on transcriptomic data, and
although we conducted external validation using other datasets and
metabolomic and proteinomics data, intracohort dual validation at
Figure 6. Metabolism pathway-based subtyping reflects unique chemotherapy

(A) Schematic outlining the strategy to developMPS unique therapeutic agents with high

sensitive drugs (p < 0.05, logFC >0.2) among eachMPS subgroup based on the PRISM (

docetaxel AUC values and its predictive gene marker expression level (BUB1 and RPN

subgroups of TCGA tumor samples and CCLE cell lines based on the enrichment sco

among MPS clusters in the CCLE EC cohort (p < 0.05, absolute logFC >0.05). (F) GSEA

Comparison of AUC values for differentially sensitive drugs (p < 0.05, logFC >0.2) am

*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
both transcriptomic and metabolomic levels was lacking. Second,
although our metabolic subtyping showed promise in guiding clinical
treatment, further rigorous clinical evaluation is needed to establish
its robustness and clinical applicability. Third, although bioinformat-
ics analysis provided insights into the associations between metabolic
reprogramming and cancer genomics alterations, further mechanistic
investigations are required to elucidate the precise underlying molec-
ular mechanisms. Addressing these limitations will be crucial for
advancing our understanding and application of tumor metabolism
in precision medicine for EC.

MATERIALS AND METHODS
Study cohorts

Our study used multi-omics data from cohorts of EC patients ex-
tracted from the TCGA, GEO, and CPTAC datasets. Genomic (537
patients with CNV data, and 530 patients with whole-exome
sequencing data), transcriptional (549 tumors and 35 normal adja-
cent samples), and clinical data for the TCGA cohort were down-
loaded from the University of California, Santa Cruz (UCSC) Xena
website (https://xena.ucsc.edu/) and TCGA website (https://portal.
gdc.cancer.gov/). We acquired GSE17025 (91 cancer samples and
12 samples of atrophic endometrium from postmenopausal women),
GSE106191 (64 carcinoma samples and 33 hyperplasia samples),
GSE29436 (4 nonprogressive EC samples and 4 progressive EC sam-
ples), GSE78220 (28 melanoma patients receiving anti-PD-1 ther-
apy), GSE115821 (37 metastatic melanoma patients receiving
immune checkpoint blockade therapy), and GSE168204 (27 mela-
noma patients receiving anti-PD-1 therapy) cohorts from the GEO
website (https://www.ncbi.nlm.nih.gov/geo/) (Table S1). The EC pro-
teome and corresponding clinical data were sourced from the CPTAC
uterus cancer database, which includes 31 normal and 104 tumor
samples (https://pdc.cancer.gov/pdc/browse).

Human EC cell lines

Transcriptomics and metabolomics data for EC cell lines were ac-
quired from the Cancer Cell Line Encyclopedia (CCLE) website
(https://sites.broadinstitute.org/ccle).81–83 Drug sensitivity data were
accessed from the CTRP2 (https://portals.broadinstitute.org/ctrp/,
481 compounds X 860 CCLs)84–86 and the PRISM Repurposing data-
set (19Q4, https://depmap.org/portal/prism/, 1448 compounds X
482 CCLs).

Data preprocessing and normalization

The fragments per kilobase of transcript per million fragments map-
ped data of RNA sequencing (RNA-seq) were log2 transformed and
sensitivity and metabolic profiles at the cellular level

er drug sensitivity in the TCGA cohort. (B) Comparison of AUC values for differentially

upper) and CTRP (lower) database in the TCGA cohort. (C) Comparison of estimated

2) of each MPS in the TCGA cohort. (D) PCA plot displaying the metabolism-based

res of 84 metabolic pathways. (E) Volcano plot showing the differential metabolites

plot displaying the activated hallmark pathways in the EC cell MPS3 subgroup. (G)

ong each cell line MPS subgroup based on the PRISM database in the CCLE EC.
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Figure 7. Development of metabolism-related prognosis risk model using machine learning algorithms

(A) The overall flowchart of metagene prognostic signature development. (B) The process of LASSO-LR model variables selection and development. (C) The plot illustrates the

tuningprocessof thenumberof trees in the random forestmodel,with thexaxis representing thenumberof treesand theyaxisshowing thecorrespondingerror rate. (D) Themean

C-indexof themultivariateCox regressionmodelwas evaluated across all of the possible combinations of the intersected genes. (E) The risk plots are composed of risk scores (A),
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then normalized via the R package caret. For CTPAC proteomics
data, the relative protein abundances were log2 transformed and
zero centered for each gene to obtain final, relative abundance
values. Data from the CCLE database were already preprocessed ac-
cording to standard pipelines87,88 and then scaled using the R scale
method.

Calculation of metabolic and hallmark oncogenic pathways

enrichment scores

Metabolic pathways were downloaded from the KEGG database
(https://www.genome.jp/kegg/), including 84 metabolic pathways
composed of 1,714 unique genes (Table S2). These pathways were
clustered into 10 categories according to KEGG classifications. The
hallmark oncogenic gene sets were downloaded from the GSEA
MSigDB website (http://www.gsea-msigdb.org/gsea). We performed
GSVA to calculate enrichment scores of the above pathways using
the transcriptomic data of each EC sample.

PCA

We applied PCA on the TCGA EC metabolism pathway-related
gene expression data and used the fviz_pca_ind function from the
R package factoextra to visualize the distinct clustering patterns con-
cerning clinical phenotypes.

GSEA

Differential gene analyses were conducted using either the R Deseq2
or limma package to produce ranked gene lists for both the TCGA
and GEO datasets. Subsequently, GSEA was performed on DEGs
by the R clusterProfiler package based on 84 metabolism-related
and hallmark oncogenic gene sets.

Metabolic pathway-based clustering subgroups of EC

We scaled the metabolism pathway enrichment scores of each sample
before clustering. The consensus ClusterPlus function was used for
determining MPS clustering number and class membership by stabil-
ity evidence (R ConsensusClusterPlus package, k-means clustering,
pItem = 0.8, pFeature = 1). In this study, we also performed NbClust
testing (Euclidean distance, k-means, from 2 to 15 clusters) to
confirm the best number of clusters based on EC metabolism-
pathway enrichment scores by varying all of the combinations of
the number of clusters by the R NbClust package.

Clinical characteristics analysis among MPS clusters

The FIGO stage, histological type, histological grade, four TCGAmo-
lecular subgroups,24 and patient age were compared among MPS
clusters. KM survival plots were generated to assess the differences
in OS and DFS among different MPS clusters using the R packages
survival and survminer. In addition, univariate and multivariate
survival status (B), and gene expression level (C) ofmetagene signature. (F) Time-dependen

(G) KM curves distinguished OS well between the high-risk group and the low-risk grou

metagene risk scores among 3MPS subgroups in the TCGA cohort. (I) The stacked bar p

groups in the TCGA cohort.
Cox proportional hazard regression analyses were conducted to vali-
date the prognostic value of MPS subgroups.
EMT scores calculation

The gene signatures for the EMT were obtained from Mak et al.,89

which included 25 epithelial marker genes and 52 mesenchymal
marker genes. The EMT score for each sample was calculated as
described using the formula

PN
i
Mi
N �Pn

i
Ei
n , whereM and E represent

the expression of mesenchymal and epithelial genes, respectively, and
N and n are the total numbers of mesenchymal and epithelial genes,
respectively.
Comparison of gene mutation frequencies among subgroups

The top 10 genes with the highest mutation frequency were identified
in different MPS clusters by the R maftools package. For each cluster,
the fraction of samples with at least one alteration in 10 canonical
oncogenic pathways cell cycle, Hippo, Myc, Notch, Nrf2, PI3K/Akt,
RTK-RAS, TGF-b signaling, p53, and b-catenin/Wnt was
compared.38 We also performed pairwise and groupwise Fisher exact
tests to find differentially enriched metabolic genes for every MPS
subgroup.

Identification of genomic alterations and potential functions of

MPS clusters

The TCGA CNV data were annotated according to the hg38 genome
and analyzed by the online GISTIC2module on the Genepattern web-
site (https://cloud.genepattern.org/) to detect regions with amplifica-
tion or deletion. Genes with q values <0.25 were annotated as ampli-
fied (G scores >0) or deleted (G scores <0) and subjected to functional
annotation by KEGG pathway analysis using the R clusterProfiler
package. HRD scores, calculated by the sum of the loss of heterozy-
gosity score, allelic imbalance extending to the telomere score, and
large-scale state transition score, were compared among MPS
subgroups.90
Tumor immune microenvironment infiltration analysis

To investigate tumor immune cell infiltration, we used the R
CIBERSORT analysis among different MPS clusters.91 Specifically,
we focused on four aggregated immune cell types: total lymphocytes,
total dendritic cells (sum of activated and resting dendritic cell per-
centages), total macrophages (sum ofM0,M1, andM2macrophages),
and total mast cells (sum of activated and resting mast cell percent-
ages). Moreover, we calculated the M1 to M2 ratio as the ratio be-
tween the M1 macrophage percentage and the M2 macrophage
percentage.

We also used ssGSEA algorithms to calculate 28 immune cell enrich-
ment scores and summed scores of antitumor immune cells (the
t ROCcurves of themetagene signature for predictingOS in the TCGA training cohort.

p based on the metagene signature in the TCGA training cohort. (H) Comparison of

lot displays the composition of MPS subgroups in themetagene high-risk and low-risk
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aggregation of activated CD4 T cell, activated CD8 T cell, central
memory CD4 T cell, central memory CD8 T cell, effector memory
CD4 T cell, effector memory CD8 T cell, type 1 T helper cell, type
17 T helper cell, activated dendritic cell, CD56bright natural killer
cell, natural killer cell, and natural killer T cell) and protumor im-
mune cells (regulatory T cell, type 2 T helper cell, CD56dim natural
killer cell, immature dendritic cell, macrophage, myeloid-derived sup-
pressor cell, neutrophil, and plasmacytoid dendritic cell).92

Immunotherapy response prediction

TIDE is an algorithm based on the expression pattern of multiple im-
mune-related genes, including T cell immunity, B cell immunity, anti-
gen processing, and presentation pathways.93 We uploaded EC RNA-
seq data to the TIDE website to compare the TIDE scores among
different clusters. In addition, we compared the gene expression levels
of immune checkpoint molecules, TMB levels, and immune cell levels
among MPS clusters to predict immunotherapy response.

Drug sensitivity prediction based on RNAseq data

The CTRP and PRISM datasets use the area under the dose-response
curve values as a measure of drug sensitivity, in which lower AUC
values indicated increased sensitivity to treatment.86 The R package
oncoPredict was used to predict the drug sensitivity of each patient
in TCGA cohort based on the above datasets. We used the Student’s
t test to identify drugs with significant differences in efficacy across
differentMPS subgroups. Drugs exhibiting a p < 0.05 and log2FC > 0.2
were selected as potential drugs for further analysis.

EC cell lines classification

The enrichment scores of the metabolic pathways using the GSVA
method as above described were initially calculated based on the
CCLE EC transcriptomic profiles. Then, we extrapolated meta-
bolism-based classification to EC cell lines by the pamr.train and
pamr. predict functions of the R pamr package using the nearest
shrunken centroid classifier.

Pathway enrichment analysis of EC cell linesmetabolomics data

MetaboAnalyst (https://www.metaboanalyst.ca/) provides a user-
friendly web interface that allows us to upload metabolomics data
and perform pathway enrichment analysis using various databases
based on compound concentration values.94

Machine learning algorithms for metabolic prognostic model

construction

The TCGA EC cohort was randomly divided into training and testing
cohorts in a 7:3 ratio. The predictive model was constructed as fol-
Figure 8. Validation of the clinical utility of metabolism-based prognostic sign

(A and B) Comparison of estimated immune scores (A) and immunotherapy marker expr

plots illustrate the immunotherapy response rates across the TCGA, GSE78220, GSE

regression analysis onOS significant variables, including patient age, histological type, FI

Nomogram plot of the multivariate Cox regression model for predicting EC OS. (F) The

TCGA EC cohorts. (G) The 5-year calibration curves of the nomogram predictive model

the observed outcome. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
lows: (1) univariate Cox regression analysis was performed on
1,714 metabolic genes to identify prognosis-significant genes in the
training cohort (p < 0.05). (2) LASSO-LR and random forest were
separately used to select features for model development. Each algo-
rithm was tried with different parameter combinations. (3) The com-
mon genes identified by the above two methods were subjected to
multivariate Cox regression analysis, followed by a backward stepwise
variable selection process. (4) Metagene signatures were constructed
by considering all of the possible combinations of the selected genes,
weighted by their estimated regression coefficients in the multivariate
Cox regression analysis.

Statistical analysis

The statistical analysis was completed using the R version (4.2.1). For
binary categorical variables, the Wilcoxon rank-sum test was used to
compare groups, and the Kruskal-Wallis test was used for multiclass
comparisons. KM survival analysis was used for survival assessments.
Univariate Cox regression analysis was used to identify prognosis-sig-
nificant variables, whereas a multivariate Cox regression model was
constructed to develop the predictive model. Variables with a
p < 0.05 were deemed statistically significant.

DATA AND CODE AVAILABILITY
The TCGA cohorts were downloaded from the UCSC Xena website
and the TCGA website. The GSE17025, GSE106191, GSE29436,
GSE78220, GSE115821, and GSE168204 cohorts were available
from the GEO website. The EC proteome and corresponding clinical
data were sourced from the CPTAC uterus cancer database. The EC
cell lines transcriptomics and metabolomics data were downloaded
from the CCLE website.
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