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SUMMARY

The United States is one of the largest energy consumers per capita, requiring households to have adequate

energy expenditures to keep up with modern demand regardless of financial cost. This paper investigates

energy burden, defined as the ratio of household energy expenditures to household income. There is a

lack of research on creating equitable policies for energy-burdened communities, including environmental

justice indicators and community characteristics that could be used to predict and understand energy

burden, along with socioeconomic status, building characteristics, and power outages, beneficial to policy-

makers, engineers, and advocates. Here, generalized additive models and random forests are explored for

energy burden prediction using the original dataset and principal components, followed by a leave-one-col-

umn-out (LOCO) analysis to investigate indicator influence, with 25 identical indicators out of 42 appearing

in the top 100 models. The generalized additive models generally outperform the random forests, with the

best-performing model yielding a coefficient of determination of 0.92.

INTRODUCTION

Energy and automation are essential to the advancement of hu-

man endeavors. It is estimated that the United States (U.S.) con-

sumes approximately 101 quadrillion British Thermal Units of pri-

mary energy in support of human development and existence;

this is approximately 17% of world primary energy consumption,

while the U.S. only accounts for approximately 4% of the word

population.1 Energy use impacts almost every dimension of

modern society. Thus, when access to energy is limited, these

impacts are compounded through housing, mobility, health,

work, education, and other facets of life.2 Governing bodies at

the local, state, and federal levels have recognized the chal-

lenges climate change brings for traditionally marginalized com-

munities. However, how to create equitable and just public

policies at the confluence of climate change, energy, and disad-

vantaged communities remains a complex question3 with a

dearth of research.4 Access to energy resources plays a vital

role as compounded climate and electric infrastructure events

occur. For example, the 2021 winter blackout in Texas left

approximately 10 million people without electricity for as long

as multiple days. Many news outlets reported that minority

neighborhoods were disproportionately impacted.5 While this

is a multi-faceted issue, researchers at the University of Califor-

nia Berkeley have found that inequalities have been built into the

California power grid by design. Minority groups often live in

disadvantaged census blocks, which do not have equal access

to distributed energy resources (DERs) such as rooftop solar and

battery storage.6

With an increase in energy dependence and technological

development, individuals are able to arbitrage energy assets

with residential rooftop solar, home energy storage systems,

and electric vehicle adoption. These technologies contribute to

the transition to a clean energy grid, drastically changing the

energy economy. However, the clean energy transition has the

potential to increase the growing wealth disparity in the U.S.,7

as many programs for solar installation or electric vehicle procure-

ment, which low-income households often do not participate in,

are financed by raising the price of electricity to all customers.

Thus, asset disparities are exacerbated for low-income house-

holds as energy prices rise without an increase in energy re-

sources or assets for their household.6 This highlights the need

for clean energy solutions and calls attention to policymakers

and energy programs to ensure a just and equitable transition.

Energy justice is the confluence of energy systems and social

justice, a human-centered approach to fairly distributing benefits

and burdens of the current and future power and energy sys-

tems. In this paper, equity and justice will be discussed inter-

changeably. Within this context, justice is viewed as long-term

equity. Numerous types of equity exist; however, the types of
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equity that are most related to this work are defined herein. Pro-

cedural equity relates to the process of allocating resources

fairly, with transparency and inclusion throughout the decision-

making process. Distributive equity is the action of allocating

rights and resources with fairness, which includes identifying

where and when injustices occur. Thus, procedural equity is

the fairness of a process, but distributional equity relates to the

actual allocation of resources themselves. Intergenerational eq-

uity considers obligations to future generations, including a

dimension of time and future planning. Recognitional justice is

understanding different vulnerabilities and needs related to en-

ergy services and how they differ among socioeconomic groups

or communities. Frontline communities are the most vulnerable

to climate change and are adversely impacted by inequitable ac-

tions due to systemic and historical disparities.8 The authors in

Carley and Konisky9 highlight the importance of procedural,

distributive, and intergenerational equity for frontline commu-

nities. Additionally, McCauley et al.10 identify procedural, distrib-

utive, and recognition justice as the three tenets of energy justice

from energy production to energy consumption through policy-

makers’ viewpoint. However, from a climate change perspec-

tive, intergenerational equity is often at the forefront.11

There are many constructs regarding inequalities in the energy

ecosystem relating to energy poverty these are reviewed and

compared in Brown et al.2 and Tarekegne et al.12 Energy poverty

may be defined as the lack of access to basic, life-sustaining en-

ergy due to a lack of resources.12,13 This paper will focus on en-

ergy burden; the definition of this concept is provided in

Equation 1. Energy burden emphasizes the financial component

of energy poverty and is considered a primary and absolute

metric of energy poverty. Cong et al.13 define a primary energy

poverty metric as one that directly utilizes consumer-level infor-

mation and defines an absolute metric as one that has a specific

threshold for energy poverty. Given the primary and absolute

characteristics of energy burden, this metric offers a standard-

ized starting point to further understand indicators that are asso-

ciated with energy poverty through energy burden versus

opposing, relative, or secondary energy poverty metrics that

may use weighted scoring and lack strict thresholds.13,14

EnergyBurden(%) =
EnergyBills($)

Income($)
(Equation 1)

Energy burden is frequently used by the U.S. Department of

Energy (DOE) and considers energy expenditures (consumption

and price), household income, and affordability.12 In this context,

energy bills consider electricity, gas, and alternative fuels such as

fuel oil and wood; the income is gross income. The U.S. DOE

states that households experiencing an energy burden of 6% or

greater are considered to have a high energy burden, and house-

holds with an energy burden of 10% or higher have a severe en-

ergy burden. These thresholds were created with the notion that

a household should not spend more than 30% of the income on

housing expenses, and utility costs should not exceed 20%. Utility

costs do not include transportation energy or water use15 and the

cost of living for separate regions are not considered.16

A high energy burden can result in shutoffs and ‘‘bundled bur-

dens’’ such that economic trade-offs occur, creating a cumula-

tive risk to the household. Trade-offs include living in comprised

homes and the ‘‘heat or eat’’ phenomena, resulting in the co-

occurrence of food and energy insecurity.17 However, co-occur-

rences are not limited to energy and food but include medical

care, proper shelter, and other life necessities. Solutions to

energy injustices have been sparse. The residential energy

consumption survey found that one in three U.S. households

have faced challenges paying their energy bills.18 Although, en-

ergy burden has gained popularity in the past decade due to pol-

icies and programs such as weatherization and low-income

home energy assistance programs. The respective programs

are the nation’s most extensive energy programs concerning

low-income household energy assistance.2 As a result, Brown

et al.19 conducted an expansive bibliometric analysis regarding

energy equity in the U.S. and found 183 peer-reviewed papers

and government reports published between 2010 and 2019.

A case study in Arizona showed that low-income households

wait 2.6◦C and 4.2◦C longer in the summer months to turn on

their air conditioning (A/C) compared to more financially secure

households.20 Thus, energy burdened households may put

themselves at risk for adverse health effects, such as respiratory

issues, exposure to indoor air pollution, lead exposure, mold

growth, general thermal discomfort, and other health related is-

sues.21,22 In Chen et al.,23 spatial analysis is considered to look

at select counties with a high energy burden and the connection

between healthcare and COVID-19, finding that high energy

burden communities are significantly less likely to have health in-

surance. The study also links geographic features, showing that

communities near each other often have similar characteristics.

Further, low-income and middle-income households were more

likely to experience energy poverty due to limiting energy use

behavior due to increased energy bills from stay-at-home orders

during COVID.24 The authors in Buylova25 and Bednar et al.26

evaluate statistical modeling techniques to investigate the inter-

section of residential building energy use intensity (EUI), racial/

ethnic households, and socioeconomic patterns in the state of

Oregon and the city of Detroit, Michigan. A relationship between

high residential EUIs, racial minority households, and education

was detected. Further, Moore and Webb27 models energy

burden for Cincinnati, Ohio, using economic, social, and energy

related metrics. Findings conclude that spatial models outper-

form their non-spatial counterparts and that socioeconomic

variables, particularly income-related metrics, are the strongest

indicators to predict energy burden.

A more researched topic relating to energy burden is environ-

mental justice. Environmental injustice, also referred to as

environmental inequality, occurs when a social group faces

disproportionate negative impacts from environmental hazards,

most often in the form of environmental racism. Environmental

racism occurs when individuals, groups, or communities of a

race, ethnicity, or color are impacted or disadvantaged by a

policy or practice, intended or unintended.12,28 Studies of envi-

ronmental justice date back to the 1970s as evidence of toxic

hazards impacting communities of color were brought to the

forefront by social activists.29 Since this pioneering work, the

link between poor outdoor air quality and poverty has

been well documented,30 while the authors in Hauptman

et al.31 have linked low-income communities and household
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lead exposure (homes built before 1960). Further, Hilmers et al.32

studies disparities in food deserts and transportation in low-in-

come neighborhoods. Thus, environmental justice factors are

often presented as ‘‘bundled burdens’’.

Energy justice and environmental justice are constitutionally

interconnected as energy justice builds on environmental justice

principles from extractive economies among the energy, waste,

and environmental sectors that have disproportionate impacts

on low-income communities.33 One example is the negative im-

pacts on air quality and health from fossil fuel power plants that

disproportionately impact frontline communities. While fossil fuel

power plants are not the sole cause of the link between low-in-

come and poor air quality, frontline communities would benefit

significantly from a just energy transition. Additionally, environ-

mental justice has been more thoroughly studied than energy

justice or energy burden. Due to the greater maturity in our un-

derstanding, policymakers and engineers can use environmental

justice indicators as a beacon of knowledge to determine areas

that may experience ‘‘bundled burdens’’. Thus, for a just energy

transition, shifting from an extractive economy toward a regener-

ative economy would allow for equitable asset allocation and

community control of the local economy. Equitability in eco-

nomic development is essential as treating every community

equally when disparities exist harms those on the frontline.

Another area that frontline communities disproportionately

feel the impacts of climate change is power outages.34 The Envi-

ronmental Protection Agency (EPA) indicates that the average

power outage duration between 2013 and 2021 doubled, from

3.5 h to 7 h, and the frequency increased from 1.20 to 1.42 events

per customer per year. However, power outages do not impact

communities equally, as socioeconomic status is often corre-

lated with power outage occurrence and duration.35 This is

particularly true with the increase in weather-related power out-

ages due to unprecedented changes in climate. For instance,

during the 2021 Texas freeze, census blocks with a high minority

population were four times more likely to experience a power

outage, as 10–11% of prominently white neighborhoods experi-

enced a power outage, whereas 47% of minority populations

experienced an outage,36 further zip codes with a higher minority

population experienced more frequent power outages.37 Multi-

ple studies34,36–39 have found disparities in how minority neigh-

borhoods experience power outages, yet the cause has not

been identified.

The authors in Do et al.34 found that socially vulnerable

communities, as defined by the Centers for Disease Control

and Prevention, on average, experienced power outages that

were 3 times longer. Further, a one-decile drop in social vulner-

ability would result in a 6:1% longer power outage. Similar results

are found in Garland et al.,40 given that the rural county in the

study experienced more extended power outages and predic-

tions differed from its more heavily populated counterparts.

Rural communities that experience power outages for greater

durations could be a characteristic of the ‘‘last mile’’, in which

power recovery often takes several days.

The exact cause of this disparity is not well documented, but

considerations include aging infrastructure, geographic location,

and bias in prioritizing communities with higher incomes and/or

predominantly white communities. Although there are cases

where resources are equal among regions, yet some commu-

nities remain more vulnerable to social and economic loss; this

could be partially due to resources such as DERs and community

facilities. One crucial piece of resilience in low-income commu-

nities is the willingness to pay, which often increases as income

increases. Making everyone in a region pay a flat rate would add

additional burdens to those already experiencing energy burden

or financial difficulties.41 Thus, understanding the characteristics

of communities experiencing more frequent and extended out-

ages is vital to implementing solutions that provide equal access

to reliable energy without disproportionate burdens.

Machine learning (ML) has the potential to advance public pol-

icy when implemented through a human-centered lens. As in

Coyle and Weller,42 decision making for public policy with the

use of ML is reviewed in terms of learning relationships between

data inputs (features or, in this case, energy burden indicators)

and decisions (outputs). Relevant to this study are the post hoc

interpretations of the decisions. Post hoc interpretations are

completed after the study or model has been constructed and

results have been produced, which includes the interpretation

of feature importance. Further, meaningful indicators, including

social indicators, are vital to knowledge-informed policies.

Knowledge-informed policies are knowledge influenced, mean-

ing indicators have been thoroughly understood before creating

the policy. Otherwise, it is purely a political policy.43

Understanding the importance of indicators in ML models is

essential, as the numerous variables of interest to policymakers

typically have complex interactions. For instance, Bell et al.44

found that zip code was the most important feature in predicting

housing prices for tax purposes, which was not particularly help-

ful to their domain. However, they also found that zip codes were

strongly correlated with race. The use of an indicator such as

race could breach the Fair Housing Act of 1968. Thus, the zip

code was removed from the models. This highlights the

importance of model interpretability, explainability, and human

interference in ML for public policy.45 As such, modeling

methods that aid in a deeper understanding of the multi-dimen-

sional nature of energy and environmental justice and the power

system were prioritized in this study.

Previous studies have explored machine learning for energy

justice; for instance, Ghorbany et al.46 and Ghorbany et al.47

consider passive building design strategies and energy burden

using multiple machine learning methods. Ghorbany et al.47

include social demographic variables among building character-

istics and found machine learning methods to offer the best re-

sults and that passive design contributed to model performance,

while Ghorbany et al.46 found that passive design reduces en-

ergy burden and that location was a key indicator. In Spandagos

et al.,48 energy burden is studied across the European Union,

and it is found that the random forest model was one of the

best-performing models. Random forest models are gaining

popularity, having been considered in multiple studies relating

to climate,49,50 sustainability,51 and energy poverty.48,52–55 How-

ever, these studies do not focus on the entire U.S. and do not

consider the combination of data groups and variables consid-

ered in this study, which are found in Table 1, particularly the

environmental justice and power outage variables defined within

the context of this paper. While other work has explored
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indicator importance in machine learning models,48,61–63 this

study uniquely considers a large set of variables (42 indicators)

and reduces the number of variables to support immediate

climate action for frontline communities, highlighting the most

significant indicators as a first step in creating knowledge-

informed policies, creating more value and purpose. Further,

the combination of data groups offers novel insights into indica-

tors of energy burden beyond socioeconomic and building infra-

structure within the U.S.

As the U.S. faces a growing dependence on electrical energy

use, novel approaches to enhance comprehension of energy

burden are a pressing issue, particularly for frontline communities

facing the consequences of a changing climate. A changing

climate creates multi-faceted issues, with one challenge being

the increased need for A/C in residential spaces.64 Increased

need for A/C is evident when considering weather events, such

as the 2022 California heatwave, which led to the California Inde-

pendent System Operator setting a new peak demand. The West-

ern Interconnection also set a new peak demand in July 2024.65

However, previous studies have often concentrated on the inter-

connections of heating energy consumption, poverty, and residen-

tial dwellings. Although findings from Wang and Chen66 suggest

that many areas will experience an increase in A/C expenditures

but a decrease in heating expenditures as year-round tempera-

tures are projected to increase. Since cooling seasons have

been less studied in this context, this study focuses on the summer

season, using summer temperature data and investigating A/C

types in residential buildings for each U.S. census region regarding

county-level energy burden. Each census region and the county-

level energy burden within each region are shown in Figure 1.

Overall, this research contributes to the growing knowledge

surrounding energy equity using novel data modeling techniques

applied to energy burden, specifically, the post hoc interpreta-

tions, which can be used to aid in knowledge-informed policy.

The main contributions of this work include.

(1) It is one of the first studies to include environmental justice

indicators, as defined by the Environmental Protection

Agency, and resiliency measures for predicting energy

burden. Climate change is projected to impact frontline

communities disproportionately; thus, understanding the

implications of energy burden beyond energy use, social

demographics, and income is crucial to intergenerational

equity.

(2) This is one of the first studies dedicated to the feature, or

indicator, importance, and influence in terms of predicting

energy burden regarding a large dataset of 42 variables

and creating smaller subsets for prompt policy action

within the U.S.

(3) The development of a data-driven framework to identify

indicators of energy burden that is flexible to new inputs

and could be used with different ML techniques or

geographic scales.

For a better understanding of indicators for energy burden

in the U.S., two modeling frameworks are developed and

Table 1. Data groups

Data group Data description

Community resilience for equity and disasters56 Estimated number of individuals with zero risk factors, estimated

number of individuals with one-two risk factors, estimated number of

individuals with three plus risk factors.

Socioeconomic variables57 Total population count, population for whom poverty status is

determined, count of households in linguistic isolation, count of

people of color individuals, count of low-income individuals, count

of individuals age 25 or over with less than high school degree, count

of individuals under age 5, count of individuals over age 64.

Environmental justice variables57 Count of housing units built before 1960, diesel particulate matter

level in air, air toxics cancer risk, air toxics respiratory hazard index,

traffic proximity and volume, indicator for major direct dischargers to

water, proximity to national priorities list (NPL) sites, proximity to risk

management plan (RMP) facilities, proximity to treatment storage and

disposal (TSDF) facilities, ozone level in air, PM2.5 level in air.

Location and temperature58 Latitude and longitude, average daily temperature (July).

Building characteristics59 A/C type in home (4 categorical variables: central A/C, heat pump,

room A/C, No A/C), type of home (5 categorical variables; mobile

home, single family attached, single family detached, multifamily 2–4

units, multifamily 5+ unit), number of bedrooms in home (5 categorical

variables: 1–5 bedrooms).

Power outages60 Number of customers impacted, power outage duration (minutes),

average outage occurrence.

Low income energy affordability67

Energy burden
(energy bill

income

)

Data groups and their respective data sources are created and described to facilitate a clear discussion of the impact of energy burden indicators.

Here, the data group represents the label it will be discussed as, and the data descriptions provide the indicators in each group.
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compared. For both modeling frameworks, the data are sub-

jected to an exhaustive subset selection (ESS) model, which

uses a ‘‘Branch and Bound’’ algorithm to determine the optimal

15 indicators for predicting energy burden. From the best 15 pre-

dictors, datasets featuring five indicators are created, using all

possible combinations of the 15 predictors (this results in

3,003 datasets). However, for modeling framework one, 20

different generalized additive models (GAMs) are developed

(60,060 models), and then the 100 best models based on the

generalized cross-validation (GCV) score are selected. Each of

the model equations for the GAMs is provided in Methods S2,

Table S1. For modeling framework two, random forest models

are created for each of the 3,003 datasets, and the top 100

models based on the R2 value are selected. A representative de-

cision tree is created from the random forest model with the

highest R2 value for model interoperability. Both GAMs and

random forests are used for their abilities to deal with non-linear

and non-monotonic relationships between the indicators and the

response variable. GAMs offer superior prediction capabilities

and computational efficiency as they are less complex than other

methods, such as random forests. However, random forests

are used, given their underlying bagging properties and abilities

to handle data with high variance. Additionally, as previously

mentioned, random forests have been effective in studies

regarding climate, energy, and sustainability in past studies.

However, Abolafia-Rosenzweig et al.68 find GAMs to outperform

random forests and support vector machines. GAMs have been

used in various studies and fields, including studying lead expo-

sure in children,69 income inequality in healthcare,70 renewable

energy power production,71 and climate relations to air quality

and health.72 Thus, GAMs show promise in predicting and

understanding the complex interactions between the data

Figure 1. County level energy burden per

census region

The percentage of energy burden presented in this

figure uses data from the Llow-income energy

affordability data tool67 and is shown at the county

level for each census region. The energy burden

percentage data used in this figure is used for the

predictions throughout the study and is described

herein. The purple indicates no or low energy

burden. In contrast, the white area indicates an

energy burden of 6%, the threshold for a high

energy burden, continued by the red areas, which

are experiencing a severe energy of 10% or

higher.

groups and energy burden. For both

modeling frameworks, a leave-one-col-

umn-out (LOCO) analysis is completed

on each of the top 100 models to under-

stand the indicator influence. Lastly, all

models are evaluated for model fit, exam-

ples being the R2 value, root-mean-

square error (RMSE), and mean absolute

error (MAE). Two datasets were used for

each framework: the energy burden full

indicator set, which represents the orig-

inal data from each independent dataset, see Table 1, combined

at the county level and standardized. The second dataset is the

principal components (PCs). The PCs are taken from a principal-

component analysis (PCA) completed for dimensionality reduc-

tion. The STAR Methods section and the supplemental

information Methods S2 provide a more detailed description of

the modeling frameworks. An overview of the modeling frame-

works is provided in Figure 2. Overall, this study aims to answer

the question ‘‘what subset of indicators should be prioritized

when creating knowledge-informed policy to alleviate energy

burden for each census region in the U.S.?’’ Assumptions

include that the states within each census region (west, midwest,

south, northeast) will have similar indicators. The primary limita-

tions include spatial resolution (county-level data) and general

data availability, which resulted in using county averages, further

discussed in the ‘‘limitations of the study’’ section.

RESULTS

The results presented are divided into two groups corresponding

to the datasets used: the full indicator set or the PCs. Indicator

groups are discussed to foster a more direct discussion around

the indicators of energy burden used in this study. Indicator

groups are provided in Table 1.

Energy burden full indicator set feature selection

In order to gain a better understanding of indicator importance

for knowledge-informed policy, the indicators selected in the

top 100 models for the GAMs are provided in Figure 3; the num-

ber of low-income individuals occurred in all of the top 100

models for each region. In comparison, the median age of indi-

viduals and poverty status occurred in the top 100 models for
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the West and Northeast. Additionally, population density

occurred in each of the top 100 models for the Midwest. The

West and Northeast share similar characteristics, while the

South and Midwest have the most variability. For the random for-

est models, none of the indicators occurred in the top 100

models for every region. Thus, the random forest models are

more distributed among the indicators than the GAMs. However,

for both the random forests and GAMs, the Midwest shows sim-

ilarities, as low-income individuals and population density are

present in the top 100 models. One main takeaway is that with

the ESS, the GAMs and random forests used the same 26 indi-

Figure 2. Overview of modeling frame-

works

A brief description of the processes taken for each

modeling framework. The pink represents pro-

cesses applied to both modeling frameworks,

while the blue is specific to framework one and the

green is specific to framework two. Overall, two

datasets, the full indicator set, and the principle

components, are subjected to an exhaustive

subset selection search. Then, 3,003 datasets are

created from all combinations of 5 indicators. The

datasets are then used in the GAM framework and

random forest framework.

cators out of the original 42 in the top

100 models. This is significant, as it pro-

vides a more tangible set of parameters

to inform policy, reducing the parameter

size by 16. The results of the ESS are pro-

vided in the STAR Methods.

Energy burden principal

components feature magnitude

Although the PCA eliminates an aspect

of model interoperability, both of the

modeling frameworks use PCs to test

the predictability of energy burden with

less information loss. For the PCA, all 42

variables described in the ‘‘data descrip-

tion’’ from Table 1 are used. To better un-

derstand the indicator’s contribution to

each PC, the absolute value of the magni-

tude of influence for each data group is

provided in Table 2. The magnitude rep-

resents the influence indicators have

within each PC. The first three PCs for

each region were selected, given that

this is when the variance explained by

each subsequent PC began to drop off.

The fraction of the variance explained

for the first 20 PCs is provided in S1:

Data, Figure S1, and the magnitude of in-

fluence is shown for the first 15 PCs in S1:

Data Figure S2, accompanied by S1:Data

Table S1. The raw values from the PCA

are provided in S1:Data Table S2 for the

Midwest, S1:Data Table S3 for the

Northeast,S1:Data Table S4 for the South, and S1:Data

Table S5 for the West.

For each region, the building characteristics had the most sig-

nificant influence in the first PC, which is the most important PC

as it will explain the greatest percentage of the data variance.

Following the building characteristics are the socioeconomic vari-

ables and environmental justice variables. Among each region,

within the first three PCs, the building characteristics, the socio-

economic variables, and the environmental justice variables are

the primary influencers, meaning these data groups are repre-

sented more than their counterparts within the first three PCs.
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Energy burden leave-one-column-out analysis

After finding the top 100 models, a LOCO analysis is completed

to better understand the indicator influence within the top 100

models for the GAMs and random forests. A LOCO analysis is

a type of meta-analysis, meaning the results of multiple indepen-

dent studies are investigated to determine overall trends. In this

case, each of the top 100 models for the GAMs and random for-

ests are recreated, except one column, or indicator, is dropped

from each model. The evaluation criteria, such as R2, RMSE, and

MAE, are logged for each model, which drops one value and is

compared to the original models, including all model variables.

In general, LOCO analyses are performed to determine the
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Figure 3. Generalized additive model variable selection for the top 100 models

The variables that appeared in the top 100 models for each region using the full indicator set. Each region is assigned a color, while the bar width depends on the

number of regions that include the variable. Each variable is given the same spatial width, but the individual bar size depends on the regions included. For

instance, if all regions select the variable in the top 100 models, the bars will be the smallest; if only one region selects the variable, the bar for that region will be the

largest. Low-income individuals are included in all of the top 100 models for each region, while median age and poverty status are included in all top 100 models

for the West and Northeast.
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overall effect size and influence of individual parameters in a sta-

tistical model.73 Here, the results of the LOCO are provided for

each region in Figures 4, 5, 6, and 7, regarding the impacts on

the R2 value.

For additional model evaluation metrics, see the Evaluation

Criteria section of the STAR Methods The PC RMSE is found in

Figure 8, and the results for the PC MAE are found in Figure 9.

For the indicators that show the most significant decrease in

the R2 value, the associated p value is provided to check for

the significance in relation to energy burden.

Beginning with the Midwest, in Figure 4, for both the GAM and

random forest comparisons for the full indicator set, low-income

individuals and population impact the R2 value the most when left

out of the original model. Both of these indicators are additionally

included in each of the top 100 models for this region. The pop-

ulation per county being significantly (p < 0:01) correlated to en-

ergy burden, this is due to less populated areas having a higher

energy burden. However, the count of low-income individuals

does not show the same level of significance. This could be

due to the energy burden data being averages per county. How-

ever, the count of low-income individuals does show significance

with indicators such as PM 2.5 concentration and less than a high

school education (p < 0:01), which have been linked to socio-

economic disparities in the past.30 For the PCs, the first PC re-

sults in the most significant difference in R2 value and explains

39% of the data variance. The building characteristics and the

environmental justice variables have the highest influence.

In the Northeast, in Figure 5, poverty status (p < 0:01) and low-

income individuals (p < 0:01) show the most significant

decrease in R2 for the GAMs. In contrast, community resilience:

low risk (p < 0:01) shows the most significant reduction in R2 for

the random forests. It is important to note that the data do

contain counties with and without a high energy burden. When

limiting the data to only the counties with an energy burden

greater than 6%, the p value for community resilience: low risk

is no longer significant. The PCs show that the first PC has the

most significant impact on the R2, which accounts for 40% of

the data variance and is primarily composed of the building char-

acteristic indicators, followed by the environmental justice

indicators.

In the South region, in Figure 6, poverty status (p < 0:01), pop-

ulation (p < 0:01), and low-income individuals (p < 0:01)

showed the greatest change in the R2 values for both GAMs

and random forest models for the full indicator set, with lower

population, and higher levels of poverty status and low-income

individuals being related to energy burden. Regarding the PCs,

the first PC had the greatest influence on the R2 and explained

38% of the data variance. The building characteristics and envi-

ronmental justice indicators have the largest magnitude of

influence.

Lastly, the results for the West region, provided in Figure 7,

show that the most significant difference in R2 values for the

GAM models is attributed to poverty status (p < 0:01). At the

same time, the random forest models indicate that community

resilience: low risk (p < 0:01) results in the greatest decrease in

R2 value. Similar to the other region’s PC results, the West region

shows that the first PC results in the most significant drop in R2

value. The first PC explains 41% of the data, and the building

characteristics and environmental justice indicators have the

greatest magnitude of influence. The consistent effect of the first

PC and the building characteristics, together with environmental

justice indicators having the most significant influence, suggests

that improving building efficiency and addressing environmental

justice issues could reduce energy burden in low-income areas.

Model comparison

This section provides an overview of the best model, according

to the R2 value for modeling frameworks one and two, and for

the energy burden full indicator set, found in Table 3 and the

PCs, found in Table 4. Overall, the models using the PCs outper-

formed those using the full indicator set. This is to be expected

Table 2. Principle-component analysis magnitude

Region PC

Magnitude

Total variance

explained

Community

resilience

Socioeconomic

variables

Environmental

justice

variables

Location and

temperature

Building

characteristics

Power

outages

Midwest 1 0.67 0.64 0.99 0.01 3.11 0.23 39%

2 0.27 2.1 1.16 0.14 1.42 0.31 15%

3 0.03 1.49 1.74 0.35 0.89 0.11 6%

Northeast 1 0.66 0.7 1.04 0.07 3.04 0.23 40%

2 0.28 2.33 0.82 0.07 1.49 0.28 15%

3 0.13 1.94 1.57 0.27 0.85 0.33 5%

South 1 0.69 0.55 0.82 0.03 3.11 0.25 38%

2 0.14 2.52 0.79 0.06 1.15 0.19 12%

3 0.03 1.18 1.84 0.19 0.82 0.08 7%

West 1 0.66 0.65 1.01 0.06 3.02 0.34 41%

2 0.26 2.37 0.86 0.08 1.36 0.28 14%

3 0.12 2 1.54 0.28 0.88 0.16 5%

For each region, the data groups are shown with their respective magnitude of influence within the first three PCs. The building characteristics, followed

by the environmental justice variables, consistently show the most significant magnitude of influence within the first PC, which is the PC that explains

the highest level of data variance.
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A B

C D

Figure 4. Leave-one-column-out analysis indicator influence for the Midwest region

(A) Represents the LOCO analysis for the GAM full indicator set in the Midwest region.

(B) Represents the LOCO analysis for the random forest full indicator set in the Midwest region.

(C) Represents the LOCO analysis for the GAM PCs in the Midwest region.

(D) Represents the LOCO analysis for the random forest PCs in the Midwest region. Each indicator in the top 100 models for the GAMs and the random forests is

subjected to a LOCO analysis. Here, the R2 value is provided for the entire model, meaning all the indicators for that model were included (red), and the LOCO

model, meaning that one indicator was left out of the model (blue). The indicator dropped in the LOCO model is provided by the x axis, and the change in R2 is

presented on the y axis. Low-income individuals and population show the most significant difference in R2 value when excluded from the models for the full

indicator set. Regarding the PCs, the first PC has the most significant effect on model performance for both the GAMs and random forests.
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C D

Figure 5. Leave-one-column-out analysis indicator influence for the Northeast region

(A) Represents the LOCO analysis for the GAM full indicator set in the Northeast region.

(B) Represents the LOCO analysis for the random forest full indicator set in the Northeast region.

(C) Represents the LOCO analysis for the GAM PCs in the Northeast region.

(D) Represents the LOCO analysis for the random forest PCs in the Northeast region. Each indicator in the top 100 models for the GAMs and the random forests is

subjected to a LOCO analysis. Here, the R2 value is provided for the entire model, meaning all the indicators for that model were included (red), and the LOCO model,

meaning that one indicator was left out of the model (blue). The indicator dropped in the LOCO model is provided by the x axis, and the change in R2 is presented on

the y axis. For the full indicator set, the GAMs, low-income individuals, have the most significant impact, while community resilience has the most significant impact for

the random forests. Regarding the PCs, the first PC has the most significant effect on model performance for both the GAMs and random forests.
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A B

C D

Figure 6. Leave-one-column-out analysis indicator influence for the South region

(A) Represents the LOCO analysis for the GAM full indicator set in the South region.

(B) Represents the LOCO analysis for the random forest full indicator set in the South region.

(C) Represents the LOCO analysis for the GAM PCs in the South region.

(D) Represents the LOCO analysis for the random forest PCs in the South region. Each indicator in the top 100 models for the GAMs and the random forests is

subjected to a LOCO analysis. Here, the R2 value is provided for the entire model, meaning all the indicators for that model were included (red), and the LOCO

model, meaning that one indicator was left out of the model (blue). The indicator dropped in the LOCO model is provided by the x axis, and the change in R2 is

presented on the y axis. Poverty status, population, and low-income individuals significantly impact the R2 value in both the GAMs and random forests for the full

indicator set. Regarding the PCs, the first PC has the most significant effect on model performance for both the GAMs and random forests.
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A B

C D

Figure 7. leave-one-column-out analysis indicator influence for the West region

(A) Represents the LOCO analysis for the GAM full indicator set in the South region.

(B) Represents the LOCO analysis for the random forest full indicator set in the South region.

(C) Represents the LOCO analysis for the GAM PCs in the South region.

(D) Represents the LOCO analysis for the random forest PCs in the South region. Each indicator in the top 100 models for the GAMs and the random forest is

subjected to a LOCO analysis. Here, the R2 value is provided for the entire model, meaning all the indicators for that model were included (red), and the LOCO

model, meaning that one indicator was left out of the model (blue). The indicator dropped in the LOCO model is provided by the x axis, and the change in R2 is

(legend continued on next page)
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as the PCA creates linear combinations of the original variables;

thus, greater variance is captured using 5 PCs rather than using 5

indicators independently. For both the full indicator set and PCs,

the GAM models outperformed the random forest models in

terms of the R2 value, except for in the West region, using the

full indicator set, which has the same R2 value of 0.84. For the

full indicator set, the MAE, which does not take into account

the direction of the error, and RMSE show mixed results. In the

Midwest and the West, the MAE is lower for the GAM, but for

the Northeast and South, the random forest outperforms the

presented on the y axis. Poverty status, population, and low-income individuals have the most significant impact on the R2 value in both the GAMs and random

forests for the full indicator set. Regarding the PCs, the first PC has the most significant effect on model performance for both the GAMs and random forests. For

the GAMs, poverty status has the most significant impact, while traffic proximity and volume have the most significant impact for the random forests for the full

indicator set. Regarding the PCs, the first PC has the most significant effect on model performance for both the GAMs and random forests.

A B C

D G

E F

H

Figure 8. Principal component leave-one-column-out root-mean-square error
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GAMs. However, the random forest models outperform the

GAMs in terms of the RMSE scores for all regions except the

Midwest, where the GAM outperforms the random forest. For

the PCs, the GAM models consistently have better MAE and

RMSE values.

Random forests and GAMs are both additive in nature and

handle non-linear relationships within the data. However, there

are key differences that could result in the differences between

model performance and feature selection. In the GAMs, the

linear components are replaced with a smooth non-linear

function. The additive component occurs as each individual,

smoothed non-linear indicator is added together to create an es-

timate. In the random forest model, predictions are combined or

added from a sequence of models (decision trees) to create a

prediction. Additionally, random forests use bagging, meaning

each of the decision trees is trained on a subset of the data. As

part of the bagging, indicators that contribute more heavily to

the prediction are often selected over those that contribute to

noise or are insignificant. GAMs do not use bagging; rather,

they use spline methods, typically smoothing splines. In their

A B C

D G

E F

H

Figure 9. Principal component leave-one-column-out mean absolute error
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simplest form, smoothing splines estimate the functional rela-

tionship between an indicator, such as low income and energy

burden. The indicator is then transformed by the functional rela-

tionship; this transformed indicator is then used in the prediction.

The STAR Methods Section and the supplemental information

Methods S2 provide more information about the methods used.

Representative trees

Given that random forests are a black box method that utilizes de-

cision trees, and decision trees are considered a highly interpret-

able method, representative trees from the best performing

random forest are provided in Figures 10, 11, 12, and 13. For

the Midwest region, the PM 2.5 concentration and traffic proximity

have a high influence on high energy burden nodes. For the North-

east median age, low-income individuals, community resilience,

and air toxins are indicators of energy burden. The South region

shows that the ozone level in the air and poverty status signifi-

cantly affect a high energy burden. The West shows similar pat-

terns to the Northeast, with a strong influence from the median

age, low-income individuals, and community resilience indicators.

Policy implications

The purpose of this study is not how to create policies to alleviate

energy burden or energy poverty but to offer insights into the in-

dicators of energy burden that advocates, and policymakers

should prioritize and ways that the outcomes of machine learning

models can appropriately be used for knowledge-informed

policy. Equity initiatives should prioritize transparency, account-

ability, and fair and just consideration of socioeconomic

targeting.48 Through transparent communication, assistance

programs must gain the public’s trust, especially when creating

knowledge-informed policies supported by science and ma-

chine learning. Thus, presenting the outcomes from the GAMs

and representative decision trees from the random forest models

could aid in trust and understanding over black box models that

do not offer interpretable outcomes. For instance, decision trees

provide a visual illustration that can be understood without an

intensive machine-learning background. For each region, a pol-

icymaker could identify the indicators that lead to a high

energy burden and create a policy that alleviates another injus-

tice (poor air quality, lack of renewable energy, upgrading the po-

wer infrastructure to rural areas to reduce outages, low-income),

or identify the characteristics (racial identity, educational

level, age, etc.) to create policies that are inclusive to different

identities and cultures, which is further elaborated on in the

discussion.

Using the LOCO analysis results could aid a policymaker,

advocate, or government entity in determining the influence

of indicators and which ones to prioritize. A majority of existing

programs focus on financial support for low-income house-

holds and energy efficiency programs for residential upgrades.

The results from all models highlight low-income or poverty

status as an essential indicator of energy burden, which could

Table 3. Energy burden full indicator set best models

Region Model Representative model indicators R2 RMSE (%) MAE (%)

Midwest GAM Total population, low-income individuals,

traffic proximity, proximity to risk

management plan facilities, median age

0.77 0.87 0.63

Random forest Total population, low-income individuals,

traffic proximity, pm 2.5 concentration,

median age

0.73 0.93 0.68

Northeast GAM Poverty status, low-income individuals, air

toxics respiratory hazard, traffic proximity,

median age

0.84 0.86 0.62

Random forest Low-income individuals, air toxics

respiratory hazard, ozone level in air,

community resilience: low risk, median age

0.81 0.57 0.45

South GAM Poverty status, minority population, low-

income individuals, ozone level in air, traffic

proximity

0.78 0.77 0.58

Random forest Poverty status, minority population, low-

income individuals, linguistically isolated,

traffic proximity

0.72 0.67 0.51

West GAM Poverty status, low-income individuals, air

toxics respiratory hazard, traffic proximity,

median age

0.84 0.85 0.62

Random forest Homes built prior to 1960, air toxics

respiratory hazard, traffic proximity,

community resilience: low risk, median age

0.84 0.81 0.64

The model with the highest R2 value for each region and modeling framework using the full indicator set. The region, modeling method, and the in-

dicators used are shown, with the corresponding R2, RMSE, and MAE values. In terms of R2 the GAMs outperform the random forests in all regions

except for the West region, which has the same R2 value. Regarding the MAE and RMSE, the best performing models show mixed results among the

GAMs and random forests. Given the different modeling methods, indicators used, and regions, this table should not be used as a direct comparison.
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aid in the general public’s trust that initiatives are investing in

the correct types of programs. However, these programs are

currently insufficient to achieve an equitable energy transition.

Additionally, the PCA found the building characteristics to be

one of the most significant data groups throughout each region,

which supports the progression of energy efficiency programs

for frontline communities.

From an environmental justice perspective, investigating the

cause of poor air quality could lead to initiatives to invest in renew-

able energy, as an air quality metric (ozone, PM 2.5, air toxins

related to respiratory hazard) was commonly found among the

best models. Replacing high emissions and more expensive

(from an operational standpoint) energy sources and replacing

them with renewable energy sources (reduce emissions and are

less costly to operate) could reduce air pollutants, aid in solving

other environmental injustices, including water use and pollution

from power sources, and result in lower electricity prices. High-

lighted in Scheier and Kittner,74 investments in renewable energy,

especially in DERs, are often not realized by minority and low-in-

come groups. This creates further disparities within the energy

transition as rooftop solar could decrease a household’s energy

bill, decreasing their energy burden, further Spandagos et al.48

finds oil or gas dependency to contribute to energy poverty as

these prices may fluctuate over time and increase when natural di-

sasters occur, which could result in power shutoffs to vulnerable

communities due to the inability to pay. Additionally, local govern-

ments could use the results to identify areas to reconsider zoning

permits or increase the hosting capacity of the power grid, as

Brockway et al.6 found that minority and disadvantaged commu-

nities had less access to rooftop solar due to outdated power

infrastructure, which could also lead to more frequent and pro-

longed power outages. The total population and/or traffic prox-

imity is another indicator often found in the top models, indicating

rural areas experiencing a high energy burden; a compounded ef-

fect is that these communities usually do not live near critical infra-

structure, which is traditionally prioritized in power restoration.34

Age, socioeconomic status, and location impact a household’s

willingness to evacuate during power outages or natural disasters,

with lower-income and minority communities being less likely to

evacuate.75 Working with local communities and identifying areas

for power grid investment, consideration of micro-grid strategies,

and general aid in preparedness could contribute to integrating

social vulnerability and energy poverty into disaster management

and create a path for frontline communities to benefit from the

clean energy transition directly.76,77

DISCUSSION

The modeling frameworks used in this study were selected to

better understand indicators for energy burden in the U.S. and

to determine general patterns and distributions related to char-

acteristics attributed to energy burden through the LOCO anal-

ysis. Understanding energy burden indicators is critical as it

could inform policymakers regarding energy-burdened areas

and provide insight into geographic regions that could benefit

from policy or aid as household energy demand increases.

Adverse consequences are placed on households where energy

is unaffordable, which is amplified by a changing climate.4 The

drivers of energy burden and the communities that will face

adverse effects include households with low-income individuals,

communities experiencing poor outdoor air quality, and commu-

nities with a greater population of older or younger community

members, as found through the full indicator set. The most influ-

ential indicators from the PCA include the building characteris-

tics and environmental justice indicators (including air quality

metrics). However, the nexus between environmental justice, so-

cioeconomic factors, housing, community resilience, and power

outages are not always independently associated, as shown in

Figure 14.

Such policies and the knowledge acquired through learning

the indicators of energy burden create a path to climate action

to avail and eliminate the compounded burdens of climate

change on marginalized communities. Current challenges

among the energy and climate nexus are intergenerational equity

concerns by nature. For instance, a lack of action by governing

bodies now regarding climate change will have profound im-

pacts on the way future individuals will live and experience the

world. However, the most harmful impacts of climate change

will be on impoverished areas, highlighting the confluence be-

tween intergenerational and intragenerational equity. Commu-

nities or regions that struggle with meeting needs now may not

be able to fulfill obligations to future generations.78 This is

another reason it is vital to understand and address the issues

surrounding environmental and energy justice in the present.

Table 4. Energy burden principal component analysis best models

Region Model

Representative model

indicators (PCs) R2 RMSE (%) MAE (%)

Midwest GAM 1, 4, 7, 15, 20 0.90 0.57 0.44

Random forest 1, 4, 7, 8, 20 0.87 0.67 0.50

Northeast GAM 1, 4, 6, 20, 22 0.91 0.66 0.52

Random forest 1, 4, 6, 15, 20 0.88 0.81 0.61

South GAM 1, 3, 4, 9, 22 0.89 0.57 0.44

Random forest 1, 3, 4, 9, 20 0.88 0.62 0.46

West GAM 1, 4, 8, 13, 19 0.92 0.62 0.48

Random forest 1, 4, 6, 15, 19 0.89 0.80 0.61

The model with the highest R2 value for each region and modeling framework using the PCs. The region, modeling method, and the indicators used are

shown, with the corresponding R2, RMSE, and MAE values. For PCs, the GAMs outperformed the random forests for each of the modeling metrics.
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From a procedural and distributive equity lens, the modeling

methods and feature selection work provided are the first steps

in a more extensive process for creating awareness, policies,

and programs. This is one of the first studies to investigate

energy burden and the intersections among all data groups.

Additionally, obtaining the knowledge surrounding the most sig-

nificant indicators in terms of predicting energy burden offers in-

sights to policymakers. For instance, median age was found in all

of the top 100 models for the GAMs in both the West and North-

east. When compared to the South and Midwest, the West and

Northeast median age had a higher standard deviation, meaning

the median age was more disbursed. However, when looking at

the median age of the counties currently experiencing a high en-

ergy burden, the West and Northeast have higher average ages

but still a higher standard deviation. For the Midwest, the top 100

models for both the GAMs and random forests contain popula-

tion. When considering the population of the high energy burden

counties, it is evident that high energy is associated with rural

areas in the Midwest. It is important to note that the respective

models focused on selecting the best subsets of data that

together best predict energy burden. This is useful in navigating

these complex and multi-faceted issues, especially regarding

recognitional justice. When looking at the 25 indicators selected

by the GAMs and random forests, a policymaker could learn that

a low-income individual in a rural area in the Midwest, within a

specific age range, may be more likely to experience a high en-

ergy burden.

With this information, implementing recognitional and proce-

dural equity could be achieved by holding public forms, with

an emphasis on providing the means for vulnerable groups to

attend to voice what is viewed as fair and accessible solutions

to their community.

On the contrary, selecting the best subsets of data that together

best predict energy burden does not mean that other indicators are

not important or should not be addressed. For instance, indicators

related to air quality have higher values in high energy burden areas

but do not always appear in the top 100 models. Overall, this work

found that energy burden is a metric that can be predicted with

marginal error, especially when using the PCs. Findings conclude

that there are marginal differences between the GAMs and the

Figure 10. Midwest representative tree

A representative tree from the Midwest random forest model. The high energy burden nodes are in red, while the low energy burden nodes are in pink (in

percentile). The root node, or starting point, is the largest to signify importance; each node, indicator split, decreases in size thereafter. For the Midwest, traffic

proximity (the root node), PM 2.5, and low income have a large influence on the high energy burden percentages.

Figure 11. Northeast representative tree

A representative tree from the Northeast random forest model. The high energy burden nodes are in red, while the low energy burden nodes are in pink (in

percentile). The root node, or starting point, is the largest to signify importance; each node, indicator split, decreases in size thereafter. The median age (the root

node) and low income have a large influence on the high energy burden percentages.
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random forests when using the full indicator set, with the GAMs

outperforming the random forests for every region regarding the

R2 value, with mixed results for the RMSE and MSE. When consid-

ering the PCs, the GAMs consistently outperformed the random

forests in each region and for the R2, RMSE, and MAE values.

Additionally, the models utilizing the PCs outperform the models

using the full indicator set.

The PCA identified the building characteristics and environ-

mental justice indicators as the most important throughout the

first three PCs. For each region, dropping the first PC in

the LOCO analysis resulted in the most significant decrease in

the R2 value for both the GAMs and random forest models.

This is to be expected as the first PC explains the highest amount

of variance within the data. Thus, building characteristics and

environmental justice groups should be used in policy decisions

for an equitable energy transition and environmental consider-

ations within a changing climate. As an example, policy incen-

tives to retrofit existing infrastructure, such as older residential

buildings, which are predominant in the Northeast, could result

in lower energy burdens and a higher quality of life for residents.

Considering recognitional equity, socioeconomic factors should

influence the type of retrofits, as cultural differences and house-

hold identities must be considered within the energy and envi-

ronmental policies. Additionally, such policies could reduce

greenhouse gas emissions, potentially having a positive impact

on both household residences and the environment. Under-

standing the link between energy burden, community resilience,

sociodemographics, and building characteristics is essential in

creating equitable policies for a diverse demographic region

and working closely with communities at a local level, under-

standing the long and short-term implications, education, and

a focus on equitability and affordability. Further, climate change

has the potential to disproportionately impact low-income or mi-

nority communities.79 Thus, primitively understanding the char-

acteristics of these communities will aid in climate change adap-

tation and preparedness.

Figure 13. West representative tree

A representative tree from the West random forest model. The high energy burden nodes are in red, while the low energy burden nodes are in pink (in percentile).

The root node, or starting point, is the largest to signify importance; each node, indicator split, decreases in size thereafter. Community resilience (the root node),

median age, and air toxins related to respiratory risk greatly influence the high energy burden percentages.

Figure 12. South representative tree

A representative tree from the South random forest model. The high energy burden nodes are in red, while the low energy burden nodes are in pink (in percentile).

The root node, or starting point, is the largest to signify importance; each node, indicator split, decreases in size thereafter. The ozone level in the air (the root node)

and poverty status have a large influence on the high energy burden percentages.
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Limitations of the study

To further build upon the models used in this study, the random

forest models could be expanded upon by storing the decision

trees to create a distribution of energy burden for each county,

which could be used as a probability in accessing a county’s

risk for having a high energy burden. Additionally, spatial-tempo-

ral modeling methods should be considered in the future. These

include the use of Bayesian spatial models, as they are often help-

ful in determining dependencies and patterns in space, which has

the potential to offer more informed knowledge of energy burden.

Previous studies have found low-income U.S. households have

less access to updated technologies such as demand response

and energy-efficient appliances which could be linked to the

age of the home or renter status. Thus, renter status and the

age of the home beyond if it was built prior to 1960 could be an

additional data group in the future.80 This study uses county-level

data, which could misrepresent small communities in large

counties, as such small census regions in counties with high-in-

come census regions in the same county may be overshadowed.

It is well documented81,82 that the spatial resolution and general

data availability are challenges in socioeconomic and public

health research. This is largely due to privacy concerns, as census

tracts are more granular than zip codes, counties, or other

geographic regions provided by the Census Bureau of the U.S.

Some data sources used in this study, such as the average en-

ergy burden67 are publicly available at the census tract level.

However, to achieve this level of spatial resolution, they are sub-

jected to interpolation or resampling, which can often create bias

in the data.83 However, other data sources, such as the building

characteristics, were not available at the census tract level.84

This creates a need for secure, publicly available data at the

census region level for the socioeconomic factors.
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STAR★METHODS

KEY RESOURCES TABLE

METHOD DETAILS

This section provides an overview of the methodology implemented in this paper. First, the data acquisition and processing are dis-

cussed, which explains the creation of the data values and the PC datasets. Figure 2 shows that the modeling frameworks use data

values and PCs. Following the data processing, the modeling frameworks are discussed, followed by the evaluation criteria, which

provide additional metrics to support the main body of the manuscript.

Data acquisition and processing

This study considers the contiguous U.S. by census region. Census regions are four groups of states established by the Census

Bureau in 1942. The four groups are the Northeast, South, Midwest, and West. Census regions provide geographic frameworks

at larger scales to perform statistical analysis, such as the work completed in this study, summarize data, and offer varying physical

and cultural geography.85 The data used in this study is at the county level and can be categorized as weather and location, building

characteristics, environmental justice (demographic and environmental), community resilience, power outages, and energy burden.

The weather and geographic data was acquired from the NOAA National Centers for Environmental Information Climate online data

tool. For this study, a mean temperature for the month of July was used to represent a summer month. To represent the U.S.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Energy Burden Low-Income Energy Affordability

Data (LEAD), The United States

Department of Energy: https://lead.

openei.org/assets/docs/LEAD-

Tool-Methodology.pdf

Count of housing units built before

1960, Diesel particulate matter level

in air, Air toxics cancer risk, Air toxics

respiratory hazard index, Traffic

proximity and volume, Indicator for

major direct dischargers to water,

Proximity to national priorities list

(NPL) sites, Proximity to risk

management plan (RMP) facilities,

Proximity to treatment storage and

disposal (TSDF) facilities, Ozone

level in air, PM2.5 level in air.

Environmental Justice Screening

Tool (EJ Screen), The United

States Environmental Protection

Agency): https://www.epa.gov/ejscreen

Estimated number of individuals with

zero risk factors, Estimated number

of individuals with one-two risk factors,

Estimated number of individuals with

three plus risk factors.

Community Resilience for Equity

and Disasters, United States:

https://www.census.gov/programs-

surveys/community-resilience-

estimates/data/datasets.html

A/C type in home, Type of Home,

Number of bedrooms in home,

Energy Source

ResStock, The National Renewable

Energy Laboratory: https://resstock.

nrel.gov/datasets

Power Outages A dataset of recorded electricity

outages by United States county

2014–2022, https://doi.org/10.1038/

s41597-024-03095-5

Data, code, and other items generated items Available by request from lead author

Software and algorithms

R Programming https://www.r-project.org/about.html

Python Programming https://www.python.org
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residential building stock, building characteristics were obtained from the NREL tool ResStock. ResStock is a residential building

stock model that simulates the diversity of the residential housing stock in the U.S.59 Housing stock metrics used in this study include

the type of A/C in the home, since weather from a summer month is used, energy expenditures per household, and the building type.

Since the building characteristic data is categorical, this data was one hot encoded and then summed for each category. For

instance, there are four categories relating to A/C type. Each occurrence of an A/C type is summed and multiplied by the weighting

factor in ResStock to be representative of the households in each respective county. Due to the COVID-19 pandemic resulting in

many individuals partaking in increased home activities, working, and schooling from home, this often means higher energy bills.

Given these continued stresses due to the COVID-19 pandemic, researchers have found evidence linking high energy burdens

with conditions that may increase a household’s vulnerability to COVID-19 and related psychological stresses due to potential evic-

tions or loss of electricity due to defaulting payments.86

To account for these stresses, the community resilience for equity and disasters tool, developed by the U.S. Census Bureau in

2020, is used. The tool was inspired by how COVID-19 was disproportionately impacting minority communities. Thus, the intent

of this tool is to measure the capacity of individuals and households to recover from stresses such as local health or environmental

disasters.56 The EPA Environmental Justice screening tool (EJ Screen) was used to acquire environmental justice data. EJ screen

features 11 environmental indicators and six demographic indicators.57 The environmental indicators can be further broken down

into three sub-groups: Potential Exposure (Lead paint, Ozone, etc), Proximity (traffic and volume, NPL sites, etc.), and Hazard/

Risk (air toxic cancer and respiratory risk). The power outage data was taken from Brelsford et al.,60 and a five year average from

2016 through 2020 was used, to match the energy burden data. Data for energy burden used in this study is from the DOE Low-

Income Energy Affordability Data. This data was created to increase awareness of low-income household issues relating to energy.

For spatial allocations of different housing units, an iterative proportional fitting algorithm was used with survey-based residential

energy consumption cross-tabulations from the U.S. Census housing data from the 2016 five-year American Community Survey.67

An overview of the data is provided in Table 5.

Principle component analysis

The data used had a total of 42 indicators that could be used to predict or describe energy burden. As such, dimensionality reduc-

tion in the form of a PCA was completed using singular value decomposition. PCA is a common method used to remove corre-

lations and reduce collinearity, as correlation may indicate collinearity.87 As such, PCA outputs an orthogonal axes, allowing for the

PCs to be directly used in the model in place of the original data. Using PCs in the model additionally increases computational

efficiency while allowing information from more indicators to be considered in the models, without increasing model

configurations.

Table 5. Indicator descriptions per data source

Data Source Data description

Low-income energy affordability data (LEAD) (Ma et al.67) The average county energy burden (%). The average was

taken from the years 2016–2020.

Environmental justice (United States Environmental Protection

Agency57)

The EPA’s EJ Screen data represents the environmental

justice parameters including 11 environmental indicators and

six demographic indicators \citep{ej_data}. The

environmental indicators can be further broken down into

three sub-groups: potential exposure (lead paint, ozone, etc),

proximity (traffic and volume, NPL sites, etc.), and hazard/risk

(air toxic cancer and respiratory risk).

Community resilience for equity and disasters (United States

Census Bureau56)

From the U.S. Census Bureau, these data represents the

estimated number of individuals per county that experience

either zero risk (no risk/low risk), one-two risk (low risk/

moderate risk), or three risk (high risk).

Building characteristics (Brelsford et al.60) The NREL tool ResStock is used to represent the residential

building characteristics. Housing stock metrics used in this

study include the type of cooling in the home, since weather

from a summer month is used, the year the dwelling was built,

energy expenditures per household, and the building type.

Location and temperature (Oceanic and Atmospheric

Administration58)

From NOAA, a mean temperature for the month of July was

used to represent a summer month outdoor temperature.

Power outages (Brelsford et al.60) The average power outage duration, number of customers

impacted, and occurrence for the years 2016–2020.

A brief conceptual description of each data source is described.
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Data modeling

This section provides an overview of the data modeling techniques used in this paper. A mathematical representation may be found in

the supplemental information Methods S2. The stepwise subset selection, GAMs, random forests, LOCO are performed on the full

indicator set and the PCs.

Stepwise subset selection

To reduce the number of indicators from 42 to 15 for each region, a ESS, in the form of an exhaustive search using a ‘‘Branch and

Bound’’ algorithm, was performed.88 Datasets using every combination of five indicators from the 15 indicators selected by the ESS

are then created (3,003 datasets). A reduction in the number of indicators used in the modeling frameworks was performed as the

question, ‘‘How to appropriately create equitable and just energy policies?’’ is largely unknown.89 Thus, a smaller subset of data was

used to increase model interpretability and to show the importance of individual attributes that are selected as the most important

indicators in a more detailed manner for policy decisions. To, in return, foster a deeper understanding of the energy burden within the

general public and governing bodies. In the supplemental information Methods S2, pseudo-code adapted from90 is provided to show

an example of the ‘‘Branch and Bound’’ algorithm. Conceptually, the search space (combinations of the 42 data variables) is

optimized (find the combination of 15 that results in the lowest akaike information criterion score) by intelligently testing all possible

solutions. Intelligent testing is the ability to prune, as when a lower bound of a branch does not perform as well as the current best

solution, that branch (or subset) is automatically disregarded since it will never produce the optimal solution. To expand upon the

results in the main body of this work, Table 6 shows the variables selected and used throughout this study, while Table 7 shows

the variables that would have been selected if income related variables are removed.

Table 6. Exhaustive search subset selection methods

Midwest Northeast South West

Population Poverty status Low-income individuals Poverty status

Low-income individuals Low-income individuals Traffic proximity and volume Low-income individuals

Traffic proximity and volume Median age Poverty status Median age

Median age Air toxics respiratory hazard Ozone level in air Air toxics respiratory hazard

Proximity to risk management

plan facilities

Natural gas consumption Minority population Natural gas consumption

1-2 Bedroom home Propane consumption Median age Propane consumption

Households in linguistic isolation Traffic proximity and volume Households in linguistic isolation Diesel particulate matter

Natural gas consumption Diesel particulate matter Population Traffic proximity and volume

Fuel oil consumpation Ozone level in air Mobile home Community resilience: low risk

Power outage duration Community resilience: low risk Proximity to risk management

plan facilities

Ozone level in air

Less than high school degree Less than high school degree Propane consumption 1-2 Bedroom home

Proximity to hazardous waste 1-2 Bedroom home Air toxics respiratory hazard Less than high school degree

Minority population Multifamily housing Less than high school degree Multifamily housing

Air toxics respiratory hazard Average power outage occurance Homes built prior to 1960 Households in linguistic isolation

PM 2.5 concentration Households in linguistic isolation Proximity to national priorities

list sites

Homes built prior to 1960

The indicators selected for each region from the exhaustive search subset selection using all data values.

Table 7. Exhaustive search subset selection results alternative

Midwest Northeast South West

Population *Minority population *Multifamily housing *Population

Less than high school degree *Population Traffic proximity and volume *Air toxins related to cancer risk

Traffic proximity and volume Median age *Natural gas consumption Median age

Median age *Homes built prior to 1960 Ozone level in air *Outside Temperature

Proximity to risk management

plan facilities

*Air toxins related to cancer risk Minority population *Having room A/C in home

1-2 Bedroom home Propane consumption Median age Propane consumption

(Continued on next page)

iScience 28, 112559, June 20, 2025 e3

iScience
Article

ll
OPEN ACCESS



Generalized additive model

GAMs are data-driven rather than model-driven methods due to the data determining the relationship between indicators and

response variables. Thus, no parametric relationship is assumed. Instead, GAMs are semi-parametric extensions of generalized

linear models (GLMs). This relationship is shown in the supplemental information Methods S2. To summarize, GAMs substitute

the linear terms
∑

βjxj with an additive (summation) of nonlinear smooth functions
∑

Sj(xj).

An advantage of GAMs is their ability to handle nonlinear and non-monotonic relationships between the indicators and the

response variable, which assists the model in better representing the data, and have been found to outperform more complex black

box models, such as random forest.68 GAMs have been used in various studies and fields, including studying lead exposure in chil-

dren,69 income inequality in healthcare,70 renewable energy power production,71 and climate relations to air quality and health.72

Thus, GAMs hold eminent potential in predicting and understanding the complex interactions between the data groups and energy

burden.

Specific to this study, 20 equations test different combinations of smoothing spline functions and polynomials. These equa-

tions are provided in Methods S2 and Table S1. Thus, testing each of the 3,003 datasets for each GAM creates 60,006

models per region. The top 100 performing models are selected based on the GCV Un-Biased Risk Estimator (UBRE) score.

The UBRE can be thought of as a scaled AIC score or Mallows Cp for an additive model.91 A smaller UBRE indicates a better

model fit when considering precision and bias. When comparing GAMs, the UBRE is recommended and is the most consis-

tently used method for GAM model comparison.91,92 After the top-performing 100 models are selected, a LOCO analysis is

completed.

Random forest

Random forest is an extension of bagging or bootstrap aggregating methods, meaning that a number of repeated samples, B, of the

training data are used. The ‘‘Forest’’ is created as an ensemble of decision trees. Each decision tree is trained on a subset, bth set of

different indicators, to create diversity and aid in robustness in the ‘‘Forest’’. The final step is the model prediction, which uses an

average among the individual decision trees to create a single model with low variance. In this study, 500 decision trees are created

within the random forest. To determine the best-performing random forest models the R2 was used. Note that this does differ for a

classification problem. Random forests offer greater predictive power than decision trees, although decision trees are more intuitive

since they are not a black box method like random forests. Since model interpretability is lost in random forest models, a single tree

that is representative of the forest is created using methods from,93,94 where a d2 metric that represents the closeness based on pre-

diction is used, for regression this is the euclidean distance.

Leave-one-column-out

The LOCO analysis considers the indicator influence of the top-performing models from frameworks one and two. It is iterative, as

each of the top-performing models is re-evaluated with one indicator left out. The model with the indicator left out is then compared to

the model with all indicators included. LOCO analysis are completed to understand the individual indicators’ effect on the overall es-

timate or prediction.68,95

Table 7. Continued

Midwest Northeast South West

Households in linguistic

isolation

Traffic proximity and volume Households in linguistic

isolation

*PM 2.5 in air

Natural gas consumption Ozone level in air Population Traffic proximity and volume

Fuel oil consumpation *PM 2.5 in air *Residential heat pump *Major direct dischargers to water

Power outage duration *Having room A/C in home Proximity to risk management

plan facilities

Ozone level in air

Less than high school

degree

*Major direct dischargers to water Propane consumption 1-2 Bedroom home

*Multifamily housing 1-2 Bedroom home Air toxics respiratory hazard *Minority Population

Minority population Multifamily housing Less than high school degree Multifamily housing

*Community resilience:

low risk

Average power outage occurrence Homes built prior to 1960 *Proximity to risk management

plan facilities

*Diesel particulate matter

in air

*Proximity to risk management

plan facilities

Proximity to national priorities

list sites

Homes built prior to 1960

The indicators selected for each region from the exhaustive search subset selection when low-income individuals and poverty status are not consid-

ered.
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Evaluation criteria

To assess the fit of the models, both modeling frameworks used the R2, which is found in the main body of the paper in Figures 4, 5, 6,

and 7, RMSE, and MAE. The R2 is used to understand the proportion of energy burden variance explained by the indicators. The

RMSE is one the most common metrics used for evaluating the predictive qualities of a model, and measures the distance from

the predicted value to the actual value. The RMSE is provided in Figure 8. The MAE measure of the average size of the mistakes

in a collection of predictions without considering the direction (positive or negative). The is provided in Figure 8.

A B C

D G

E F

H

Leave-one-column-out root-mean-square error
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QUANTIFICATION AND STATISTICAL ANALYSIS

This study did not use human, animal, or plant subjects or conduct statistical experiments on human, animal, or plant data. The

data cleaning, was completed in Python, using the PANDAS package.96 The models, analysis, and plotting were completed using

R programming language including tidyverse,97 ggplot,98 randomForest,99 mgcv,100 and leaps.101

A B C

D G

E F

H

LOCO mean absolute error for the PCs
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