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A B S T R A C T

Lung infections caused by bacteria and viruses are infectious and require timely screening and isolation,
and different types of pneumonia require different treatment plans. Therefore, finding a rapid and accurate
screening method for lung infections is critical. To achieve this goal, we proposed a multi-branch fusion
auxiliary learning (MBFAL) method for pneumonia detection from chest X-ray (CXR) images. The MBFAL
method was used to perform two tasks through a double-branch network. The first task was to recognize the
absence of pneumonia (normal), COVID-19, other viral pneumonia and bacterial pneumonia from CXR images,
and the second task was to recognize the three types of pneumonia from CXR images. The latter task was used
to assist the learning of the former task to achieve a better recognition effect. In the process of auxiliary
parameter updating, the feature maps of different branches were fused after sample screening through label
information to enhance the model’s ability to recognize case of pneumonia without impacting its ability to
recognize normal cases. Experiments show that an average classification accuracy of 95.61% is achieved using
MBFAL. The single class accuracy for normal, COVID-19, other viral pneumonia and bacterial pneumonia was
98.70%, 99.10%, 96.60% and 96.80%, respectively, and the recall was 97.20%, 98.60%, 96.10% and 89.20%,
respectively, using the MBFAL method. Compared with the baseline model and the model constructed using
the above methods separately, better results for the rapid screening of pneumonia were achieved using MBFAL.
1. Introduction

Pneumonia is an acute respiratory tract infection that leads to the
production of pus in the alveoli and restricts the oxygen intake of
patients. Infectious agents include viruses, bacteria and fungi. Viral
pneumonia and bacterial pneumonia are infectious and are the two
most common types of pneumonia [1,2]. Pneumonia caused by a viral
infection previously accounted for approximately 30% of all cases.
COVID-19 has rapidly become a global epidemic after its emergence [3,
4], with a cumulative number of 437.37 million infections and 5.97
million deaths as of March 1, 2022 [5]. For infectious diseases, rapid
screening and isolation are the keys to controlling the spread of the
epidemic, and different types of infections correspond to different clin-
ical treatment plans. Early detection of pathogens and timely targeted
treatment are also conducive to the recovery of patients.

The gold standard for the diagnosis of different types of pneumonia
is a pathogen culture, but the culture time is long, the false negative
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rate is high, there are strict requirements related to the equipment,
environment and operator, and it is difficult to distinguish whether the
pathogen is a bacteria or virus [6]. The gold standard for COVID-19
screening is reverse transcriptase-polymerase chain reaction (RT-PCR),
which takes 1 to 3 h to process and has poor real-time performance
and low sensitivity to early infection [7,8]. Fang et al. [9] showed
through experiments that a sensitivity of only 71% could be achieved
for detecting early COVID-19 infection using RT-PCR. Therefore, med-
ical imaging is also an important tool for the auxiliary screening of
pneumonia.

Among various medical imaging methods, computerized tomogra-
phy (CT) and chest X-ray (CXR) images are the most effective. CT
is more sensitive than CXR for screening diseases, but its imaging
quality is affected by the radiation dose, and there are risks of cross-
infection during the imaging process. The portability of CXR imaging
devices makes it possible to scan a patient in each isolation ward in
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Fig. 1. Examples of CXR images of different types of pneumonias. a. COVID-19, b. Other viral pneumonia, and c. Bacterial pneumonia. There are some similarities among the
features pf the three images.
approximately 15 s, reducing the risk of cross-infection. In addition,
CXR is low cost, simple to operate, and have a wide range of applica-
tions [10–13].

There are different and distinguishable characteristics between CXR
images of different types of pulmonary infections, but as shown in
Fig. 1, viral pneumonia and bacterial pneumonia are both inflammatory
diseases, and their imaging findings usually have similarities [14]. For
pneumonia screening through CXR images, radiologists need a great
deal of time to make a diagnosis. Moreover, a diagnosis is prone to
error, and it is difficult to provide a definite explanation for some
features that are easily confused on the images [15]. By using arti-
ficial intelligence technology to assist in an artificial diagnosis, the
CXR images of patients are automatically diagnosed and confirmed by
doctors; this process results in a more rapid and accurate approach for
pneumonia screening [16].

Convolutional neural networks (CNNs) have been used to process
a variety of medical images, including X-rays, through transfer learn-
ing [17,18]. In CXR images, the signs of COVID-19 are similar to
those in other viral pneumonia and bacterial pneumonia to a certain
extent. It is also important to identify COVID-19, other viral pneumonia
and bacterial pneumonia separately during pneumonia screening [19].
Therefore, the screening process of pneumonia involves the identifica-
tion of multiple categories. Traditional deep learning methods usually
regard the identification of multiple categories as a multi-classification
task and use a vanilla network, i.e., a single-task network [20]. For
pneumonia screening, normal and abnormal can be easily identified.
How to make full use of the subtle differences in different pneumonia
image features to improve the overall identification effect is a topic of
research.

Inspired by the prior-attention residual learning (PARL) architecture
proposed by Wang et al. [19] and multi-task learning (MTL) and
auxiliary learning (AL) strategies [21,22], we propose a multi-branch
fusion auxiliary learning (MBFAL) strategy to identify normal, COVID-
19, other viral pneumonia, and bacterial pneumonia samples from CXR
images:

1. The multi-task learning strategy was achieved by using a multi-
branch network. To improve the performance of the model on the
validation dataset as much as possible, the multi-task was designed
as the primary task branch for identifying the four categories and the
auxiliary task branch for identifying different types of pneumonias.
The auxiliary task branch consists of a detection branch that identifies
COVID-19 and other pneumonia and a subclassification branch that
identifies other viral pneumonia and bacterial pneumonia.

2. The PARL architecture, which is used to focus the model on the
more easily identifiable region through the attention map transmission
between the two branches, was applied to auxiliary task, and the
feature maps from different branches in the auxiliary task were fused
together by 1 × 1 convolution [23] to enhance the features of different
2

pneumonias and improve the pneumonia recognition ability of the
model [19].

3. When the auxiliary parameters were updating, the label infor-
mation was used to screen the pneumonia samples, and the feature
maps of the auxiliary branch and primary branch were fused. Then,
the final identification result was obtained through the classifier and
the auxiliary parameters were updated through implicit differentiation
optimization [24]. Through the influence of auxiliary parameters on
primary parameters, the pneumonia recognition ability of the model
could be improved without damaging the normal recognition ability as
much as possible.

4. Primary task loss and auxiliary task loss were nonlinearly com-
bined through a network that combines all losses to learn the deep
relationship between the two tasks [21].

The structure of this paper is as follows. In the second section,
some related works of the methods involved are summarized. In the
third section, the proposed MBFAL method is introduced. In the fourth
section, the performance of the method is tested and compared with
some other methods. In the fifth section, the experimental results are
analyzed, and some of the limitations of the current work are explained.
In the sixth section, the research is summarized.

2. Related work

Multi-task learning [25] is used to obtain the output of multiple
tasks simultaneously through a single network, and improves the per-
formance of the model for each task by obtaining mutual information
between tasks [20]. Auxiliary learning is a branch of multi-task learn-
ing; that is used to improve the prediction or generalization ability
of the model on the primary task through one or more auxiliary
tasks [26]. The main difference between the two models is that for
multi-task learning, the performance of the model on all tasks needs
to be considered, while for auxiliary learning, only the performance
of the model on the primary tasks needs to be considered. The key
problems of auxiliary learning are how to design the auxiliary tasks
and how to integrate the loss between tasks to prevent the negative
transfer of the auxiliary task on the primary task and maximize the
positive effect [27,28].

The multi-task model is easily affected by weight allocation among
different tasks. Kendall et al. [29] proposed calculating the
homoscedastic uncertainty between different task losses to carry out
weighting. Chen et al. [30] proposed the GradNorm algorithm to
balance the weight of each task by dynamically adjusting the gradient.
This method requires access to the internal gradient of the network,
which is difficult to implement. While Liu et al. [22] proposed the
dynamic weighted average (DWA) algorithm based on GradNorm.
When using DWA, only the loss value of each task needs to be obtained,
and then the loss change rate of each task was calculated, and the loss



Computers in Biology and Medicine 147 (2022) 105732J. Liu et al.
was weighted average over time to dynamically balance the importance
of each task. These methods are based on the assumption that all tasks
are equally important. Therefore, the purpose of auxiliary learning
cannot be achieved. To prevent the negative transfer of auxiliary tasks
on the primary tasks, Du et al. [26] proposed determining whether
the auxiliary task would reverse the optimization of the primary
task by calculating the cosine similarity between the loss values of
auxiliary tasks and the primary tasks, and then weighted them. Lin
et al. [31] proposed that the dot product between the loss gradient
of the auxiliary task and the loss gradient of the primary task could
be used to determining whether the auxiliary task was helping the
primary task to reduce loss. Both approaches also require access to
gradients and lack consideration for relationships between auxiliary
tasks. Navon et al. [21] believed that the linear weighting method
could only be used to learn shallow relationships between tasks, and
that a simple multi-layer perceptron (MLP) with a nonlinear activation
function could be used to adaptively perform the nonlinear fusion of
losses, thus obtaining a deeper relationship between auxiliary tasks and
primary tasks. In our study, the method proposed by Navon et al. [21]
was chosen to fuse losses.

The design of auxiliary tasks mainly depends on the completeness of
prior knowledge. Liu et al. [29] proposed that in the case of uncertainty
about which auxiliary task is effective, the primary network can be used
to obtain the predicted value of the primary task and the auxiliary task
from one input, and then learn the auxiliary task label represented by
probability through an additional network to learn an auxiliary task
adaptively, avoiding manual design. These researchers optimized for
training data, which may lead to auxiliary degradation [21]. For our
four-category task, the difficulty lies in the recognition of different
pneumonia types, so the auxiliary task was designed as the three-
category task of recognizing COVID-19, other viral pneumonia and
bacterial pneumonia.

Auxiliary learning strategies have a bi-level optimization problem
in parameter updating, that is, one optimization problem is used as
a constraint to solve another optimization problem [32]. Bi-level op-
timization involves implicit function theorem (IFT), which requires
calculation of the inverse Hessian matrix of the weight of neural
network. However, in modern neural networks, due to the large number
of parameters, it is difficult to directly calculate the inverse Hessian
matrix, so a method is needed to approximate it [33]. Rajeswaran
et al. [34] used the conjugate gradient (CG) to approximate the inverse
Hessian matrix. Inspired by the unrolled differentiation algorithm [35],
Lorraine et al. [24] used the Neumann series and the Jacobian matrix
for approximation of this matrix. Experiments show that this method
can be applied to large neural networks and is more stable than the CG
method.

Limited by the acquisition of datasets, for pneumonia detection
based on CXRs, a network pre-trained on natural images is usually
applied to the images through the transfer learning method, and then
some targeted improvements are made [36]. Teja et al. [16] directly
used the VGG-16 network pre-trained on the ImageNet dataset to
classify COVID-19, non-COVID-19 and pneumonia patients, achieving
92.5% classification accuracy. Wang et al. [37] developed COVID-
Net based on ResNet for non-infection, non-COVID-19 infection, and
COVID-19 infection tripartite tasks; and opened up a large publicly
available dataset called COVIDx that is constantly updated. AI-Waisy
et al. [38] used ResNet34 and HRNet to detect COVID-19; and then
fused these networks at the decision level to obtain the final classifica-
tion results. However, these researchers only completed the normal and
abnormal dichotomies. Li et al. [39] proposed COVID-GATNet based on
DenseNet and Graph Attention Network (GAT), which was used to im-
prove the classification accuracy by 1 percentage point compared with
that of COVID-Net. Karthik et al. [40] performed lung segmentation
through a pre-trained network and then completed classification using
the proposed shuffled residual CNN. The methods of segmentation
3

first and then classification cannot achieve end-to-end application. In
addition, there are some methods based on feature extraction [41,42],
which are usually used to manually extract image features, such as
texture, and then neural networks are used for classification. This
method increases manual operations, and the results are no better than
those obtained using neural networks directly.

With the development of attention mechanisms, the most repre-
sentative spatial soft attention mechanisms that are not involved in
reinforcement learning are deformable convolutional networks [43]
and self-attention mechanisms [44]. Lin et al. [45] proposed AANet
based on these two attention mechanisms to identify normal, COVID-
19 and other pneumonia. Zhang et al. [46] proposed obtaining the
spatial probability distribution of output feature maps of each set of
convolutions by SoftMax function, and then superimposing it on the
original map through residual connections to generate an attention
map; so that the network can focus on the lesion area. Inspired by
this, Wang et al. [19] proposed the prior-attention residual learning
(PARL) framework for detecting COVID-19 from CT scans. Through the
multi-task learning method, attention was conducted between different
tasks to further focus the network on the pneumonia lesion area. The
prediction results of each task are concatenated together and then
the final classification results of normal, COVID-19 and other viral
pneumonia are output through a linear layer to improve the classifi-
cation accuracy. However, this approach sacrifices the model’s ability
to recognize normal samples to a certain extent.

Previous approaches have mostly focused on the dichotomous task
of distinguishing normal from abnormal or the tripartite task of adding
other pneumonia, most of which are other viral pneumonia, bacterial
pneumonia, or a mixture of the two. The CXR imaging features of other
viral pneumonia and bacterial pneumonia are difficult to distinguish, so
it is more meaningful to identify the two as separate categories. In our
approach, the auxiliary branches are designed as PARL structures, and
attention maps are transmitted from the branch of COVID-19 and other
pneumonia to the branch of other viral pneumonia and bacterial pneu-
monia, so that the network focuses on the different regions between the
three branches.

3. Method

3.1. Brief introduction

The purpose of our study was to classify CXR images into four
categories: normal, COVID-19, other viral pneumonia, and bacterial
pneumonia. It is usually easy to distinguish normal results from ab-
normal results (COVID-19 pneumonia, other viral pneumonia, and
bacterial pneumonia), so the auxiliary task is designed to identify the
three types of pneumonia individually. The MBFAL method that we
proposed is built based on ResNet34 and ResNet18 pre-trained on the
ImageNet dataset. The primary branch uses the structure of ResNet34,
and the auxiliary branch uses the last residual block group of two
ResNet18 and the NDDR [23] feature fusion layer. The two branches
share the feature maps before the last residual block group. It is easy
to build and modify an arbitrary depth network with the residual
structure, and the principle of layer depth selection is to achieve the
optimal performance under the premise of the minimum number of
parameters. The two residual blocks of the auxiliary branch were
used to distinguish COVID-19 from other pneumonia and other viral
pneumonia from bacterial pneumonia respectively. The PARL strategy
is applied to obtain the attention map of the output feature map of
the former through the SoftMax layer and then superimposed on the
feature map of the latter to enhance the classification ability of the
model. Finally, through label recognition, feature map fusion is carried
out without changing the COVID-19 feature image.

To fit the validation dataset as best as possible, the auxiliary branch
is optimized at a certain number of iterations by a small part of the
auxiliary data divided from the training set data [21]. In this process,

the feature maps of the primary branch and the auxiliary branch are
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Fig. 2. The overall flow chart of the proposed method. Here, F1 and F2 are the output feature maps of the two branches within the auxiliary branch. If the input sample belongs to
the COVID-19 category, F1 is concatenated with itself in the second dimension (feature channel dimension); otherwise, F1 is concatenated with F2, and then auxiliary features are
obtained through the feature fusion layer formed by the 1 × 1 convolution. PF and AF are the primary features and the auxiliary features, and the predicted value is obtained by
corresponding classifier respectively. The primary parameters are updated by loss backpropagation after the losses of the two branches are calculated and fused. When updating the
auxiliary parameters, PF and AF are fused on the premise of keeping the normal sample feature maps unchanged; and then using the fusion feature for primary task classification
to improve the model performance. Only the primary branch is required for testing.
fused without changing the normal samples through label recognition.
Because data are uniformly input, samples need to pass through the
feature layer of the auxiliary branch one by one to determine whether
they are normal samples. If so, the samples do not pass through the
feature layer of the auxiliary branch. The purpose of this process is
to prevent the interference of the auxiliary branch with the features
of the normal samples, and to maintain the model’s ability to identify
the normal and abnormal samples. However, the primary network
identification process does not involve the selection of labels. The
respective losses of the two tasks are fused through the Loss Combine
Net. The overall process is shown in Fig. 2.

3.2. Network structure

In our study, two networks were used: a multi-branch convolu-
tional neural network for classification, and a multi-layer perceptron
(MLP) for the fusion of primary and auxiliary losses during training.
The primary and auxiliary parameters are updated separately by two
optimizers.

Classification network MBFAL is a multi-task structure; that is real-
ized through a multi-branch network, which we call the primary branch
and auxiliary branch. Auxiliary tasks are realized through the branch
of the primary network, which can be regarded as a feature extractor
of pneumonia samples. Then, the extracted features are fused with
the features of the primary network before the classifier. The primary
branch is ResNet34, and the auxiliary branch is a PARL structure
composed of the last residual block group of two ResNet18, as shown in
Fig. 3. The lower part of the network structure is the primary branch,
and its parameters are called the primary parameters 𝜛; the upper part
of the network structure is the auxiliary branch, and its parameters are
called the auxiliary parameters Part 1 𝜑. The output of each branch is
a two-dimensional array containing scores for each category:
4

𝑝𝑟𝑖𝑚𝑎𝑟𝑦𝑝𝑟𝑒𝑑𝑠 = 𝑝(𝑖𝑛𝑝𝑢𝑡;𝜛) (1)
𝑎𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑦𝑝𝑟𝑒𝑑𝑠 = 𝑎(𝑖𝑛𝑝𝑢𝑡;𝜑) (2)

where, 𝑝 represents the primary branch and 𝑎 represents the auxiliary
branch, and 𝑠ℎ𝑎𝑟𝑒𝑑𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 are shared features between tasks obtained
through the network sharing part, as shown in Fig. 2.

The predicted value of the network is mapped to the category
probability distribution by SoftMax, and then Focal Loss [47] is used
to calculate the loss value between the predicted value and the true
label. The primary branch and the auxiliary branch are used to obtain
the primary loss and auxiliary loss, respectively, and concatenate them
together. Then, the loss combine network strategy proposed by Navon
et al. [21] is used for the loss fusion. This network is a simple MLP.
By introducing a nonlinear activation function and multiple mappings
between linear layers to obtain the deep relationship between losses,
more meaningful fusion results can be obtained:

𝑙𝑜𝑠𝑠𝑒𝑠 = 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒([𝑙𝑜𝑠𝑠𝑝𝑟𝑖𝑚𝑎𝑟𝑦, 𝑙𝑜𝑠𝑠𝑎𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑦,
𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 = 0])

(3)

𝑙𝑜𝑠𝑠 = 𝑙(𝑙𝑜𝑠𝑠𝑒𝑠; 𝛾) (4)

where, 𝑙𝑜𝑠𝑠𝑝𝑟𝑖𝑚𝑎𝑟𝑦 and 𝑙𝑜𝑠𝑠𝑎𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑦 represent the primary loss value and
the auxiliary loss value respectively. These loss values are concatenated
in the first dimension and then fused into a single loss value through
the 𝐿𝑜𝑠𝑠𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑁𝑒𝑡 𝑙. Finally, 𝛾 represents the parameters of the
𝐿𝑜𝑠𝑠𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑁𝑒𝑡.

The combined loss process is shown in Fig. 4, and the parameters of
the 𝐿𝑜𝑠𝑠𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑁𝑒𝑡 are called auxiliary parameter Part 2 𝛾, which is
called auxiliary parameter 𝜆 when concatenated with 𝜑 and optimized
as a whole.

3.3. Updating parameters

The model has two parameters: the primary parameter 𝜛 and the
auxiliary parameter 𝜆 = 𝜑 + 𝛾. The performance of the model is
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Fig. 3. The MBFAL structure. 𝑆ℎ𝑎𝑟𝑒𝑑𝑃𝑎𝑟𝑡, 𝑃𝑟𝑖𝑚𝑎𝑟𝑦𝐺𝑟𝑜𝑢𝑝𝑠, and 𝑃𝑟𝑖𝑚𝑎𝑟𝑦𝐶𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑟 constitute the primary network structure, whose parameters are primary parameters 𝜛. The
remaining part forms the auxiliary network structure, and its parameters are called auxiliary parameters Part 1 𝜑.
Fig. 4. The loss fusion process and the structure of the 𝐿𝑜𝑠𝑠𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑁𝑒𝑡. Softplus is a nonlinear activation function that introduces nonlinear properties into traditional MLP,
making loss weighting nonlinear. As a result, using this process, it is more likely that optimal weighting results are found than when using simple linear weighting. There is also a
residual structure in the Loss Combine Net, in which the primary loss is added to the fusion loss to emphasize the primary task and prevent the network from favor the auxiliary
task.
influenced by the two parameters simultaneously. Network parameter
updating depends on the gradient of the loss value with respect to the
parameters. To fit the validation dataset as best as possible, the training
data are further divided into a training set and an auxiliary set, and the
two datasets are input into the network respectively to obtain two loss
values, which are called the training loss and the auxiliary validation
loss. Then, the two losses are used to calculate the gradient of the
primary parameters and the auxiliary parameters respectively to update
them. During this process, there is a bi-level optimization problem
when the auxiliary validation loss is used to update the auxiliary pa-
rameters. That is, when the auxiliary validation loss takes the derivative
of the auxiliary parameters, the auxiliary validation loss is affected
by the primary parameters and auxiliary parameters. In addition, the
primary parameters are affected by the auxiliary parameters. As a
result, there is an implicit function relationship between the primary
parameters and the auxiliary parameters:
𝜕𝐿𝑣(𝜆,𝜛∗)

𝜕𝜆
=

𝜕𝐿𝑣
𝜕𝜆

+
𝜕𝐿𝑣
𝜕𝜛∗ × 𝜕𝜛∗

𝜕𝜆
(5)

where, 𝐿𝑣 is the auxiliary validation loss; and 𝜛∗ is the optimal primary
parameter, that is, the current primary parameter when the auxiliary
parameter is updated. 𝜕𝐿𝑣 and 𝜕𝐿𝑣 can be easily obtained by direct
5

𝜕𝜆 𝜕𝜛∗
derivation of the loss with respect to the parameters. The key point is
how to calculate 𝜕𝜛∗

𝜕𝜆 ; the inverse-Hessian matrix of the primary loss to
primary parameters needs to be calculated [24], which is impossible
in convolutional neural networks; but can be approximated by the
Neumann series [48]:

𝜕𝜛∗

𝜕𝜆
= −[

𝜕2𝐿𝑇

𝜕𝜛𝜕𝜛𝑇 ]−1 ×
𝜕2𝐿𝑇

𝜕𝜛𝜕𝜆𝑇
(6)

[
𝜕2𝐿𝑇

𝜕𝜛𝜕𝜛𝑇 ]−1 = lim
𝑖→∞

𝑖
∑

𝑗=0
[𝐼 −

𝜕2𝐿𝑇

𝜕𝜛𝜕𝜛𝑇 ]𝑗 (7)

where, 𝐿𝑇 is the training loss, −[ 𝜕2𝐿𝑇
𝜕𝜛𝜕𝜛𝑇 ]−1 is the inverse-Hessian matrix

of the primary parameter gradient, Eq. (7) represents the process of
approximating the inverse-Hessian matrix with the Neumann series,
and 𝑖 is the order of the Neumann Series.

The overall process of network training is as follows: data are
divided into a training set, an auxiliary set and a validation set. The
training set is used to input the classification network to obtain the
predicted values of the primary task and the auxiliary task, respectively
calculate the loss value and input the Loss Combine Net to obtain
the fusion loss value. Each iteration-is performed directly through
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t
r

p
c

Table 1
The data distribution.

Normal COVID-19 Other viral Bacterial

COVID-19_Radiography_Dataset 10,192 3616 1345 –
CoronaHack -Chest X-ray-Dataset 2576 58 1493 2777

Table 2
Experimental data distribution. The numeric value indicates the category number in
the experiment.

Normal (0) COVID-19 (1) Other viral (2) Bacterial (3)

All 3251 3665 2838 2777
Train (0.9) 2893 3261 2526 2471
Auxiliary 33 38 29 28
Validation (0.1) 325 366 283 278

backpropagation to achieve stochastic gradient descent to update the
primary parameters. The auxiliary set is sent into the network every
30 iterations to obtain the auxiliary validation loss and training loss of
the current iteration. The primary parameters are still updated directly,
and the auxiliary parameters need to be manually updated through the
gradient after gradually calculating the derivative of each part. This
process is repeated until the loss value converges.

4. Experiments

We tested the model using a four-category dataset collected from
Kaggle, and compared its performance with the auxiliary learning strat-
egy using a separate network to generate meaningless auxiliary task
labels (AL) [21], the multi-branched prior-attention residual learning
(PARL) strategy [19], and the ResNet18 and ResNet34 baseline models.

4.1. Materials

The data used in this study were from two public datasets pub-
lished by Kaggle [49–51], with a total of 21,057 cases, including
11,768 normal samples, 3674 COVID-19 samples, 2838 other viral
pneumonia cases, and 2777 bacterial pneumonia cases. The specific
data distribution is shown in Table 1.

A large part of the normal category samples had a unique marker,
while the other categories did not. This difference would interfere with
the judgment of the model, and part of the COVID-19 data were CT
images. After screening, the experimental data consisted of a total
of 12,531 samples, including 3251 normal samples, 3665 COVID-19
samples, 2838 other virus samples, and 2777 bacterial samples. First,
the data were divided into a training set and a validation set at a ratio
of 9:1, and then a batch of data (set as 128 in the experiment) was
taken from the training set as the auxiliary set. The auxiliary set was not
divided in other methods. The specific distribution is shown in Table 2.

4.2. Training

All CXR images were converted to 224 × 224 pixels before being
sent to the network, and the ResNet18, ResNet34, auxiliary learning
strategy, PARL network and MBFAL method were trained. There were
100 epochs of training with 128 data in each batch, with a total of
9400 iterations in our method and auxiliary learning strategy (auxiliary
parameters updated every 30 iterations) and 9300 iterations in PARL,
with an initial learning rate of 0.01. The primary parameters and
auxiliary parameters were updated by two SGD optimizers, the cosine
annealing learning rate scheduler, and the learning rate was changed
by a cosine cycle in the training stage. In the methods based on the
auxiliary method, the auxiliary set is input into the network every 30
iterations, and then the auxiliary parameters are updated by an implicit
6

differentiation optimization strategy.
Table 3
Comparison of model performance under different orders of the Neumann series.

First-order Second-order Third-order Fourth-order

Accuracy 94.96% 95.61% 95.23% 95.21%
Time (per epoch) 76.57 s 79.44 s 84.18 s 87.13 s

4.3. Results

During the process of updating auxiliary parameters, the proposed
MBFAL involves the application of the Neumann series to approximate
the inverse-Hessian matrix of the gradient of the network. In our
study, the Neumann series with reasonable order for approximation
is used since it is difficult to calculate the Neumann series of the ∞-
order. In general, the Neumann series with low order is considered
due to the constraint of computational consumption. Table 3 shows the
classification accuracy of the model and the average training time of
each epoch under different orders of the Neumann series. It is clear
that the computational consumption increases with the increase of the
order. When the order of the Neumann series increases from one to
two, the classification accuracy is significantly improved; however,
when the order continues to increase, the classification accuracy of
the model dose not improve. Therefore, considering both classification
performance and computational consumption, the Neumann series with
the second-order is selected to approximate the inverse-Hessian matrix
for the proposed MBFAL.

The performance of each model was evaluated by the total accuracy
(T_acc), and the accuracy (Acc), recall rate (Rec), specificity (Spec),
precision (Prec) and F1-score (F1) of each single class. The results are
shown in Table 4. The indicators are calculated as follows:

𝑇 _𝑎𝑐𝑐 = (𝑇𝑁𝑎𝑙𝑙∕𝑁) × 100% (8)

𝐴𝑐𝑐𝑖 = ((𝑇𝑃𝑖 + 𝑇𝑁𝑖)∕𝑁) × 100% (9)

𝑅𝑒𝑐𝑖 = (𝑇𝑃𝑖∕(𝑇𝑃𝑖 + 𝐹𝑁𝑖)) × 100% (10)

𝑆𝑝𝑒𝑐𝑖 = (𝑇𝑁𝑖∕(𝑇𝑁𝑖 + 𝐹𝑃𝑖)) × 100% (11)

𝑃𝑟𝑒𝑐𝑖 = (𝑇𝑃𝑖∕(𝑇𝑃𝑖 + 𝐹𝑃𝑖)) × 100% (12)

𝐹1𝑖 = 2 ×
𝑅𝑒𝑐𝑖 × 𝑃𝑟𝑒𝑐𝑖
𝑅𝑒𝑐𝑖 + 𝑃𝑟𝑒𝑐𝑖

× 100% (13)

where, 𝑁 represents the total number of samples, and 𝑖 represents the
𝑖th class. True positive (TP) represents the number of class 𝑖 samples
hat are correctly predicted to be class 𝑖, and true negative (TN)
epresents the number of non-class 𝑖 samples that are not predicted to

be class 𝑖, false positive (FP) indicates the number of non-class 𝑖 samples
redicted to be class 𝑖, and false negative (FN) indicates the number of
lass 𝑖 samples not predicted to be class 𝑖.

The ResNet deep model had no significant difference in recognition
effect compared with the shallow model. Experiments showed that a
small number of parameters were considered and relatively optimal
performance was achieved using 18 + 34 structure in MBFAL. The total
accuracy of MBFAL was better than that of the other models. Compared
with PARL, MBFAL was able to better maintain the identification ability
of normal samples and obtained the best pneumonia identification
ability. The overall classification accuracy was improved by 0.4–3.3
percentage points compared with other models. The model with a
higher recall rate had a better ability to avoid false negatives, and the
model with higher precision had a better ability to avoid false positives.
The F1-score is the balance of these two metrics. A confusion matrix
was used to show the difference in recognition results more intuitively,
as shown in Fig. 5, and the accuracy curve during training is shown in
Fig. 6.

To measure the stability of model performance and exclude acci-
dental cases, a ten-fold cross validation was performed, the average
accuracy was 95.85%, and the confidence interval of 𝑚𝑒𝑎𝑛 ± 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
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Table 4
Comparison of experimental results.

ResNet50 ResNet101 ResNet18 ResNet34 AL PARL Our method

Total accuracy 92.73 92.92 92.41 92.65 95.21 94.24 95.61

Normal

Accuracy 97.50 97.90 97.70 98.40 98.70 98.40 98.70
Recall 93.20 94.50 93.50 95.40 97.50 96.90 97.20
Specificity 99.00 99.10 99.10 99.50 99.10 98.90 99.20
Precision 97.10 97.50 97.40 98.40 97.50 96.90 97.80
F1-score 95.10 96.00 95.40 96.90 97.50 96.90 97.50

COVID-19

Accuracy 98.20 98.60 98.10 98.70 99.40 99.00 99.10
Recall 98.60 98.90 98.40 99.50 98.90 98.60 98.60
Specificity 98.00 98.50 98.00 98.40 99.50 99.20 99.30
Precision 97.10 97.50 97.40 98.40 97.50 96.90 97.80
F1-score 96.90 97.70 96.80 97.90 98.90 98.30 98.50

Other viral

Accuracy 94.90 94.70 94.60 94.20 96.10 95.60 96.60
Recall 94.70 95.10 94.30 94.00 94.70 88.70 96.10
Specificity 94.90 94.60 94.60 94.30 96.50 97.60 96.70
Precision 84.50 83.80 83.70 82.90 88.70 91.60 89.50
F1-score 89.30 89.10 88.70 88.10 91.60 90.10 92.70

Bacterial

Accuracy 94.90 94.60 94.50 93.90 96.20 95.40 96.80
Recall 82.40 81.30 81.30 79.10 88.10 91.00 89.20
Specificity 98.50 98.50 98.30 98.20 98.60 96.70 99.00
Precision 93.90 93.80 93.00 92.40 94.60 88.80 96.10
F1-score 87.80 87.10 86.80 85.20 91.20 89.90 92.50
Fig. 5. Confusion matrices for five models.
deviation was [95.18–96.53], indicating that the performance of MB-
FAL on the experimental dataset has a certain degree of stability.
The ROC curves for the entire dataset are drawn as shown in Fig. 7.
Ablation studies were performed on the auxiliary learning network
and PARL network, and both of them individually performed better
than the baseline models. In addition, the performance of MBFAL
combined with these two networks was further improved. To enhance
the interpretability of the model, the Grad-CAM++ [52] method was
used to draw class activation maps (CAMs) of the model, as shown in
Fig. 8.

Since most of the studies in other literature focused on the three
classification identification tasks of normal, COVID-19 and other pneu-
monia, in our study, we treated other viral pneumonia and bacterial
pneumonia as the same category for the three-classification experiment,
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and the overall accuracy of the model was 99.04%, which was better
than other methods. The performance of the model is shown in Table 5.

5. Discussion

Our method is based on the strategy of auxiliary learning and
validation set fitting using an auxiliary dataset; combined with the
PARL structure and feature fusion strategy, to identify CXR images in
normal, COVID-19, other viral pneumonia and bacterial pneumonia.
The PARL separate application architecture obtained better results than
those of the baseline model. Attention maps between branches made
the model focus on the lesion area; and enhanced the sensitivity of
the lesion type classification, but too much emphasis on pneumonia
samples without dealing with any normal samples will inhibit the



Computers in Biology and Medicine 147 (2022) 105732J. Liu et al.

o
r

m
s
g
t
o
t
s
s

Table 5
The results of the three classification tasks were compared with those of previous studies.

Methods Images Total Other pneumonia

Accuracy (%) Sensitivity (%) Precision (%) F1-score (%)

PARL [19] CT 89.67 95.50 82.68 88.63
COVID-Net [37] CXR 93.33 94.00 91.30 92.60
COVID-GATNet [39] CXR 94.33 95.10 91.30 93.10
DRE-Net [53] CT 92.59 92.59 86.21 92.86
AANet [45] CXR 95.00 93.00 93.00 93.00
Our Method CXR 99.04 99.65 99.30 99.47
Fig. 6. Training accuracy and validation accuracy. The convergence of the methods based on auxiliary learning is faster and better than the other three models, while MBFAL is
slightly better than the simple auxiliary learning.
Fig. 7. ROC curves of all data obtained by ten-fold cross validation. The AUC values
f Normal, COVID-19, Other Viral and Bacterial were 0.998, 0.999, 0.989 and 0.989,
espectively.

odel’s ability to recognize normal samples to a certain extent. The
trategy of using auxiliary learning to fit the validation set alone can
reatly improve the overall recognition performance of the model, but
he recognition performance of the three types of pneumonia is not
ptimal. Therefore, the PARL architecture was applied to auxiliary
asks to enhance the primary branch’s ability to recognize pneumonia
amples in training. At the same time, in the auxiliary parameter update
tage, the strategy of feature fusion, in which samples are selected
8

through labels, can further improve the model’s ability to recognize
pneumonia and prevent interference with normal samples as much as
possible. The experimental results in Table 4 show that this strategy
can be used to achieve a normal sample recognition level comparable
to that of auxiliary learning, and obtain the optimal pneumonia recog-
nition ability. Using this method to perform the three-classification
recognition task can also be used to obtain better results compared with
some other studies.

The reason for using label information only for auxiliary parameter
updates is that it is impossible for practical applications to know the
sample category in advance. In fact, the model used a single ResNet34
network in the test phase. The proposed training strategy will inevitably
make the model more inclined to pneumonia samples, and coupled with
CXR images for early disease prediction performance is not obvious;
therefore, the strategy will inevitably lose some recognition ability of
normal samples. In addition, in the public dataset collected for this
study, the samples of other viral pneumonia and bacterial pneumonia
are relatively small, and most of them are from children. Although the
data of the other two categories also exist in children, the proportion
is relatively small. Therefore, the model tends to distinguish these two
types of pneumonia from other types and confuse them easily. The next
step should be to collect as much data as possible and further consider
the implications of the age distribution of the data.

In practical application, it should be considered that the processed
image may be affected by uncertainties and inaccuracies, and the
fuzzy image preprocessing should be carried out before applying the
proposed algorithm to recognition [54]. The fuzzy image preprocessor
based on geometric information proposed by Versace et al. [55] has a
small amount of computation, so it can be combined with the proposed
method in practical application to achieve the purpose of real-time
application.
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Fig. 8. MBFAL CAM. The model determines the sample category by the red area in the CAM.
6. Conclusion

In this paper, we proposed an MBFAL strategy, which used an auxil-
iary learning strategy combined with the PARL architecture and feature
fusion strategy to improve the model’s ability to recognize pneumonia
types; while maximizing its ability to distinguish normal from abnormal
images, to achieve multiple pneumonia recognition from CXR images.
The network used ResNet18 and ResNet34 for architecture. In practical
applications, only part of ResNet34 was needed, and the rest was a
training strategy to assist in learning. Ablation studies showed that
MBFAL is effective and has better results than other methods based
on the same task in other studies, so it can be used as a rapid and
effective auxiliary screening tool for pneumonia. In future work, we
should consider collecting more data from more sources or exploring
more effective data preprocessing techniques to improve the model
generalization ability.
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