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Construction and validation 
model of necroptosis‑related gene 
signature associates with immunity 
for osteosarcoma patients
Long Hua1,2,3, Pengfei Lei1,2,4* & Yihe Hu1,2,4*

Osteosarcoma is the most common malignant tumor in children and adolescents and its diagnosis and 
treatment still need to be improved. Necroptosis has been associated with many malignancies, but 
its significance in diagnosing and treating osteosarcoma remains unclear. The objective is to establish 
a predictive model of necroptosis-related genes (NRGs) in osteosarcoma for evaluating the tumor 
microenvironment and new targets for immunotherapy. In this study, we download the osteosarcoma 
data from the TARGET and GEO websites and the average muscle tissue data from GTEx. NRGs were 
screened by Cox regression analysis. We constructed a prediction model through nonnegative matrix 
factorization (NMF) clustering and the least absolute shrinkage and selection operator (LASSO) 
algorithm and verified it with a validation cohort. Kaplan–Meier survival time, ROC curve, tumor 
invasion microenvironment and CIBERSORT were assessed. In addition, we establish nomograms for 
clinical indicators and verify them by calibration evaluation. The underlying mechanism was explored 
through the functional enrichment analysis. Eight NRGs were screened for predictive model modeling. 
NRGs prediction model through NMF clustering and LASSO algorithm was established. The survival, 
ROC and tumor microenvironment scores showed significant statistical differences among subgroups 
(P < 0.05). The validation model further verifies it. By nomogram and calibration, we found that 
metastasis and risk score were independent risk factors for the poor prognosis of osteosarcoma. GO 
and KEGG analyses demonstrate that the genes of osteosarcoma cluster in inflammatory, apoptotic 
and necroptosis signaling pathways. The significant role of the correlation between necroptosis 
and immunity in promoting osteosarcoma may provide a novel insight into detecting molecular 
mechanisms and targeted therapy.
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MF	� Molecular function
PPI	� Protein–protein interaction

Osteosarcoma is the most common bone malignant tumor in children, with a high lung metastasis rate, easy 
recurrence and poor prognosis1,2. The current adolescent incidence rate is 0.0004–0.0005%3. Traditional treat-
ments such as surgical resection, radiotherapy and chemotherapy are still challenging to reduce the mortality of 
osteosarcoma4–6. This is because osteosarcoma is challenging to diagnose early and has a highly heterogeneous 
and complex cancer, making it difficult to cure7,8. Therefore, how to make an early diagnosis and treatment of 
osteosarcoma is still an urgent problem and challenge for researchers.

Necroptosis is a type of programmed necronecrosis. In recent years, it has been one of the tens of light-years 
identified to regulate receptor-kinases (RIPK1/RIPK3) and mixed lineage kinase domain-like proteins (MLKL) 
specific cell death patterns9–11. It has been proved to cause cell death and crosstalk with inflammatory response, 
a momentous event regulating tumor occurrence and progression12,13. Therefore, necroptosis may be a prom-
ising new target for treating osteosarcoma. Some scholars have found that Emodin can mediate glioma cell 
apoptosis through TNF-α/RIP1/RIP3 pathway14. Moreover, necroptosis strategies have been reported to treat 
osteosarcoma disease15–18. In addition, necroptosis modifies the tumor immune microenvironment by regulating 
immune checkpoints19. Last, necroptosis-related lncRNA and miRNAs gene sets have been reported to predict 
lung cancer prognosis20,21. However, whether necroptosis-related genes (NRGs) play a role in the occurrence 
and development of osteosarcoma disease is still unknown. As such, the prediction of NRG signature regulating 
osteosarcoma to influence further the mechanism of tumor immunity microenvironment (TIME) has excellent 
application prospects.

In this study, we download the database of OS patients from TARGET and GEO and the expression profile of 
normal muscle tissue from GTEx. NRGs were screened by Cox regression analysis. Through nonnegative matrix 
factorization (NMF) clustering and the least absolute shrinkage and selection operator (LASSO) algorithm to 
calculate a risk score, a prediction model with NRGs signature for the training cohort is established and veri-
fied with the validation cohort. Kaplan–Meier (KM) survival time, Receiver Operating Characteristic (ROC), 
tumor invasion microenvironment and CIBERSORT were assessed. Establish nomograms for clinical indicators 
and verify them by calibration evaluation. Finally, through the functional enrichment to explore the underly-
ing mechanism. The objective is to establish a predictive model of NRGs in osteosarcoma for evaluating tumor 
microenvironment and new targets for immunotherapy.

Materials and methods
Data acquisition of osteosarcoma.  We obtained the dataset from the TARGET (Therapeutically Appli-
cable Research to Generate Effective Treatments; https://​ocg.​cancer.​gov/​progr​ams/​target) and GEO (Gene 
Expression Omnibus) database of NCBI (www.​ncbi.​nlm.​hih.​gov/​gds). Dataset of osteosarcoma from TARGET 
contained 83 samples and dataset GSE21257 included 53 samples. NRGs were obtained from Genecards and 
finally, 48 NRGs were obtained. In addition, the GTEx (Genotype-Tissue Expression; https://​xenab​rowser.​
net/) dataset of normal muscle tissue (n = 76) was used for the control group for functional clustering analysis 
(Table 1). The flow analysis chart is as follows (Fig. 1).

NRGs screening and NMF cluster analysis.  We used Cox regression analysis to screen NRGs to estab-
lish the predictive model. Protein–protein interaction predictions for NRGs were made using the STRING 
database (https://​cn.​string-​db.​org/)22. The results were visualized by Cytoscape software23 and hub genes were 
extracted by Cytohubba24. The osteosarcoma patients of TARGET were clustered by NMF package of the R lan-
guage and KM survival analysis was performed according to the results. Estimated Stromal and Immune cells 
in Malignant Tumor tissues using Expression data were used to analyze the stromal score, immune score, ESTI-
MATE score and tumor purity of two clusters. The immune cell infiltration score and percentage were analyzed 
using CIBERSORT algorithms to assess immune infiltration25,26.

Establishment and verification of NRGs prediction model.  First, NRGs of osteosarcoma patients in 
the TARGET database were further screened. We use the glmnet package in R language to build a prediction model 
of genes by the LASSO algorithm. Necroptosis-related genes were statistically significant in univariate and multi-
variate analyses. Therefore, the risk score formula is obtained, which is risk score = β1X1 + β2X2 + ⋯ + βnXn, where 
X1, X2, ⋯, Xn is the corresponding predictor and β is the corresponding regression coefficient. Eight necroptosis-
related genes were selected to create a predictive model. These genes were MYCT1, BNIP3L, LRP1, OPTN, TRIP6, 
ATF4, TNFRSF1A and CLTCL1 (Table 2). The risk score formula was constructed as risk score = (0.21 × MYCT1 
expression) + (0.19 × BNIP3L expression) + (0.13 × LRP1 expression) + (0.11 × OPTN expression) + (0.02 × TRIP6 
expression) + (0.005 × ATF4 expression) + (−0.07 × TNFRSF1A expression) + (−0.94 × CLTCL1 expression). Cox 
regression analysis algorithm was used to score the risk of each patient. Samples were divided into high-risk and 
low-risk groups, with the median as the dividing line. We use this algorithm to validate the GEO data set as the 
validation set.

Independence detection of the risk prediction model.  Univariate and multivariate Cox regression 
analyses of independent prognostic-related factors were conducted. Survival curves and risk scores were carried 
out between different ages, gender and metastasis status. The prerequisite for using the Cox regression model is 
that the strength of the effect of risk factors on the risk of death is consistent over time.

https://ocg.cancer.gov/programs/target
http://www.ncbi.nlm.hih.gov/gds
https://xenabrowser.net/
https://xenabrowser.net/
https://cn.string-db.org/
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Construction and calibration of the nomogram.  A nomogram through the LASSO prediction model 
includes clinical characteristics such as age, gender, metastasis and risk level. Calibration at 1, 3, 5 year survival 
was carried out in the training cohort and verified in the validation cohort. Further, we evaluated the consistency 
between the predicted model and the actual observed survival values by mapping a calibration line.

Differentially expressed genes (DEGs) and functional analyses.  The potential efficacy of NRGs 
in osteosarcoma patients was explored through functional enrichment analysis. NRGs were extracted from the 
osteosarcoma and normal tissue. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) 

Table 1.   Characteristics of patients in training and verification cohorts.

Characteristic Training cohort (n = 83) Validation cohort (n = 53)

Age, mean ± SD 14.54 ± 3.81 18.71 ± 12.20

Gender, no. (%)

Female 37 (45%) 19 (36%)

Male 46 (55%) 34 (64%)

Metastasis, no. (%)

No 61 (73%) 19 (36%)

Yes 22 (27%) 34 (64%)

Event, no. (%)

None 33 (40%) NA

Relapse 37 (45%) NA

Dead 2 (2%) NA

Other 11 (13%) NA

Tumor. location, no. (%)

Arm 7(8%) 7 (13%)

Leg 72(87%) 44 (83%)

Other 4(5%) 2 (4%)

Huvos. grade, no. (%)

1 NA 13 (25%)

2 NA 16 (30%)

3 NA 13 (25%)

4 NA 5 (9%)

Unknown NA 6 (11%)

Figure 1.   Flow chart of the study.
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analysis were performed on DEGs using Clusterprofiler R Package27–29. NRG clustering results, protein–protein 
interaction (PPI) and hub genes were verified by Metascape (http://​metas​cape.​org/​gp/).

Statistical analyses.  R language Software (version 3.3.4, The R Foundation for Statistical Computing) and 
Prism 8 (GraphPad Software, USA) were used for plotting and analysis. Survival analysis was statistically ana-
lyzed using the KM survival curve and log-rank analysis. The data were tested for normal distribution. The 
Student’s t test was used for statistical comparison between the two groups conforming to the normal distribu-
tion. One-way analysis of variance (ANOVA) is used for statistical comparison between groups that conform to 
normal distribution. Wilcox nonparametric test was used for data that did not conform to normal distribution. 
P < 0.05 was considered statistically significant.

Results
Construction of prognostic‑related NRGs.  Forty-eight necroptosis-related differential genes were 
screened and compared with the TARGET database OS and the GTEx normal muscle tissue groups. The 
results are visualized through heat maps (Fig. 2A). PPI prediction analysis was conducted on NRGs through 
the STRING website and the results were visualized (Fig. 2B). Eight genes were screened out by the LASSO 
algorithm and Cox regression analysis as the prediction model signature (Table 2). The interaction between hub 
genes and protein was predicted and visualized by Cytoscape software (Fig. 2C).

Establishment and verification of NRGs prediction model.  To verify whether there are differences 
in the classification of OS patients based on NRGs, analyze a variety of subgroups based on NMF clusters. NMF 
results showed that two clusters were ideal grouping methods (Fig. S1). Therefore, the expressed values of the 
patient are selected into two subgroups by an NMF matrix (Fig. 3A). The survival curve of the patients based on 
two clusters showed a significant difference in survival time between the two groups (Fig. 3B). We performed 
ESTIMATE analysis of the intergroup tumor cell microenvironment. It was found that there were significant 
differences in the stromal score, immune score, ESTIMATE score and tumor purity compared by the two clus-
ters between the two groups (Fig. 3C). We then assessed the proportion and differences of specific 22 types of 
immune cells by CIBERSORT. T cells CD8, T cells CD4 naive, T cells CD4 memory resting, T cells follicular 
helper, NK cells activated, monocytes, macrophages M1, macrophages M2, dendritic cells activated, mast cells 
activated groups were significantly different (Fig. 3D,E).

Construction of predictive model based on the TARGET dataset.  To verify the prediction of NRG 
results, we constructed a prediction model through the LASSO algorithm. The optimal penalty parameter was 
selected by LASSO regression analysis (Fig. 4A). Samples were displayed through Survival status and time dis-
tribution in the Prediction cohort (Fig. 4B). LASSO Cox Regression analysis shows the minimum Lamda values 
(Fig. 4C). The prediction risk score distribution is further analyzed (Fig. 4D). After establishing the prediction 
model based on the above analysis, we further investigated the survival curve of the high and low-risk groups 
and the results showed that the survival time of the high-risk group was significantly lower than that of the low-
risk group, with a statistical difference (P < 0.05) (Fig. 4E). We then evaluated the prediction efficiency of 1, 3 and 
5 years by time-dependent ROC curve and calculated the areas under curve (AUC) results of 89.46, 94.42 and 
95.47%, respectively (Fig. 4F). Meanwhile, the two groups compared stromal score, immune score, ESTIMATE 
score and tumor purity (Fig. 4G–J). The results showed that the value of the stromal score and ESTIMATE score 
in the low-risk group was higher than that in the high-risk group, while the tumor purity in the low-risk group 
was lower than that in the high-risk group (P < 0.05). The immune score showed no significant statistical differ-
ence between the two groups. CIBERSORT immune cell infiltration was further performed and no significant 
difference was observed between the groups (Fig. S2).

Independence detection of the risk prediction model.  We performed Cox univariate and multivari-
ate regression analyses for clinical indicators such as sex, age, metastasis and risk score, in an attempt to predict 
outcome variables by clinical indicators. Regardless of univariate or multivariate analysis, metastasis and risk 
score were independent risk factors for poor prognosis of osteosarcoma regardless of univariate or multivari-

Table 2.   Genes included for construction prognostic-related gene signature.

Sig. genes Coef Full names Category Genecard ID

MYCT1 0.210456925 MYC target 1 Protein coding GC06P152697

BNIP3L 0.194295857 BCL2 interacting protein 3 like Protein coding GC08P026296

LRP1 0.131815591 LDL receptor related protein 1 Protein coding GC12P057128

OPTN 0.112333038 Optineurin Protein coding GC10P013099

TRIP6 0.020655937 Thyroid hormone receptor interactor 6 Protein coding GC07P100867

ATF4 0.005482178 Activating transcription factor 4 Protein coding GC22P039599

TNFRSF1A −0.065762566 TNF receptor superfamily member 1A Protein coding GC12M006328

CLTCL1 −0.944261267 Clathrin heavy chain like 1 Protein coding GC22M019266

http://metascape.org/gp/


5

Vol.:(0123456789)

Scientific Reports |        (2022) 12:15893  | https://doi.org/10.1038/s41598-022-20217-4

www.nature.com/scientificreports/

ate analysis. At the same time, age and gender showed no significant statistical difference in the hazard ratio 
(Fig. 5A,B). Then, we calculated the KM survival curves by subgroups of metastasis, gender and cut-off age at 15. 
It was found that the metastasis group had a lower survival time than the non-metastasis group (P < 0.001). How-
ever, gender and age groups showed no significant difference in survival outcomes (Fig. 5C–E). After that, we 
evaluated the risk score of different subgroups and found that the risk score of the metastasis group was higher 
than that of the non-metastasis group (P < 0.01). However, gender and age groups had no significant difference 
in risk score results (Fig. 5F–H).

Verification of the predictive model through the GEO cohort.  We verify the efficacy of the predic-
tion model with GSE21257 of the GEO dataset. Patients were grouped into two groups using a predictive model. 
Samples were displayed through survival status and time distribution in the prediction cohort (Fig. 6A). The 
prediction risk score distribution is further analyzed with a relatively scattered distribution (Fig. 6B). We further 
verified the survival curve of the high and low-risk groups and the results showed that the survival time of the 
high-risk group was significantly lower than that of the low-risk group, with statistical differences (P < 0.001) 
(Fig. 6C). Furthermore, we verified the prediction efficiency of the model through the ROC curve and calculated 
the AUC of the subline area was 77.1% (Fig. 6D). Then we evaluated the prediction efficiency of 1, 3 and 5 years 
by time-dependent ROC curve and calculated the areas under curve (AUC) results of 64.12, 76.65 and 74.53%, 

Figure 2.   Necroptosis-related different genes and protein–protein interaction predicting. (A) Heatmap 
of differential genes. (B) Indicating protein–protein interaction (C) Hub genes screening based on protein 
interaction.
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respectively (Fig. 6E). The two groups compared stromal score, immune score, ESTIMATE score and tumor 
purity (Fig. 6F–I). The results showed that the value of the stromal score and ESTIMATE score in the low-risk 
group was higher than that in the high-risk group, while the tumor purity in the low-risk group was lower than 
that in the high-risk group (P < 0.05).

Nomogram established and validated in datasets.  We constructed a nomogram by searching for 
critical clinical indicators such as gender, age, metastasis and risk prediction group through the data set of osteo-
sarcoma patients and predicting the outcome variables such as survival time and final status (Fig. 7A). It can be 
seen that the total points scored by the above clinical indicators correspond to the 1, 3 and 5 year survival rates. 
Then we predicted the results of the training cohort and validation cohort. In the calibration picture, the blue 
line represents the data result of actual observation and the gray line represents the survival result predicted by 
our model. It can be seen that the two lines have good consistency at 1, 3 and 5 years, indicating that the predic-
tion model is ideal (Fig. 7B–D). Similarly, we tested GEO data and found that the observed data fit well with the 
predicted data (Fig. 7E–G).

Figure 5.   Independence detection of the risk prediction model. (A,B) Univariate and multivariate Cox 
regression analysis of independent prognostic-related factors. (C–E) Survival curves with different age, gender 
and metastasis status. (F–H) Risk scores with different ages, gender and metastasis status.
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Functional annotations of NRGs.  Firstly, we compare the different genes in the TARGET and GTEx 
datasets by setting |Log2FC| > 2, P < 0.05 as the threshold to screen the DEGs. The adjusted P value is based on the 
FDR Benjamini and Hochberg (BH) correction method. The volcano map of DEGs was made for visualization. 
Blue and red plots represent down-regulated and up-regulated genes (Fig. 8A). Then we screened NRGs based 
on DEGs and obtained functional enrichment results through GO analysis. The top five effects of enrichment 
according to p-value were as follows: regulation of apoptotic signaling pathway, positive regulation of the cellular 

Figure 7.   Construction and calibration of the nomogram. (A) Nomogram includes clinical characteristics 
and risk level. (B–D) Calibration at 1, 3, 5 year survival in the training cohort. (E–G) Calibration at 1, 3, 5 year 
survival in the validation cohort.
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catabolic process, positive regulation of apoptotic signaling pathway, regulation of cysteine-type endopeptidase 
activity and positive regulation of catabolic process (Fig. 8B). We found that the maximum enrichment result of 
the BP is regulation of the apoptotic signaling pathway and that of CC is focal adhesion. The maximum enrich-

Figure 8.   Differentially expressed genes and enrichment analyses. (A) Volcano plot showing the necroptosis-
related DEGs between the osteosarcoma and normal tissue. (B,C) Gene Ontology (GO) analysis of DEGs. (D) 
Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of DEGs. (E,F) PPI and hub genes analysis of 
DEGs.
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ment result of MF is heat shock protein binding (Fig. S3). The KEGG pathway analysis studies the enrichment 
of signal pathways. The top five KEGG enrichment pathways include salmonella infection, NOD-like receptor 
signaling pathway, pathogenic Escherichia coli infection, apoptosis and necroptosis. In addition to the above 
pathway processes, some immune-related pathways, such as Th17 cell differentiation also enriched (Fig. 8D). 
To supplement and verify the results, NRGs were analyzed at Metascape. Consistent results were shown for GO 
analysis (Fig. 8C). PPI and Hub genes were predicted and visualized (Fig. 8E,F).

Discussion
In this study, the NRGs were selected by NMF consistent clustering and LASSO algorithm Cox regression analy-
sis to establish a prediction model by analyzing the osteosarcoma patient datasets from the TARGET and GEO 
databases GEO database was used for verification. The predictive analysis of clinical indicators was carried out 
based on the model. Finally, the possible mechanism was discussed by functional enrichment analysis. We have 
preliminarily concluded that maybe it is a new promising research direction for the early diagnosis and treat-
ment of osteosarcoma disease by NRGs.

Osteosarcomas occur in children and adolescents, are the most common bone and soft tissue malignan-
cies and are difficult to treat30,31. Conventional surgery, radiotherapy and chemotherapy still fail to improve 
survival8,32. In recent years, targeted therapies, including targets related to apoptosis, autophagy and ferroptosis, 
have been gradually recognized, but there are still reports of drug resistance33–38. Therefore, the search for new 
diagnostic and therapeutic targets continues unabated. Eight NRGs were identified by Cox regression analysis. 
MYCT1, MYC Target 1, is mainly found in the nucleus. Overexpression can cause the promotion of apoptosis, 
alteration of morphology, enhancement of anchorage-independent growth, tumorigenic conversion, promo-
tion of genomic instability and inhibition of hematopoietic differentiation. It has been reported that MYCT1 
is associated with proliferation, transformation and genomic instability of tumors39, the full name for BNIP3L 
is BCL2 Interacting Protein 3 Like. The protein directly targets mitochondria and causes apoptotic changes, 
including loss of membrane potential and the release of cytochrome C40. LRP1 stands for LDL Receptor Related 
Protein 1. Several cellular processes include intracellular signaling, lipid homeostasis and clearance of apoptotic 
cells in Alzheimer’s disease41. OPTN is short for Optineurin. Optineurin interacts with adenovirus E3-14.7 K 
protein and may reveal tumor necrosis factor-alpha or Fas-ligand pathways to mediate apoptosis, inflammation, 
or vasoconstriction42. TRIP6 stands for Thyroid Hormone Receptor Interactor 6. It may contribute to adherens 
junction and promote actin cytoskeleton, cell invasiveness and migration mediates transcription factors NF-
Kappa-b and JUN act on inflammatory pathways43. ATF4 stands for Activating Factor 4. This gene encodes a 
transcription factor initially identified as a widely expressed mammalian DNA binding Protein; related to this 
gene include DNA-binding transcription factor activity and protein heterodimerization activity44. TNFRSF1A 
is TNF Receptor Superfamily Member 1A. It plays a role in cell survival, apoptosis and inflammation45. CLTCL1 
stands for Clathrin Heavy Chain Like 1. It is a clathrin-heavy chain family member and encodes a major protein 
of the polyhedral coat of coated pits and vesicles. Related to this gene include binding and structural molecule 
activity46. The first six genes had a positive regulatory effect, while the last two were negative. We explored its 
possible upstream and downstream mechanisms through PPI and hub genes prediction, which provided a direc-
tion for further mechanism exploration.

We found different tumor immune microenvironment outcomes in different groupings in two data sets mod-
eled by NRGs. In the results of NMF clustering in the TARGET dataset and other risk score groups, we found 
that the tumor microenvironment score in cluster 2 and the low-risk group had a higher stromal score, immune 
score and ESTIMATE score but lower tumor purity. And this was positively correlated with the prognosis and 
survival of patients (different risk score groups). Similar prognostic results were found in the GEO data valida-
tion set, but no significant statistical differences were found in tumor microenvironment scores. This may be 
related to the data sample size and other factors. However, NRGs have been reported to influence the tumor 
microenvironment47,48. In addition, tumor microenvironment and immune cells have influenced prognosis in 
different tumors49,50. Additionally, univariate and multivariate Cox regression analyses were performed to inves-
tigate the effects of other clinical indicators, such as age, sex, metastasis and NRG risk score, on tumor prognosis. 
The results were verified by nomogram using TARGET and GEO data. We found that metastasis and risk score 
were independent risk factors for the poor prognosis of osteosarcoma. This further supports our hypothesis that 
NRGs and clinical markers can be predictors of osteosarcoma prognosis. Therefore, we can still hypothesize that 
NRGs may influence tumor prognosis by regulating tumor immune cell microenvironment infiltration. Further 
experiments are needed to confirm this.

We then compared the differences between osteosarcoma and normal muscle tissue and screened for NRGs 
for functional enrichment analysis. The enrichment results mainly focus on regulating the apoptotic signaling 
pathway, positive regulation of the cellular catabolic process and focal adhesion heat shock protein binding. The 
KEGG pathway analysis includes salmonella infection, nod-like receptor signaling pathway, pathogenic Escheri-
chia coli infection, apoptosis and necroptosis. In addition to the above pathway processes, some immune-related 
pathways, such as Th17 cell differentiation also enriched. These results also focus on apoptosis and inflammation, 
consistent with our findings, compared with NRGs functional enrichment in other tumors20,48,49. These results 
demonstrate that osteosarcoma and normal tissue differ in genes associated with cell death and contribute to 
activating inflammatory, apoptotic and necroptosis signaling pathways.

There is also some limitation in this study. First, due to the restriction of database data, the clinical predictive 
data of normal control tissues are lacking, so it is impossible to conduct further analysis from clinical indicators 
such as osteosarcoma stage. Second, this study is mainly based on bioinformatic analysis and lacks experimental 
data, so its credibility still needs to be verified by further experiments. Third, we have not explored and confirmed 
the potential mechanism. Thus, the molecular mechanism should be studied in vitro and in vivo. In addition, 
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our study lacks validation of local cohorts and immunotherapy response analysis to validate further and explore 
immunotarget therapy for necroptosis-related genes. Therefore, we will improve the defects of this part of the 
work in the future.

Conclusion
In conclusion, we found a significant role in correlating necroptosis and immunity-promoting osteosarcoma. 
It may provide a novel insight into detecting molecular mechanisms and targeted therapies for osteosarcoma.

Data availability
The dataset of osteosarcoma was from the TARGET database (Therapeutically Applicable Research to Generate 
Effective Treatments; https://​ocg.​cancer.​gov/​progr​ams/​target) and the dataset GSE21257 was from the GEO 
database (Gene Expression Omnibus; https://​www.​ncbi.​nlm.​hih.​gov/​gds). The dataset of normal muscle tissue 
was obtained from GTEx (Genotype-Tissue Expression; https://​xenab​rowser.​net/).
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